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Abstract
Context The development of solutions to improve battery life in Android smartphones and
the energy efficiency of apps running on them is hindered by diversity. There are more than
24k Android smartphone models in the world. Moreover, there are multiple active operating
system versions, and a myriad application usage profiles.

Objective In such a high-diversity scenario, profiling for energy has only limited applicabil-
ity. One would need to obtain information about energy use in real usage scenarios to make
informed, effective decisions about energy optimization. The goal of our work is to under-
stand how Android usage, apps, operating systems, hardware, and user habits influence
battery lifespan.

Method We leverage crowdsourcing to collect information about energy in real-world
usage scenarios. This data is collected by a mobile app, which we developed and made
available to the public through Google Play store, and periodically uploaded to a central-
ized server and made publicly available to researchers, app developers, and smartphone
manufacturers through multiple channels (SQL, REST API, zipped CSV/Parquet dump).

Results This paper presents the results of a wide analysis of the tendency several smart-
phone characteristics have on the battery charge/discharge rate, such as the different models,
brands, networks, settings, applications, and even countries. Our analysis was performed
over the crowdsourced data, and we have presented findings such as which applications
tend to be around when battery consumption is the highest, do users from different coun-
tries have the same battery usage, and even showcase methods to help developers find and
improve energy inefficient processes. The dataset we considered is sizable; it comprises 23+
million (anonymous) data samples stemming from a large number of installations of the
mobile app. Moreover, it includes 700+ million data points pertaining to processes running
on these devices. In addition, the dataset is diverse. It covers 1.6k+ device brands, 11.8k+
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smartphone models, and more than 50 Android versions. We have been using this dataset
to perform multiple analyses. For example, we studied what are the most common apps
running on these smartphones and related the presence of those apps in memory with the
battery discharge rate of these devices. We have also used this dataset in teaching, having
had students practicing data analysis and machine learning techniques for relating energy
consumption/charging rates with many other hardware and software qualities, attributes and
user behaviors.

Conclusions The dataset we considered can support studies with a wide range of research
goals, be those energy efficiency or not. It opens the opportunity to inform and reshape
user habits, and even influence the development of both hardware (manufacturers) and soft-
ware (developers) for mobile devices. Our analysis also shows results which go outside of
the common perception of what impacts battery consumption in real-world usage, while
exposing new varied, complex, and promising research avenues.

Keywords Green software · Green mining · Android · Battery consumption analysis

1 Introduction

Battery life is known to be one of the major factors influencing the satisfaction of mobile
device users (Thorwart and O’Neill 2017). A recent survey with 1,894 smartphone users
in the US placed battery life as the most important factor impacting smartphone pur-
chasing decisions (Richter 2018). Battery life is such a growing concern that it has been
hypothesized that 9 out of 10 users suffer from low battery anxiety (Mickle 2018).

Developers are also very concerned with the impact their applications have on battery
life. Excessive battery consumption is one of the most common causes for bad app reviews
in app stores (Fu et al. 2013; Khalid et al. 2015). In fact, developers are aware of the battery
consumption problem, and many times seek help in solving this, even if they rarely receive
adequate advice (Pinto et al. 2014; Manotas et al. 2016; Pang et al. 2016). Mobile device
manufacturers recognize this issue and have tried to offer help by publishing developer
guides aimed at extending battery life.1,2,3

Reducing the energy that is consumed by mobile devices is also an important problem
from a sustainability point of view. Indeed, the billions of phones that are in use these days
have a considerable environmental footprint. Our digital consumption (that includes but is
not limited to mobile device usage) is bound to have a greater impact on global warming
than the aviation industry (Harris 2018).

Despite its importance, optimizing, or even analyzing energy consumption for mobile
devices is a difficult and labor-intensive task for both users and/or developers. Developers
are using different monitoring tools (Nucci et al. 2017; Hu et al. 2017; Cruz and Abreu
2017) according to specific needs, which often results in a non-systematized procedure
and context-specific findings (Li and Halfond 2014; Li et al. 2016; Cruz and Abreu 2017;
Oliveira et al. 2019). Monitoring the energy consumed by an application often results in
extensive tests under several different scenarios and devices (Li et al. 2013; Linares-Vásquez
et al. 2014; Jabbarvand et al. 2015), both very time consuming and potentially requiring

1https://developer.android.com/topic/performance/power/
2https://developer.android.com/guide/topics/location/battery
3https://developer.android.com/docs/quality-guidelines/building-for-billions-battery-consumption
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large initial investments. In addition, Android is an heterogeneous platform. In 2015, there
were already more than 24,000 Android device models available in the world (Tung 2015).
A recent study found out that there are more than 2.7 million apps in the Google Play Store.
The Android operating system is currently in its 10th major release, with multiple minor
releases throughout the years. These numbers compound with the different ways in which
apps and devices are used to produce a virtually infinite number of potential usage scenarios.

For users, understanding the energy consumption of their devices is an even harder exer-
cise. Their knowledge regarding the behavior of the hardware is limited to their own devices.
Furthermore, without the proper tools and skills, they cannot compare the energy behavior
of the apps they use, nor observe how such apps perform on other devices or under specific
settings and conditions. Moreover, different usage contexts of the same app, e.g., within dif-
ferent OS versions and with different hardware components switched on, result in different
energy behaviors. This has to be taken into account when performing any comparison.

In this paper, we present a descriptive and qualitative empirical study through indirect
observation of a large real-world representative dataset, of day-to-day usage of Android
devices. The aim of our qualitative study is to highlight associations between various
characteristics and tendencies within a smartphone’s ecosystem (considering real-world
interaction and varying usage profiles) and battery usage. This means that our study is not
intended to, nor capable of, directly blaming a particular characteristic for an observed high
battery consumption. Instead, we reveal tendencies which occur with concrete character-
istics, that need to be isolated in further dedicated studies in order to confirm/contradict
the responsibility of a given characteristic in such consumption scenarios. Our qualitative
empirical study provides rich contextual data to better help understand the current status
and phenomenon between smartphone usage and battery consumption.

The dataset under descriptive and qualitative analysis was gathered as part of the Green-
Hub initiative,4 a collaborative approach to Android energy consumption analysis. While
in this paper we propose to contribute with an empirical study over this gathered data, the
dataset itself, as a scientific contribution, originally appeared in Matalonga et al. (2019),
from the same authors of this paper.

The entries in the GreenHub dataset include multiple pieces of information, e.g., active
sensors, memory usage, battery voltage and temperature, running applications, model and
manufacturer, and network details. This raw data was obtained by continuous crowdsourc-
ing through a mobile application called BatteryHub. It is worth noting that all such data is
publicly available, while maintaining the anonymity and privacy of all its users. Indeed, it
is impossible to associate any data with the user who originated it. The dataset is sizable
and thus far it comprises of 23+ million unique samples, including more than 700+ million
data points pertaining to processes running on these devices. The dataset is also diverse. It
includes data stemming from 1.6k+ different brands, 11.8k+ smartphone models, from over
50 Android versions, across 160 countries.

GreenHub’s vision is to provide developers, researchers, device manufacturers, users,
and any interested party with a rich set of data on how mobile devices and the apps running
on them behave and use resources. It is expected that this data can promote the analysis and
identification of opportunities to optimize energy consumption in Android devices, for both
developers and users, and our work in this paper attempts to provide a concrete step in that
direction.

4https://greenhubproject.org/
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For our qualitative analysis, we present a detailed characterization of the data and
information within GreenHub’s dataset. This characterization allows not only a better under-
standing of the collected data for people trying to understand energy patterns in mobile
devices, but also for those who might see the GreenHub dataset as a potential basis for stud-
ies with different goals (not necessarily associated with energy and battery consumption)
across a wide range of directions. Indeed, we argue that this data is both rich and diverse
enough to support other analyses in the context of Android.

In the case of developers, we believe our analyses will trigger further analyses that are
beyond GreenHub’s dataset itself. These may explore the potential energy gains that have,
e.g., been proposed in the context of location services (Lin et al. 2010), contrast (Linares-
Vásquez et al. 2015), color scheme (Linares-Vásquez et al. 2015; Wan et al. 2017), data
structure (Hasan et al. 2016; Pereira et al. 2018; Pinto et al. 2016; Pereira et al. 2016),
programming language (Oliveira et al. 2017; Pereira et al. 2017; Couto et al. 2017; Lima
et al. 2016), network usage (Li et al. 2016), and API (Linares-Vásquez et al. 2014) usage.

After thoroughly detailing GreenHub’s dataset, we present a set of 15 different research
questions (RQs), and analyze the data in order to answer such questions (ARQs), regard-
ing the battery consumption of Android smart-phones according to different scenarios and
characteristics, such as: what are the battery/discharge tendencies across different coun-
tries, devices, network operators or brands. This lead us to several interesting findings. For
instance, we noticed that with each new Android major version battery consumption actu-
ally tended to improve, but only after a particular version. Also, we were able to identify
potential anomalies within a popular Android application, and even gather results that defied
common intuition.

In order to answer such questions, we defined a new battery charging/discharging metric
to be used within our dataset, which maintains a notion of data periods originating from
the same device. This metric, which we named PPM, or percentage-per-minute, was used
for understanding how a wide range of factors impact the battery consumption of Android
devices and for identifying common tendencies.

PPM is a numerical value, either positive PPM+ or negative PPM− reflecting battery
charge or discharge respectively, calculated based on battery percentage change within one
minute. PPM does not represent an absolute battery, energy, or efficiency metric, but the
tendency a given scenario has on the charging/discharging of the battery. This metric factors
in real-world human interaction, and aspects such as different user profiles across vastly
different devices, brands, countries, battery settings, and application usage.

In order to illustrate the potential of our dataset, we will also be presenting new and
diverging potential research paths, which spontaneously sprouted from our work and anal-
ysis. These RPs further complement the RQs presented in this paper, by focusing on more
specific questions and findings, while also opening research paths to establish the causality
of our highlighted associations and suggesting hypotheses which can be tested in analytical
studies. We believe they are as equally promising to be addressed and should so in dedi-
cated studies, either by fully, or partially (through means of combining other datasets), using
our presented dataset or data present within the dataset. Note that some of these prospec-
tive research avenues are not specifically aiming for energy/battery consumption research,
but also other areas of research on Android devices. For example, our data can help with
research paths such as: how do new applications spread worldwide?; How frequent do users
update their OS versions?; Is there a relationship between a country’s average temperature
and battery drain; etc.
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Not only is our dataset completely public, open-source, and permanently available, but
also, for reproducibility, all the tools and processes used to generate the results and informa-
tion in this paper are also publicly available. This includes the GreenHub Pipeline based on
Jupyter Notebooks and the Python Pandas library, which allows for human-readable doc-
uments to perform data analysis in a modular and easy to visualize manner. This Pipeline
performed all the data cleaning, processing, and analysis which produced the results and
answers to our RQs within this paper.

As we have previously mentioned, the work presented in this paper extends previous
work (Matalonga et al. 2019) in which we presented the GreenHub infrastructure, the dataset
model, and quantified the collected samples. This prior work is presented in Section 2,
which we have added a more detailed explanation of how to access the data through our
REST API, and examples of how to query the Farmer database. Additionally, this public
dataset itself has been updated to contain half a year’s worth of new data samples. The novel
contributions include the detailed exploration of the dataset, study on the battery tendencies
based on human-smartphone interactions, proposal of other research avenues based on this
fruitful dataset, and an integrated data cleaning and analysis pipeline.

To summarize, the main contributions of our research are:

1. A detailed characterization of the GreenHub dataset, thus providing knowledge and
understanding of the data in the dataset;

2. A qualitative empirical analysis of the collected human-smartphone interaction data
to help identify the tendencies between battery charging/discharging of Android
smartphones and various smartphone characteristics;

3. The proposal of several generic and energy/battery related research paths enabled by
the data in the GreenHub dataset;

4. A replication package consisting of the GreenHub Pipeline, for cleaning data, char-
acterizing and querying the dataset, and analyzing battery charging/consumption
tendencies.

The remainder of this paper will describe:

– The setup and infrastructure for data collection, analysis, and storage (Section 2);
– A detailed characterization of the GreenHub dataset (Sections 3);
– An empirical study and results on the battery consumption tendencies of Android

devices (Section 4);
– Proposal of several research opportunities based on the data collected in GreenHub and

in Section 4 (Section 5);
– A discussion and analysis on a peculiar aspect of the GreenHub dataset (Section 6);
– The GreenHub Pipeline notebook replication package (Section 7);
– A look at the threats to the validity of our study and results (Section 8);
– Description of related work (Section 9);
– Our conclusions and final comments of this paper (Section 10).

2 Collaboratively Collecting and Sharing Data

In this section, we describe GreenHub, the initiative from which the dataset studied in this
paper stemmed. While the dataset itself has already been introduced in Matalonga et al.
(2019), we go back to describing the data collection procedure in order to provide readers a
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Fig. 1 GreenHub platform architecture

comprehensive description of our context. In this section, we also extend the description of
GreenHub’s dataset with concrete examples of how it can be accessed and utilized.

GreenHub is committed to provide the means to support a symbiotic relationship with
the mobile community. The success of the initiative is dependent on its data, and to keep
such data coming in, we plan to give back to the community in concrete and valuable ways.

The initiative relies on a fully open-source multi-component technological platform,5

whose architecture overview is shown in Fig. 1. This platform includes our data collection
Android app called BatteryHub, a command-line application interface called Lumberjack,
and the Farmer REST API for prototyping queries, dashboard interface, and database for
storing data. These components are further defined in the following sub-sections.

2.1 Data Collection

A key component of the platform is BatteryHub, an Android app whose development was
inspired by Carat (Oliner et al. 2013). Carat collects data regarding apps running on a device,
and uses it to provide battery-saving recommendations, such as when to close an app. Ini-
tially, we forked its open-source code to take advantage of the data collection and storage
mechanisms. We also updated its data model to consider more details on modern devices,
such as NFC and Flashlight usage, for example. In the same spirit of Carat, BatteryHub

5https://github.com/greenhub-project
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is entirely open-source. In contrast with Carat, however, all our collected data is perma-
nently and publicly available, so as to strongly encourage and help others in collaborating,
inspecting and/or reusing any artifact that we have developed or collected.

BatteryHub is an Android app that is available at Google’s Play Store.6 It tracks the
broadcast of system events, such as changes to the battery’s state and, when such an event
occurs, obtains a sample of the device’s current state. BatteryHub either uses the official
Android SDK or custom implementations for universal device compatibility support, and
periodically communicates with the server application (over HTTP) to upload, and after-
wards remove, the locally stored samples. Each sample characterizes a wide range of aspects
that may affect battery usage, such as sensor usage, temperature, and the list of running
applications. Section 2.3 presents the complete set of attributes that BatteryHub collects.
These attributes are explicitly mentioned in the application’s terms and conditions and pri-
vacy policy. In addition, it is important to mention that the data collected from each user is
made anonymous by design. Each installation of BatteryHub is associated with a random
unique identifier and no personal information, such as phone number, location, or IMEI, is
collected. This means that it is (strictly) not possible to identify any BatteryHub user, nor is
it possible to associate any data with the user from whom it originates.

In order to start giving back to users as early as possible, BatteryHub already provides
detailed information about the status of their device. Currently, it indicates: (i) the electric
current level, temperature, voltage levels in a given period, and (ii) model specifications,
network information, memory usage, and storage details. Information in (i) is re-actively
updated when the battery’s state changes, and in (ii) when a system event occurs. Coinci-
dentally, in regards to sample collection frequency, a new data measurement is collected (to
be sent to the GreenHub server) when the battery’s state changes. In most cases, this trans-
lates to a sample being sent at each 1% battery change (which accounts to 95% of the time
according to our data).7

A fully featured task manager is included and the application also provides interactive
charts throughout different time periods showing changes pertaining to different aspects of
the battery.

The app allows for configurable alerts, e.g. when the battery reaches a certain temper-
ature, and our plan is to use BatteryHub to give suggestions to users, based on their usage
profiles, on how to reduce the energy consumption of their device.

Having deployed BatteryHub, our main challenge in constructing the dataset was the
acquisition of a large user base. For this, we were helped by our institutions and their media
outlets to bring attention to and attract the general audience. Our strategy achieved circa 50
dedicated publications from national and institutional venues, through news,8 magazines,9

newspapers,10 and radio shows,11,12 in Portugal and Brazil alone. This attracted an initial

6https://play.google.com/store/apps/details?id=com.hmatalonga.greenhub
7The remainder accounts for battery changing by 2% or more
8www2.cin.ufpe.br/site/lerNoticia.php?s=1&c=94&id=1697
9www.visao.sapo.pt/actualidade/sociedade/2017-10-11-Bateria-do-telemovel-invista-agora-para-poupar-
depois
10https://www.publico.pt/2017/10/09/tecnologia/noticia/desenvolvida-aplicacao-para-poupar-bateria-de-
dispositivos-moveis-1788153
11www.90segundosdeciencia.pt/episodes/ep-443-joao-paulo-fernandes/
12www.rtp.pt/play/p2063/e342304/ponto-de-partida
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large group of users to the application, naturally propagating outside of the host countries.
Thus, all the samples present in our dataset are of real-world usage.13

Besides BatteryHub, our infrastructure includes four additional components, as depicted
in Fig. 1. We envision they can be used in different stages of mining our dataset. The REST
API within the Farmer component and Lumberjack, which are described in Section 2.2, are
more appropriate for fast prototyping and to get acquainted with the data and the struc-
ture of the dataset. The use of the Database, which is described in Section 2.3 is probably
mandatory for extensive and detailed mining of the dataset. Finally, our infrastructure also
includes a web dashboard interface14 that provides access to up-to-date statistics about the
collected samples.

2.2 Prototyping Queries

The Farmer REST API was designed as a means to quickly interface with and explore the
dataset. As every request made to the API must be authenticated, users must first obtain an
API key in order to access the data in this fashion.15 The API provides real-time, selective
access to the dataset and one may query, e.g., all samples for a given brand or OS version.
Since the API is designed according to the REST methodology, this allows us to incremen-
tally add new data models to be reflected within the API itself as the data protocol evolves
over time. After an API key has been successfully generated, one may request his/her own
user profile from the API:

https://farmer.greenhubproject.org/api/v1/me?api token=yourTokenHere

Every successful API response is a JSON formatted document, and in this case the server
will reply with the user details, as shown next.
{ "data": {

"id": XX,

"name": "Your Name",

"email": "your@email.com",

"email_verified_at": "YYYY-MM-DD HH:MM:SS",

"created_at": "Mon. DD, YYYY",

"updated_at": "YYYY-MM-DD HH:MM:SS",

"roles": [ ... ] } }

It is now possible to use the API, for example, to list devices:

https://farmer.greenhubproject.org/api/v1/devices?api token=yourTokenHere

13The dataset does not include any data collected during development and testing of the BatteryHub
application
14https://farmer.greenhubproject.org/
15https://docs.greenhubproject.org/api/getting-started.html
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This request can take additional parameters for page and devices per page. A full descrip-
tion of all the available parameters for each request can be found in the API Reference.16

Do note that the App Processes data is not present in our API as the size is extraordinary
(over 749M data entries) and would overload the prototyping system. In this case, we would
suggest that analysts opt to directly access the data. The expected response from the request
above is as follows:
{ "data": [

{ "brand": "asus",

"created_at": "2017-10-28 02:51:09",

"id": 2518,

"is_root": false,

"kernel_version": "3.1835+",

"manufacturer": "asus",

"model": "ASUS_X008D",

"product": "WW_Phone",

"os_version": "7.0",

"updated_at": "2017-10-28 02:51:09"

}, ... ],

"links": { ... },

"meta": { ... } }
To get more detailed information, e.g., about a particular device whose identifier is 123,

it is possible to request its samples:

https://farmer.greenhubproject.org/api/v1/devices/123/samples?api
token=yourTokenHere

A complementary approach to interface with the API is to use its command-line appli-
cation interface Lumberjack. Using this tool, users can perform flexible, on-demand queries
to the data repository, to support quick prototyping of data queries applying different filters
and parameters. Furthermore, users can quickly fetch subsets of the data without the need
to download a snapshot of the entire dataset. The following is an example of a Lumberjack
query to obtain the list of Google brand devices:

The following example queries the dataset for samples whose model is nexus and that
were uploaded before May 31st 2018:

16https://docs.greenhubproject.org/api-reference/
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Fig. 2 Entity Relationship diagram of the dataset

2.3 Extensive Mining

The samples accessible through Farmer have been collected since November, 201717 and
are available as a zip archive file, in CSV format.18 The dataset is also available in Parquet19

binary format,20 which can be analyzed more efficiently than a plain text dump. The dataset
is also available as a MariaDB relational database. The samples sent by BatteryHub are
queued to be processed by a PHP server application built using the Laravel framework.21

Each sample is received as a JSON formatted string that is deconstructed and correctly
mapped within the database.

The (simplified) data model that we employ is shown in Fig. 2, where each box represents
a table (or a CSV file) in the dataset. Samples is the most important of them, including
multiple features of varied nature, e.g., the unique sample id, the timestamp for each sample,
the state of the battery (charging or discharging), the level of charge of the battery, whether
the screen was on or not, and the free memory on the device.

App Processes is the largest among the tables of the dataset, containing information
about each running process in the device at the time the sample was collected, e.g., whether
it was a service or an app running on the foreground, its name, and version. Battery Details
provides battery-related information such as whether the device was plugged to a charger
or not and the temperature of the battery. Cpu Statuses indicates the percentage of the CPU
under use, the accumulated up time, and sleep time.

Devices provides device-specific information, such as the model and manufacturer of
the device and the version of the operating system running on it. Network Details groups
network-related information, e.g., network operator and type, whether the device is con-
nected to a wifi network, and the strength of the wifi signal. The Settings table records
multiple yes/no settings for services such as bluetooth, location, power saver mode, and nfc,
among others. Finally, Storage Details provides multiple features related to the secondary
storage of the device.

Table 1 presents a more detailed description (excluding primary and foreign keys) of the
dataset tables. It includes information on the attribute’s name, type, and an example of each.

17The dataset includes samples collected prior to that date, but they correspond to the infrastructure testing
period.
18https://farmer.greenhubproject.org/storage/dataset.7z
19http://parquet.apache.org
20https://farmer.greenhubproject.org/storage/dataset.parquet.7z
21https://laravel.com/
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Table 1 Details on the GreenHub dataset tables

Attribute name Type Example

App Processes

name varchar “com.facebook.katana”

application label varchar “Facebook”

is system app tinyInt 0

importance varchar “Service”

version name varchar “8.2.0”

version code int 802000871

installation package varchar com.android.vending

Battery Details

charger varchar “unplugged”

health varchar “Good”

voltage decimal 4.03

temperature decimal 29.20

Cpu Statuses

usage decimal 0.03

up time bigInt 409480

sleep time bigInt 141369

Devices

model varchar “Nexus”

manufacturer varchar “LGE”

brand varchar “google”

product varchar “hammerhead”

os version varchar “6.0.1”

kernel version varchar “3.4.0-gcf10b7e”

is root tinyInt 0

Network Details

network type varchar “WIFI”

mobile network type varchar “lte”

mobile data status varchar “connected”

mobile data activity varchar “inout”

roaming enabled tinyInt 0

wifi status varchar “enabled”

wifi signal strength int -71

wifi link speed int 39

wifi ap status varchar “disabled”

network operator varchar “verizon”

sim operator varchar “unknown”

mcc varchar “311”

mnc varchar “480”
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Table 1 (continued)

Attribute name Type Example

Samples

timestamp timestamp 2017-10-08

app version int 11

database version int 3

battery state varchar “Charging”

battery level decimal 0.90

memory active int 505296

memory inactive int 502392

memory free int 1442060

memory user int 60724

triggered by varchar “android.intent.action.BATTERY CHANGED”

network status varchar “lte”

screen brightness int -1

screen on tinyInt 1

timezone varchar “America/Chicago”

country code varchar “us”

Settings

bluetooth enabled tinyInt 0

location enabled tinyInt 1

power saver enabled tinyInt 0

flashlight enabled tinyInt 0

nfc enabled tinyInt 1

unknown sources tinyInt 0

developer mode tinyInt 0

Storage Details

free int 3922

total int 9634

free external int 3922

total external int 9634

free system int 637

total system int 3390

free secondary int 0

total secondary int 0

(2021) 26:Empir Software Eng 3838 Page 12 of 55

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Let us now look at some simple examples of how we can query the GreenHub Farmer
dataset within a database, using SQL. We start by looking at what are the top 5 most
represented countries:

The results for this query are presented next.

country code qty

pt 4362680
id 4015493
Unknown 2013308
us 1759824
br 1462220

The majority (4.3M) of our samples are from Portugal, followed by India (4M). Roughly
2M samples are from unknown countries.

Out of curiosity, let us inspect how many samples we have, for example, from South
Korea:

From South Korea we have a sample size of ≈ 77K:

country code qty

kr 77307

Inspecting these samples deeper, we may query the top 10 brands of devices from South
Korea:

Interestingly, while we have many more different brands represented in our dataset, only
6 different are represented in South Korea, with a Samsung dominance:

brand qty

samsung 53132
lge 19540
Sony 2318
HUAWEI 1306
VEGA 931
google 80
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Finally, we dig into one particular device, #7485, a Samsung device from South Korea.

The (partial) results for this query are shown in Table 2.
We can see the user began charging the device when the battery level was at 79% and

up to 80%, as battery state changed from Discharging to Charging. At this
time, the WIFI was also turned on. After approximately 5 minutes the user disconnected the
charging cable, and turned off the network (neither WiFi nor lte networks were activated).
Additionally, we also see how neither the bluetooth nor the location setting was changed
during these samples.

Based on sequences of samples such as this, we can, e.g., estimate how much battery
was consumed during a given period by looking at battery level and timestamp.
For example, the last two lines of Table 2 show that it took almost 22 and a half minutes
to discharge the battery by 1%, from 79% to 78%. One can combine such samples with the
app processes table and understand which applications were involved and correlate the
relationship between applications and battery discharges.

3 Characterizing the Collected Data

The previous section detailed the complete construction and definition of the GreenHub
infrastructure, in order to support a collaborative environment to collect and share Android
usage data. As our GreenHub initiative aims to give back to the community (both researchers
and practitioners), our first research question within the initiative is very simple:

RQ1 Can our collaborative platform collect large, diverse, and representative amounts of
Android user usage data across the world?

The direct answer to RQ1 is yes, and this straight answer is backed up by the empir-
ical study described in this paper (and specifically within this Section), along with the
characterization of the data and our findings thus far (ARQ1).

The construction and deployment of the GreenHub infrastructure allowed us to collect a
very large dataset with 23+ million unique samples, including more than 700+ million data
points pertaining to processes running on mobile devices.

Table 2 Details for device 7485

model battery
state

battery
level

network
status

timestamp bluetooth
enabled

location
enabled

...

SM-J330L Discharging 0.79 disconnected 2018-07-08 13:38:10 0 1

SM-J330L Charging 0.80 WIFI 2018-07-08 13:44:15 0 1

SM-J330L Discharging 0.79 disconnected 2018-07-08 13:49:53 0 1

SM-J330L Discharging 0.78 disconnected 2018-07-08 14:12:15 0 1

...
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Within the remainder of this Section, we perform a first characterization of the collected
GreenHub dataset in a structured and detailed way, focusing on several of the attributes
present in each dataset. For the full visualization on the remainder attributes, please refer to
Section 7.

The focus of each characterization effort is to understand how far wide, and how repre-
sentative is our dataset. Thus we will showcase how fruitful the GreenHub dataset is, and
how it can be used to answer relevant research questions, by other researchers, on Android
smart-phone systems.

Prior to processing the data, in order to characterize it, we carefully analyzed the distri-
bution of the data values, detected any inconsistent, incomplete, or non uniform data, treated
any detected syntax errors, added complementary information, etc,.

For example, the representation of the Android OS version often times differs accord-
ing to brand/model, and we have cases such as: Android 8, Android 8.0.0, OS 8, etc. In
these cases, we normalized the representation, thus when we were to aggregate the data
for corresponding queries, we would have accurate and consistent results. Additionally,
following the same example, we complemented the versions with their corresponding Code-
name, in this case Android Oreo, by adding a new column in our dataset pipeline. Another
normalization example included String treatment to be all upper-case (once again, each
brand/model would present the data in various ways, such as upper/lower/camel-case.) to
correctly aggregate data. In addition, during the data cleaning process, we also discarded all
statistically calculated PPM values and their periods. Such data cleaning steps are automated
and implemented within our GreenHub Pipeline, which is described in Section 7.

In Section 3.1, we characterize the dataset regarding the countries and time zones where
the samples have been collected. In Section 3.2 we describe the brands, the models, the oper-
ating system versions and respective codenames that are present in the dataset. In Section 3.3
we look at the top 15 most represented public apps within our dataset. Additionally, we
also drill-down into 3 popular apps and describe in finer detail the information available
about the various processes each app is executing. In Section 3.4 we describe the preva-
lence of samples with associated sensor usage and within different charging states. Finally,
Section 3.5 describes the different network types, operators, network statuses present in our
dataset for each sample.

3.1 Samples Data

As of July 2019, the Samples database table had 23,600,501 entries. A characterization of
the countries and time zones that are most frequently represented is shown in Fig. 3. In
Fig. 3a, we present the 10 (out of 160) countries that have the highest number of entries,
which means that they have the highest number of associated samples in the dataset. We
also show an aggregation for the number of entries of the remaining countries. The same
approach is followed in Fig. 3b for time zones.

We see that the most represented country is Portugal (pt), followed by Indonesia (id)
and the United States of America (us). These 3 countries alone represent circa 50% of the
samples.

Country code label is available only when the device is registered to a network. Some
results may be unreliable on CDMA networks, and for these particular cases, of circa 10%
of samples, we label them as unknown.

Regarding the most represented time zones, ASIA/JAKARTA, EUROPE/LISBON and
ATLANTIC/MADEIRA consist of the top 3. We also see that circa 20% of the samples are
coming from time zones whose representation is below the 3.16% threshold.

(2021) 26:Empir Software Eng 38 Page 15 of 55 38

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 3 Distribution of Samples data

3.2 Devices Data

In our Devices dataset, we have 87k+ different represented devices installations which
imply that each time a user downloads and installs BatteryHub, a unique hash identifier is
associated to the device, to track the samples coming for that given installation.22

Shown in Fig. 4a we have the top 20 (out of 1.6k+) most represented device brands in
our dataset, and shown in Fig. 4b we have the top 20 (out of 11.8k+) most represented
smartphone models. We see that Samsung has a large representation, accounting for 34% of
our entries in the top 20, followed by Xiaomi with 10%. The Samsung dominance continues
with the smartphone models, where the two most represented ones are the Samsung J200G
and Samsung G532G with around 10% in both cases. These are followed by two Xiaomi
REDMI models with around 8% each.

Our dataset contains devices across 50 different individual Android versions, of which
the top 20 are shown in Fig. 4c. Here we see that Android version 7.0 is the most represented,
appearing in 14% of our devices, with version 6.0 close behind with 13%. It also contains
information on older versions such as 4.4.2, of which 5% of the devices have installed.

Finally, shown in Fig. 4d, we have the distribution of all Android versions by their code
name. We see how Marshmallow (which are versions 6.0 - 6.0.1) is the most represented
with 26% of our devices. Lollipop (versions 5.0 - 5.1.1) is the second most represented with
25%. The more recent versions such as Oreo and Pie have a representation of 12% and 1%
respectively.

3.3 App Processes Data

The App Processes database table is by far our largest one, with over 749M data entries.
As each Samples entry can have an N amount of App Processes running, we have roughly
31:1 (App Processes:Samples) ratio. An App Process can be system processes as well as
user apps.

Shown in Fig. 5a are the top 15 represented publicly available user apps in our dataset,
which refer to almost 160M entries. This top 15 list excludes any system processes, and apps

22In fact, as we will discuss in detail in Section 6, this number includes installations of a clone which was
made of BatteryHub, which at least up to a certain version, contributed with data to the dataset.
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Fig. 4 Distribution of Devices data

which are unobtainable from publicly available app stores, such as the Google Playstore,
Aptoide, etc,. This excluded brand specific app stores (such as Galaxy Store). To obtain
this list, after counting the number of occurrences of each process within our dataset, we:
i) filtered out processes which were defined as a system app (this data is present within
the App Processes table under the is system app attribute) and ii) manually verified
if the most represented apps were publicly obtainable by searching for them on the public
Android app stores.

Additionally, the list also excludes the processes and apps which send data to GreenHub
Farmer. Coincidentally upon thorough analysis of the App Processes data, we discovered
that a clone of BatteryHub had a large user-base which was also contributing with samples
to the dataset. To properly understand if these data samples can be assumed clean, and thus
can be mined, we ran a study which is detailed in Section 6. The conclusions of such study
provided strong evidence that the data can indeed be considered valid and correct, and thus
are included within our analysis.

Within these top 15, the very popular and common Google23 app unsurprisingly has a
large user base, with a representation within the top 15 of 23%. Closely following behind
are the Facebook24 and Messenger25 apps with 12% and 11%. This list shares similarities
with the AndroidRank list,26 while representing more of the BatteryHub user base’s habits.

In Fig. 5b–d, we show another level of information contained in our dataset. Here we
show 3 popular social apps, Facebook, Messenger, and Instagram,27 with the distribution of

23Google app: https://play.google.com/store/apps/details?id=com.google.android.googlequicksearchbox
24Facebook app: https://play.google.com/store/apps/details?id=com.facebook.katana
25Messenger app: https://play.google.com/store/apps/details?id=com.facebook.orca
26AndroidRank: https://www.androidrank.org/
27Instagram app: https://play.google.com/store/apps/details?id=com.instagram.android
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Fig. 5 Distribution of App Processes data

each of their sub-processes, including for example the main process (core app), video player
processes (videoplayer), notification processes (notification), etc. We can see in Facebook,
the core app is almost half the representation, with the video player and notification occu-
pying the other half. For Messenger, the notification process is under 1%, with a dominance
for the core app (61%) and video player (37%). However for Instagram, the mqtt protocol
process makes up for over half (57%), followed by the video player (24%), and then the
core app (13%). This finer grain level of information in the real-world can help developers
better understand their applications, identify possible problems, and help choose where to
focus attentions to optimize.

3.4 Settings and Battery Details Data

Similarly to the Samples database table, and as a consequence of the data model shown in
Fig. 2, both the Settings and the Battery Details tables had, as of July 2019, 23.6M+ entries.

In Fig. 6, we characterize our dataset under the perspective of how often popular sensors
are active in the collected samples (Fig. 6a–e). We also show how different charging states
are represented (Fig. 6f).

The vast majority of the samples that we collected occurred when Bluetooth, NFC or
power saving mode were turned off, with a percentage of circa 85%, 90% and 95%, respec-
tively (Fig. 6a-c). This was, however, not the case for the location sensor, which was active
in circa 40% of the instants in which a sample was collected (Fig. 6d).

Figure 6e focuses on the samples that, when collected, had at least one sensor active,
which correspond to 16.9M+ samples, circa 70% of the dataset. We see that circa 60% of
them had at least location enabled, 20% bluetooth, 14% NFC and 8% powersaver.
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Fig. 6 Distribution of Settings data (a-e) and Battery Details (f)

Finally, Fig. 6f shows that the samples in the dataset were marginally collected, circa
4% of the times, when the device was charging plugged into an USB port. The remaining
samples were, quite evenly, collected when the device was either unplugged of any power
source or plugged to an AC source.

3.5 Network Details Data

Some entries were dropped from the Network Details data due to the fact that there were
missing values in a few particular columns, invalidating those specific entries. In other
cases, the values received from the devices, at the time of mapping and storing into the
dataset, were incompatible with the expected data types therefore those were considered out-
liers and consequently dropped at that stage. In practice, the Network Details table included
23,533,845 entries.
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Fig. 7 Distribution of Network Details data

Figure 7 presents the characterization of our dataset regarding the collected Network
Details dataset for each Sample (for instance, if Wi-Fi is connected or not).

More than 76% of our entries were collected during a time when the mobile data connec-
tion was disabled. As for Wi-Fi, 66% of our samples had it enabled. This can be respectively
seen in Fig. 7a and e.

In Fig. 7d, we have an overview of the data regarding samples collected when there was
an active connection, either Wi-Fi or mobile data. We can see that the majority (50%) used
Wi-Fi as the active connection, while mobile connections represent around 23%. We were
even able to obtain samples where a Bluetooth tethering connection was on, and in nearly
26% of the times we were not able to obtain data on what was the type of the active network
connection.

In order to represent information related to the mobile data connection, we created the
plots in Fig. 7b and c. Specifically, the former contains the percentage of times that specific

(2021) 26:Empir Software Eng 3838 Page 20 of 55

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



mobile data connection type was found on a collected samples, and the later represents the
distribution of the top 20 network operators. As we can see, there is no dominant network
operator in our samples, and the top 20 does not represent all the existing mobile operators.
Also, in a considerable amount of samples we could not detect what was the name of that
operator (circa 26.5% of the times). Regarding network types, 4G LTE and HSPA (a.k.a. 3G)
are the most dominant (36.44% and 14.83%, respectively), and again we have a considerable
amount of samples (almost 22%) with an unknown connection type.

4 Battery Consumption Analysis of Android Devices

In this section, we explore the GreenHub dataset on one specific avenue of research, which
targets battery consumption within the Android ecosystem. Our focus here is well aligned
with the goals and ambitions of the GreenHub Initiative.

Thus, we present several research questions (RQ), in addition to their motivation and
interest for users, researchers and practitioners, that we aim to answer by using our dataset.
These following 14 RQs focus on understanding the impacts and tendencies on battery
charging/discharging based on real-world usage, considering various factors inherent of
such real usage.

Additionally, these RQs are focused on the need to provide further knowledge on the
topic of battery consumption for researchers, users, and practitioners. A distinctive char-
acteristic of these RQs, when compared with RQ1, is that they are explicitly exploratory
in nature. By this we mean that, while their answer may substantially address the lack of
knowledge based on real-world data in this field, they highlight tendencies whose further
exploration may often times suggest further dedicated studies. As pointed out by Pinto
and Castor (2017) and Manotas et al. (2016), one of the major roadblocks to energy effi-
ciency software development, hardware development, and awareness by users, is the lack of
knowledge.

RQ2 Do battery charge/discharge tendencies differ between countries and timezones?
While this RQ might not have a direct benefit for users, researchers, nor practition-
ers, it is an interesting curiosity which we can try to answer with our data. As the
nature of our study is descriptive and qualitative, we can highlight such associa-
tions between these real-world factors and battery usage in order to further obtain
knowledge on this topic. In addition, looking at such associations may actually open
up new research paths if there seems to be a pattern in the data worth exploring.

RQ3 Are there observable battery charge/discharge tendencies differences across brands?
Users can use such answers to help them choose their preferred brand if battery
consumption is of a concern, while manufacturers/practitioners can understand
how their brand stands up to the competition. Researchers can take advantage of
such data and try to understand what actually leads to such observable differences
between brands.

RQ4 Are there observable battery charge/discharge tendencies differences across mod-
els? Users can use such answers to help them choose their preferred model if battery
consumption is of a concern, while manufacturers/practitioners can understand
how their new models stands up to the competition. Researchers can take advan-
tage of such data and try to understand what actually leads to such observable
differences between smartphone models.
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RQ5 Does the battery charge/discharge tend to improve with new Android versions
(minor updates)? For a user, understanding how the battery consumption tends to
be affected between minor Android versions can give them more knowledge when
deciding if they wish to go ahead with an update now (battery tends to improve),
or hold off for major updates (if battery tends to worsen). For Android developers
and researchers, new paths open up allowing them to drill-down and try to under-
stand what exactly makes it so such tendencies occur. If battery tends to worsen,
they may try to understand what programming choices were made as to avoid them,
or if battery improves, in order to further replicate them.

RQ6 Does the battery charge/discharge tend to improve with new Android codenames
(major updates)? The motivation for this RQ is similar to the previous one, just in
a more general sense based on major Android versions. Users may wish to wait
for minor version updates if they know major updates have a tendency to worsen
the battery, or vice-versa. Researchers and developers may further use this knowl-
edge in order to reflect on programming choices in order to better the battery
consumption.

RQ7 What are the battery charge/discharge tendencies when the most popular apps are
present? The answer to this RQ will help users obtain more knowledge on which of
their applications have a tendency to be present when their battery consumption is
worsened, and thus search for alternative and more efficient apps.

RQ8 Can developers use this dataset to understand if their apps, also when compared
with others, appear more often in good/bad battery charge/discharge tendencies?
Developers too are in need of understanding how their app compares to others.
Oftentimes, it is difficult for developers to obtain information on battery consump-
tion tendencies of their applications from real usage. As this dataset represents
a large amount of users, it may help developers search for information of their
application’s battery tendencies and compare it to similar apps.

RQ9 Can this dataset help developers identify possible battery hogging tendencies and
miss-managed processes? If a developer knows there is a battery inefficiency issue
in their app, it may be difficult to understand what may be triggering such occur-
rences. The problem may come from specific battery hogging processes, or even
conflicts with other apps. Understanding if our dataset contains enough fine-
grain data to allow the developer to help pinpoint such problems will help these
practitioners.

RQ10 Is there a clear and obvious battery charge/discharge tendency between having
Bluetooth ON or OFF? Understanding how Bluetooth tends to affect battery con-
sumption will help users have more awareness on if such a setting should only be
turned on when needed, if it may be left on indefinitely or with little importance, or
if they should be avoided. Software developers may use this information to know if
they should reduce their apps Bluetooth usage (if they wish to make a battery effi-
cient app), and hardware developers and researchers may explore how to improve
the Bluetooth battery usage if it indeed has a tendency to be inefficient.

RQ11 Is there a clear and obvious battery charge/discharge tendency between having
Location ON or OFF? The motivation for this RQ is comparable to RQ10, but
focused on Location services
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RQ12 Is there a clear and obvious battery charge/discharge tendency between having
NFC ON or OFF? The motivation for this RQ is comparable to RQ10, but focused
on NFC.

RQ13 Does having power saver ON helps with battery charging/discharging? The moti-
vation for this RQ is comparable to RQ10, but focused on the Power saver
setting.

RQ14 How do the different network types tend to affect the battery charge/discharge? The
motivation for this RQ is comparable to RQ10, but focused on different network
types.

RQ15 Are there visible differences between battery charge/discharge tendencies accord-
ing to different network operators? The motivation for this RQ is comparable to
RQ10, but focused on different network operators.

In order to address the research questions of focus in this work, and to understand how
our data on battery discharging and charging relates to usage within the real-world, we have
defined a battery tendency metric called Percentage Per Minute, or PPM. The following
section will further explain the GreenHub PPM metric.

4.1 Battery Metrics in GreenHub - PPM

Prior to calculating, or even defining, the PPM metric, we first defined the notion of a period
slice within the Farmer data. This defining of a period slice is important, as the data reaches
Farmer in an asynchronous manner due to the large amount of devices from which data is
being collected from.

A period slice is essentially a timely sequence of our battery samples belonging to the
same mobile device, and follow the same direction (either charging, or discharging).

Additionally, when analyzing the distribution of deltas in battery level between consecu-
tive samples, shown in Fig. 8, we found that in 95% of the cases, the recorded battery level
delta varied between [-1,1]%, and in 98% of the cases it varied between [-2,2]%. As to pre-
serve the most amount of data, while also removing outliers, we decided on maintaining the

Fig. 8 Battery level change distribution of Samples
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later. Thus, a new period is also considered if the battery level changes less than 2% or -2%
while charging or discharging, in the given direction, respectively.

Therefore, the following rules are applied to define if the sample belongs in the
same period slice. These are applied after sorting our Samples data according to the
device id and then the timestamp. If the condition fails at any rule, a new period slice
is considered:

1. The sample is of the same device;
2. The battery level follows the same direction as the period’s direction;

– If the battery level change is 0, the same direction is followed

3. The battery level change is within threshold limits [-2,2];

– If battery direction is charging, then change limit ≤ 2
– If battery direction is discharging, then change limit is ≥ -2

Shown in Fig. 9, are examples of the 3 possible scenarios of defining a new period
slice. As previously stated, the data is sorted according to the device id and timestamp. The
sample data column represents the various data columns present within a Sample, the
battery level represents the battery level of the sample at that given instance, and the period
represents the period number given to the group of samples from the same period slice.

Here we see 3 different occasions where a slicing occurred after A, B, and C. After A,
a new period (56) was created as the device went from a discharging to a charging state,
and thus the battery changed direction. Another period was created after B, since the data
is of a completely new device (device 6612), and thus the first rule took effect. Finally,
our last period slice occurred after C since the battery level changed from 34% to 99%,
exceeding our threshold of [-2,2]. Such a case occurs when, for example, a user turns off
their smartphone or stops using it for a very long period of time.

After slicing the data into appropriate period slices, we filtered out those which have
less than 10 samples, and more than 100 samples. The lower sample limit for each period

Fig. 9 Examples of period slicing
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allows us to have periods of a significant size, while the upper sample limit of 100 is roughly
around where periods begun to have a low representation and become outliers.

Currently, these are the rules used to define the period slices, which can be further easily
expanded upon if needed a more strict slicing or sub-slices.

With these rules and conditions, we currently have 552k+ periods with an average of
32 samples per period and min/max of 10/100 respectively. Of these 552k, we have 274k
charging periods and 278k discharging periods.

Having constructed period slices, we can define PPM as the charging/discharging rate of
a given period based on the amount of time within that period and how much the battery
level changed. This can be formulated as:

PPMp = | (battery levelpn − battery levelp0) |
(timepn − t imep0) ÷ 60

where,

p = the given period;

battery levelp0 = the battery level of the first sample in the given p period;

battery levelpn = the battery level of the last, or nth, sample in the given p period;

t imep0 = the timestamp of the first sample in the given p period;

t imepn = the timestamp of the last, or nth, sample in the given p period;

Looking back at our example in Fig. 9, the PPM for period 55 would be:

PPM55 = | (88 − 70) |
(13h28m05s − 13h14m10s) ÷ 60

= | (18) |
(835s) ÷ 60

= 1.29 %/min

After calculating the PPM of each period slice, we used a z-score (Shiffler 1988) test to
detect the PPM outliers present in the PPM data, using the standard threshold of 3.

The z-score was individually calculated for both the charging and discharging PPM val-
ues, respectively. This is because the rate at which the battery charges and discharges, and
how a user uses their device when charging or discharging, highly differs. With this, we
removed 1,251 charging and 2,004 discharging periods.

To note, a charging period and a discharging period in our analyses are synonymous to a
positive PPM+ and negative PPM−, respectively. It is preferable to have a PPM+ value to be
as high as possible, which indicates a better charging percentage-per-minute. On the other
end, it is preferable to have a PPM− value to be as low as possible, as the higher it is means
it is discharging faster per-minute. Additionally, a period has a PPM value attributed to it.
Within a period we have a list of samples where each sample contains information from its’
device, battery details, network details, settings, and the list of the app processes as shown
in Fig. 2.

4.2 Characterization with PPM

It is highly important to understand that the interpretation of a PPM value should not be seen
as an absolute metric to judge the (energy/battery) efficiency of a given device, country,
OS version, or any other attribute being analyzed. It indicates the tendency that a single (or
group of) characteristic has on the battery, factoring in all the wide ranges of (secondary)
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factors which exist, such as real-world human interaction, varied user usage profiles, and
vastly different devices.

Let us take into consideration, for example, a video viewing app which is shown to have
a consistently higher reported PPM− value than others. This indicates that this app has,
across a broad range of samples and across varied usage patterns (i.e., devices, brands, set-
ting configurations, operation systems, background/foreground apps, etc., essentially across
all the possible characteristics which differ across devices), a tendency to be present when
there is a higher discharge pattern in smartphones. This, however, does not indicate that the
app in question is without a doubt inefficient, but that there is a high possibility of it con-
tributing to such inefficient tendencies. If it is consistently showing such patterns across
highly varied settings, it indicates that it is present within such inefficient usage scenarios,
and its presence may be bringing about underlying inefficiency problems. In other words,
PPM does not intend to, nor is capable of, pointing to a particular concrete characteristic
(i.e. a specific application, sensor, model) and directly “blaming” it for battery inefficiency
(or efficiency). Instead, it reveals their tendencies on the battery when present, considering
all the wide range of real-world usage factors. However, these tendencies of concrete char-
acteristics can help researchers and practitioners begin exploring further dedicated studies
to confirm/contradict the responsibility of the given characteristic, through isolating and
comparing with other directly comparable usage samples.

The following sub-sections will detail some of the interesting results of various attribute’s
PPM+ and PPM− values.

Naturally, real-world usage of smartphones vary greatly, depending on a vast amount of
factors which may affect the PPM values. Thus, to better represent and interpret the results,
they are shown as violin-plots in order to not skew nor bias the data. This also allows us
to have a better understanding of the data, and show all relevant information (i.e. PPM
outliers, quartiles, medians, densities, and distributions) which one should look at when
concluding findings. In addition, as PPM is to be understood as a tendency, looking at the
3rd /1st quartile ranges and the median, we can better understand how one characteristic
tends to influence the battery through comparison of such values.

Finally, as to facilitate the visualization, we removed the extreme outliers shown in the
plots. The full images can be viewed in higher detail, along with more data, such as count,
average, and standard deviations, in each of the notebooks on our GitHub page.28

As previously mentioned, the characterization we make is complemented with possible
research paths which deserve dedicated research studies.

4.2.1 Samples PPM Data

Shown in Fig. 10 are the PPM results for a Sample’s country and timezone. Fig. 10a and c
show the PPM+ results, while Fig. 10b and d show the PPM− results, for the highest and
lowest 5 (based on their average PPM) countries and time zones respectively. As we quickly
notice, there is indeed clear differences between the tendencies based on the PPM results
across both countries and time zones (ARQ2). The scale in both cases also varies, where
between the highest 5 and lowest 5 countries/time zones, it can go between roughly 1 PPM
and roughly 0.2 PPM.

28Our GreenHub Pipeline notebooks are detailed in Section 7. The notebooks can be found at https://github.
com/greenhub-project/notebooks
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Fig. 10 Samples PPM Data

(2021) 26:Empir Software Eng 38 Page 27 of 55 38

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 10 (continued)
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Let us look closely at Fig. 10a and b for the lowest 5 PPM+ and highest 5 PPM− (which
equate to the lowest 5 charging, and highest 5 discharging PPMs) respectively. Between
these two groups, we see countries such as: Equatorial Guinea, Zimbabwe, Botswana,
Burundi, and Benin, which according to the United Nations are developing or least devel-
oped countries.29,30 This might mean that there is less access to more quality and modern
smartphones, which could affect the PPM−, or electrical infrastructures for charging, affect-
ing the PPM+. Another interesting thing to point out is how Greenland is both in the lowest
5 PPM+ and the lowest 5 PPM−, meaning devices in this country seem to have a tendency to
both discharge and charge slowly. This could also be due to the temperatures in the country
(as it is already known that colder temperatures help in battery discharging rates).

4.2.2 Devices PPM Data

Shown in Figs. 11 and 12 are the PPM+ and PPM− results for the Device dataset’s top 5
brands (Fig. 11a), model (Fig. 11b and c), OS version (Fig. 12a and b), and OS version
codename (Fig. 12c). In regards to RQ3, we see there are indeed differences in the PPM
values between the top 5 different brands (ARQ3). For example, looking at Fig. 11a on
the left-hand side, the OPPO brand of devices tends to have a slower charge-per-minute,
closely followed by LGE, with XIAOMI having the highest median PPM but also the high-
est variance. On the right-hand side, OPPO tends to be the faster discharging-per-minute
brand, with HUAWEI being the slowest. Do note once again that these results reflect not the
energy efficiency of each, but is a proxy which equates to the tendency each has on battery
charge/discharge during real-world usage, and factors such as different user profiles and
types of applications vary between brands.

Shown in Fig. 11b and c, we can yet again see the very different PPM values between
models (ARQ4). Differences even more so evident than between brands.

In Fig. 12a, we see the different PPM values across minor Android versions. This data
shows that, in a general sense, more recent versions tend to have better charging rates
(PPM+), and better discharging rates (PPM−). Nevertheless, we see other interesting obser-
vations such as how sometimes the PPM between two consecutive minor versions can
actually degrade, for example version 5.1 has a better PPM+ than version 5.1.1, and version
6.0.1 has a better PPM− than version 6.1 (ARQ5).

The results are however very promising, as it shows that in terms of major Android ver-
sions, there seems to be a tendency for battery usage improving as we can see in Fig. 12c,
where the codenames are ordered according to release date. Here we see there was a ten-
dency for an improvement after each version for battery charging, peaking at Oreo. For
battery discharging, it began to become slightly faster, and then slowly reduces yet again
before stopping roughly in the middle with Oreo (ARQ6).

RQ3 is particularly interesting for manufacturers, as it allows them to understand how
their smartphones compare to competitors, and how their own different models compare
with each other. A further step to explore would be if such differences are due to factors such
as hardware. On the other hand, RQ4 shows Android OS developers that there are various
differences between each Android version. Often times, an update (major/minor) can affect
battery performance in ways they were not expecting. Having access to this data, they can

29https://unstats.un.org/unsd/mi/worldmillennium.htm
30https://unstats.un.org/unsd/mi/ldc.htm
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Fig. 11 Devices PPM Data

(2021) 26:Empir Software Eng 3838 Page 30 of 55

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 11 (continued)

try to understand what exactly happened between such versions to affect their performance
in such a way.

4.2.3 App Processes PPM Data

In this section we will look at the PPM results for our top 15 most represented apps within
Farmer and the App Processes dataset, and drill-down into 3 popular social platform apps.
Shown in Fig. 13, we see the PPM+ and PPM− results for our top 15 most represented apps.
On the left hand side of Fig. 13, we see that Google Maps, Youtube, and VidMate tend to
have a lower PPM+ compared to the rest. It isn’t too shocking as these are a GPS/Navigation
app, and Video viewing apps. What does seem interesting is how Messenger, Facebook,
and Facebook Lite actually tend to have a better PPM+. These apps are infamous for being
battery hungry.31 A hypothesis, as we are measuring tendency of battery consumption with
human-interaction, could be that these apps are often times active (in background) while
being charged, while Google Maps for example, might be more often in foreground (used
temporarily for driving navigation) when being charged (ARQ7).

On the right hand side of Fig. 13, we see that Chrome tends to have the lowest PPM−,
even though it is the 5th most represented app in our dataset. This can mean that it may
be efficient, or that users spend less time (quickly using the browser for a quick search for
example) within the app, and in turn consumes less. Another very interesting observation
is Facebook Lite is supposed to be a lighter app than Facebook, but has a much higher
PPM− value. A hypothesis might be that users who tend to use Facebook Lite might already
have battery issues or older phones which cannot support the Facebook app, and thus opt
in for the lighter version. This type of information we present can help both users decide
on alternative applications if battery is a concern based on tendencies, while also helping
developers understand how their app tends to perform in the real-world (continuing ARQ7).

31https://www.nytimes.com/2017/11/24/technology/personaltech/facebook-battery-drain.html
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Fig. 12 Devices PPM Data (cont.)

(2021) 26:Empir Software Eng 3838 Page 32 of 55

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Fig. 12 (continued)

We showed with RQ7 how our dataset can provide users with deeper information on the
tendency of the battery consumption when using their apps, providing them with the knowl-
edge to influence their consumption patterns. But the dataset can also be very impactful for
app developers, allowing them to compare their own apps’ battery consumption tendencies
against others (in a real setting) (RQ8), and even detect battery hogging processes (RQ9),
as a means to know where to possibly optimize.

Focusing more on a developer oriented analysis, let us see how the GreenHub data can
answer such questions. Fig. 14a–c shows the PPM+ and PPM− values of the top 5 var-
ious sub-processes that three very popular applications have: Facebook, Messenger, and
Instagram. Such data allows a developer to understand how each of their app’s sub-process
impacts the battery out in the wild. For example, Messenger’s core app tends to have a
PPM− value roughly about the same as the other 4 sub-processes, while in Facebook the
core app has the second highest PPM−, slightly below optsvc. When comparing the similar
sub-processes between the 3 apps, we see all have the videoplayer sub-process with high
PPM−, which means that when it is present the battery drains faster.

Upon closer inspection, we notice that while in Facebook and Messenger, videoplayer
is rated lower than the core app. But in Instagram, it is the highest PPM− sub-process.
This could mean that the videoplayer isn’t properly managed within the application, when
compared to the others. When crossing these results with Fig. 7, we found that for both
Facebook and Messenger, the videoplayer accounts for only 26.48% and 37.95% of the
samples compared to 48.62% and 61.34% of the core app samples. Instagram on the other
hand has 24.98% and 13.68% of the samples for the videoplayer and core app respectively.
For every 1 core app Instagram process, there are 2 videoplayers. This might be another
sign of improper videoplayer management.
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Fig. 13 Top 15 Represented Apps PPM+

As shown, the finer grain data which GreenHub contains can be used to help developers
both compare their apps with others (ARQ8), and even drill-down into their apps to help
find possible problems (ARQ9).

4.2.4 Settings and Battery Details PPM Data

In this section we have, in Fig. 15, the PPM comparisons between samples that have a certain
setting on/off. For instance, in Fig. 15a we compare the PPM of all samples with Bluetooth
enabled against samples where it was disabled. The same happens for location services
(Fig. 15b), NFC (Fig. 15c), and the power saving setting (Fig. 15d). We also included the
same comparison for samples collected when the device was connected via USB, charging
or unplugged (Fig. 16).

As the plotted data suggests, for Bluetooth and location there tends to be almost no dif-
ference between having those settings enabled or disabled, when it comes to the charging
rate (PPM+). Even when considering the discharge rate (PPM−), we see only a slight vari-
ation in the data, but with no clear tendency as the median is almost identical (ARQ10 and
ARQ11). This may imply that the devices which provided such samples might be leveraging
significantly from the low-usage states of both these settings.32

A similar observation to the previous one can be made for the NFC and power saving set-
tings. Yet this time we see that, in relation to the PPM+, a slight tendency can be observed, in
favor of this settings being enabled (ARQ12 and ARQ13). Considering the power saver set-
ting in particular, it makes sense that while ON, the device will charge faster, as it normally
stops resource-greedy background services and reduces the screen brightness. However,

32It is common that, when such components have a low data throughput, the device automatically puts them
under a low level of usage or even idle state, limiting its capacity but saving resources.
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Fig. 14 App Processes PPM Data
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Fig. 14 (continued)

when the battery is in discharge it does not seem to be making any difference at all. This can
mean several things, for example, maybe users don’t moderate their usage when the phone
is placed in power saver. While in practice, the power saver mode is for the smartphone
user, understanding what actually happens in this mode can possibly help improve this fea-
ture. In fact, Android OS developers can further explore this path and use the gathered data
to motivate work on this feature, and even validate such improvements by again looking at
the data collected in GreenHub.

4.2.5 Network Details PPM Data

In order to understand the relationship between PPM values and different network related
properties, we have built the plots displayed in Fig. 17, which compare the network connec-
tion type, the top 5 best/worst mobile network providers in terms of PPM, and the status of
the connection when using a mobile network.

Beginning with Fig. 17a we compare the PPM+ and PPM− of samples collected when
there was an active network connection, and whether through Wi-Fi, mobile (e.g. 3G or
4G), Bluetooth tethering, or unknown.33

The plots suggest that a Bluetooth tethering connection is the less impactful on the bat-
tery consumption, as the PPM+ is in general higher and the PPM− slightly lower in the
worst observed case. Hence, it is safe to assume that a device charges faster and drains bat-
tery slightly slower with this type of connection. In addition, we see that overall there is no
significant difference between having a Wi-Fi connection when opposed to a mobile data
connection, either on a charging or discharging scenario (ARQ14). This may go against a
common conception that keeping a mobile data connection enabled makes the battery drain
faster. Once again, as we pointed out in Section 4.2.4, the mobile data connection may also
be nowadays used by devices only when needed, hence the impact on the energy drain rate

33Can be one of the other 3, but the Android API could not identify which one
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Fig. 15 Settings PPM Data
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Fig. 15 (continued)

might only be felt when one is actively using the device. On the other end, it could mean
that users have a tendency to have a less intensive usage when using a mobile network (to
save data), than when using a Wi-Fi connection, thus evening out between the two cases.
This could explain the unexpected results, and thus deserves a deeper analysis.

Nevertheless, if we try to compare different mobile operators, then the PPM values
appear to be quite different between them. This can be seen in Fig. 17c, where we grouped
the samples where a mobile data connection was enabled per mobile operator, and selected
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Fig. 16 Battery Details PPM Data

the 5 operators with highest/lowest PPM+ (on average). The same was done for the PPM−,
and the results are depicted in and Fig. 17d (ARQ15).

5 Research Opportunities Supported by GreenHub

Looking back at Section 3, we have shown the wide range of data stored within GreenHub
Farmer, spreading across many countries, devices, and usage patterns. In Section 4, we have
explored the dataset with a clear focus on assessing energy efficiency within Android.

We believe, however, that the dataset itself is rich and diverse enough to be used to
support further studies in a wide range of directions and research or even support already
existing ones.

In order to illustrate the potential of our dataset, we will present RPs which not only fur-
ther complement RQs presented in this paper, by focusing on more specific questions and
findings, but also open new avenues of research to establish the causality of our highlighted
associations and suggesting hypotheses which can be tested in analytical studies. Note that
some of these prospective research avenues are not specifically aiming for energy/battery
consumption research, but also other more generic areas of research on Android devices.
As such, the following two sub-sections will list generic RPs (Section 5.1) and battery con-
sumption related RPs (Section 5.2), respectively, with several examples and explanations of
how one might approach the paths in question.

We believe they are as equally promising to be addressed, yet require additional and ded-
icated quantitative/analytical studies of their own to be pursued, with each characterized by
their own threats to validity. In addition, such additional studies can be supported either by
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Fig. 17 Network Details PPM Data
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Fig. 17 (continued)

fully, or partially (through means of combining other datasets), using our presented dataset
or data present within the dataset.

5.1 Generic Research Paths

In this section, we introduce and discuss research paths that may leverage the data in our
dataset in order to address generic research question, i.e., research questions that are not
necessarily focused on energy and/or battery consumption.
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RP1 Understanding how people from different countries and time zones use their mobile
devices daily.

RP2 Understanding when, and under what circumstances, people from different regions
of the globe charge their equipment’s batteries.

RP3 Understanding what type of devices and applications are most/less popular in each
country.

RP4 Understanding how new applications spread worldwide.

These first RPs focus on the Samples data. They can be supported by looking
at, for example, the data we have stored under country code, timezone, and
battery state in the Samples table, and relating them with their objectives. Researchers
can even join data in this table with data in the Devices and App Processes tables, which we
will introduce shortly.

RP5 Understanding the life expectancy of different device models and relate it with usage
profiles and other attributes.

RP6 Understanding the impact of major technological advances (e.g., 5G introduction,
multiple cameras, etc) on the release of new Operating Systems and popularity of
devices.

RP7 Predicting the activity in the mobile devices market, increase/decrease in demand,
for instance.

RP8 Models that are used more by users from certain profiles (gaming, business,
influencers, etc.).

RP9 The frequency users update their smartphone OS versions.

RP5−9 look at the data in the Devices tables. Considering the large amount of samples
and devices in our dataset, if we were to group different device models and organize them
across a timeline, we can have a better understanding of their popularity. If a certain device
begins to become less represented, we can possibly consider this to be due to users changing
their smartphones, thus reducing the device’s life expectancy in a real-world setting (which
could help answer RP5). With this in mind, one can correlate dates of when new technolo-
gies are introduced, such as 5G, and understand if a certain device looses popularity (this is
related to RP6).

On the other hand, if we were to use outside data sources regarding what type of appli-
cations are most used by certain profiles, we can understand what models are most used by
such profiles, as proposed in RP9.

RP10 Understanding if there are combinations of apps that change the battery or data
consumption behavior of each app individually.

RP11 Understanding if hardware and software advances have influenced the popularity
of apps or their behavior.

RP12 Understand what different usage profiles can be created based on app usage.

These 3 RPs focus on the App Processes data table. While we previously proposed, for
RP9, possibly using outside data sources on smartphone user profiles, our dataset can also
be used to help support the creation of such profiles. Within the App Processes table, we
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have a wide range of information on the different applications, and joining this data with the
Sample and Devices data, we can associate different devices with application usage. This
can help researchers answer RP12 and RP11.

RP13 Understanding how the way people use and charge their devices influences the
performance of the devices’ batteries.

RP14 Understanding the impact of wireless charging in the usage patterns of mobile
devices and in the health of batteries.

RP15 Understanding which recharge cycle better promotes the health of batteries.

If focusing on the Settings and Battery Details tables, we can look at RP13−15. For
example, let us join Battery Details and Devices, and filter those who have their battery’s
health labeled as “bad”. With this data, we can try to analyze and understand if users who
frequently charge their devices (or leave them in a charging state for long periods) cause
their battery’s health to degrade over time. Additionally, we can understand what type of
charging practices take place when the battery’s health is good. Such answers would help
answer RP15.

RP16 Understanding how people use and control network connections on mobile devices.

RP17 Understanding the impact of different connection types on the battery consumption.

RP18 Understanding if there is a relationship between apps and connection types.

We believe these 3 paths can be completed with data from network type and
mobile network type, for example, from table Network Details, and even join this
data with that present in App Processes as to help relate network and app usage.

5.2 Battery Consumption Related Research Paths

As in the previous section, we present and discuss several research opportunities, supported
by GreenHub, which focus on understanding battery consumption tendencies of Android
mobile devices.

RP19 Is there a relation between a country’s average climate and PPM?

RP20 How does PPM relate to developing or least developed countries?

RP21 Are the less favorable PPM values for the aforementioned countries due to outdated
or low spec devices?

To answer RP19 and RP20 we could, for example, combine the GreenHub Samples dat-
able with other outside data sources such as countries’ average climates,34,35 or the United
Nation’s data on developing nations.36,37 Additionally, by grouping the Devices data with
the different country code data, researchers can understand which are the most pop-
ular devices in each country. Thus, if older or low spec smartphones are most popular in
countries with a low PPM+ or high PPM−, this will help answer RP21.

34http://berkeleyearth.org/data/
35https://datahelpdesk.worldbank.org/knowledgebase/articles/902061-climate-data-api
36https://unstats.un.org/unsd/mi/worldmillennium.htm
37https://unstats.un.org/unsd/mi/ldc.htm
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RP22 Are the improvements in PPM across versions correlated with improvement of
software energy efficiency in Android, or hardware energy efficiency of devices?

RP23 What changed between versions to cause PPM to degrade? Were Android energy
smells introduced?

These 2 research paths focus on the Devices data table. Currently, our GreenHub PPM
analysis details the battery consumption tendencies between major and minor Android ver-
sions, which can help support these two prior research paths. Additionally, for these, one
would need more external data such as Android release change logs,38 smartphone specifi-
cations,39 or even Android OS developer insights to better understand the causation of these
PPM results.

RP24 How do apps’ PPM differ when in background and foreground?

RP25 How does an app’s PPM correlate to the time a user spends using it?

RP26 How does an app’s PPM differ across older/newer devices?

RP27 Why does the lighter version of an app (Facebook), have a tendency to be around
when the battery consumption is higher? Is it the app, or is it the device?

RP28 How do the PPM values differ across different groups/types of apps, i.e. social
media vs. video vs. messaging.

These 5 research paths are research-oriented paths which the GreenHub dataset can sup-
port by looking at the App Processes data tables, with the objective of understanding what
app development or usage practices affect an app’s battery consumption.

RP29 Which of my app’s sub-processes tends to impact battery consumption the most?

RP30 How does my app’s sub-processes compare to similar app’s sub-processes?

RP31 Is there any indication of improper process management in my app?

RP32 Why is the videoplayer sub-process in Instagram impacting the battery more than
the core app itself?

While the previous 5 research paths, based on the App Processes data table were more
researcher-oriented, these 4 can better help developers. A developer with interest in improv-
ing their app could ask themselves the following research paths (RP29−31), and have their
answer using our dataset. Additionally, such fine grain data has found a possible improper
videoplayer management by the popular Instagram social app, which opens up another path
(RP32) for researchers or even the app developers to try to understand and improve upon.

RP33 Is it possible that having several settings enabled has actually no significant effect
on battery drain, as they can be automatically put in a use-when-needed mode by
the operating system?

RP34 What does the power saving setting actually do to save energy, and why does the
effect seem so small when in discharge mode?

38https://developer.android.com/preview
39https://www.devicespecifications.com/
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RP33 and RP34 focus on the Settings and Battery Details data tables. To answer these,
we would need knowledge from Android OS developers in combination with the pre-
sented PPM data within GreenHub to properly explore such research opportunities aimed
for practitioners.

RP35 How significantly can the choice of a network operator influence the battery drain,
or charging speed, in a device? And what are the reasons of that happening?

RP36 Do different network operators in fact influence the battery drain or is this a case
of “correlation does not imply causation”, with other factors influencing this?

RP37 How different are the usage scenarios when connected to Wi-Fi or a mobile
network? Do users tend to be more conservative in one or the other?

Finally, to answer RP35 and RP36 (focused on Network Details, a more thorough under-
standing of the domain (network hardware and network operators) would be needed to
understand the causes of the presented results. RP37, on the other hand, can be answered by
joining the App Processes and Samples data and thoroughly analyzing the different usage
scenarios present when in Wi-Fi or mobile network use.

6 The Battery Double Conundrum

In the characterization that we made in Section 3.3, when looking through and analyzing
the App Processes table, we were made aware of a peculiar occurrence. We were already
anticipating our GreenHub BatteryHub app process to be present in each of our samples, as
it is the process responsible for data collection, but noticed there was another app process
called Battery Double40 heavily present in our samples, when BatteryHub was not. In fact,
roughly 25% of our samples were found to originate from the GreenHub app, while roughly
75% originated from Battery Double.

Upon inspection of the Battery Double, we quickly realized it was a clone of our Bat-
teryHub app, with a layer of advertisements, and very slight changes such as showing two
batteries’ percentage instead of a percentage wheel. Additionally, when viewing our Fab-
ric41 dashboard for BatteryHub, we also verified that it was tracking the Battery Double
reports. This means that the Battery Double contains the same developer id, which further
confirms that Battery Double is a clone.

This conundrum, of which we were not previously aware, made us question if the sample
data coming from Battery Double is un-tampered (a clone made only for ad revenue), or if
the developer altered something on the data collector (which would reduce our confidence in
the data). Thus, we decided to verify if data coming from both sources could be considered
valid, independently of the app where it originated from, or should be discarded whenever
it originated from the Battery Double app. To do so, we opted to (a) analyze the source-
code of both applications and (b) statistically conclude if the data from both cases can be
considered as a single entity.

First, for (a) we sought to further understand if the Battery Double doppelganger appli-
cation introduced any modification that could somehow compromise the data model and/or

40Battery Double: https://play.google.com/store/apps/details?id=com.mansoon.BatteryDouble&hl=en
41Fabric is a usage and crashlytics reporter: https://get.fabric.io/
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the data collection mechanisms, or if it was, as we first presumed, just a full clone of Bat-
teryHub with an advertisement layer. In order to do so, we first retrieved the Battery Double
APK files from all (currently) existing 12 versions from various APP gathering App Mar-
kets.42,43,44 Looking at the current, and all previous versions allows us to verify if at any
point in time the data collection mechanism has been compromised. Afterwards, we used
reverse engineering tools45,46 to obtain the source code from those files, and with it we
were able to establish a comparison between all 12 versions of the Battery Double code (as
of June 2020 with version 1.1.6) and the one from BatteryHub.

The source code comparison task could not be performed automatically, through using an
AST or code difference tool. This is due to the fact that the code retrieved from the APK file
was already subject to standard optimizations performed at compilation time. Ultimately,
this means that variables had their names changed, and expressions with syntactic sugar
were transformed. Therefore, we manually verified if 3 properties were the same in both
apps: (i) if the data collection mechanisms were performing the exact same tasks and (ii)
were being triggered exactly the same way, and (iii) if the data model was not tampered or
altered in any form.

Upon performing this manual inspection, we concluded with certainty that our initial
presumptions were confirmed. In other words, from when BatteryHub was cloned and
integrated into Battery Double (from Battery Double version 1.0.6 on wards), the whole
BatteryHub data collection mechanism was strictly kept intact.

Second, for (b), we split the dataset into two parts. The part comprising only observations
stemming from the original BatteryHub app is called original dataset. Conversely, the part
of the dataset comprising samples stemming from Battery Double is called doppelganger
dataset. This was easily done by analyzing the Farmer data, in which we cross-examined
each sample’s processes to determine if either BatteryHub or Battery Double was present.

In order to verify whether we can combine the original and doppelganger datasets, we
adopt the following procedure. First, we draw a random, 1000-observation sample47 from
each dataset. Hereafter we refer to these samples as generic samples. Second, we iden-
tify the most common smartphone model (between both datasets) considering observations
from both original and doppelganger datasets, the Samsung G920F, and then draw a ran-
dom, 1000-observation sample from each dataset comprising only observations that were
captured by this specific model. Hereafter, we refer to these samples as model-specific
samples. In the first step, we draw samples to directly compare the two datasets. However,
the observations in the doppelganger dataset have a strong bias towards countries that are
not amongst the most popular ones in the original dataset. To account for potential regional
differences, e.g., in terms of popularity of specific smartphone manufacturers and models,
the second step accounts for potential regional differences by focusing on a single smart-
phone model. If the Samsung 920F users in the two model-specific samples tend to in fact
send different (or altered) data, it is likely that we cannot treat the dataset as a single entity.

42DownloadAPK: https://downloadapk.net/Battery-Double.html
43APKPure: https://apkpure.com/br/battery-analytics/com.mansoon.BatteryDouble/versions?
fbclid=IwAR2gmTl73T17fRsSg1vpnJdUqapSFoAbFUGQ7eV6IfcriOnljx rqAoLpQA
44AppBrain: https://www.appbrain.com/app/battery-analytics/com.mansoon.BatteryDouble
45Jadx: https://github.com/skylot/jadx
46APKtool: https://ibotpeaches.github.io/Apktool/
47Number of samples required to obtain a confidence level of 95% and a confidence interval of ±3,
considering each dataset as the population.
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The third step consists of obtaining the rows corresponding to both the generic and
model-specific samples for all the tables in our data model, filtering out non-numerical,
timestamp, and key-related columns. In the fourth and final step, we use two different sta-
tistical, multivariate, nonparametric tests to quantify the difference between samples drawn
from the original and doppelganger datasets, considering both generic and model-specific
samples. The employed statistical tests are i) analysis of similarities (ANOSIM) (Clarke
1993), and ii) permutational multivariate analysis of variance using distance matrices (PER-
MANOVA) (Anderson 2001). The intuition for ANOSIM is explained by the documentation
of the vegan48 R package: “If two groups of sampling units are really different in their
species composition, then compositional dissimilarities between the groups ought to be
greater than those within the groups.”. As for PERMANOVA, it “is used to compare groups
of objects and test the null hypothesis that the centroids and dispersion of the groups as
defined by measure space are equivalent for all groups.” (Anderson 2001). Both tests pro-
duce a score ranging from 0 to 1 the closer this value is to 1, the more the sites within a
group are similar to each other and dissimilar to sites in other groups. In other words, 1 indi-
cates no similarity between the two groups, where 0 indicates a perfect similarity between
the two groups.

We employ the vegan R package, which implements functions to apply both ANOSIM
and PERMANOVA. For the generic samples, ANOSIM produced an R score of 0.1867, p-
value = 0.001. This score indicates that the dissimilarity between the generic samples from
the original and doppelganger datasets is low (the R score is a measure of effect size (Urdan
2016)) and the probability of this result being coincidental is very low (< 0.1%). In a similar
vein, PERMANOVA (called adonis in R) produces an R2 score of 0.1602, p-value =
0.001. This means that only 16% of the difference in their variance is explained by the
dataset from which the sample was drawn. Thus, it is possible to say that the generic samples
should not be considered different, since so little of their difference stems from having two
groups. When considering the model-specific samples, for ANOSIM we have R = 0.001455
and a p-value of 0.035 and for PERMANOVA R2 = 0.0022 and p-value = 0.023. For the
model-specific samples, the produced scores for both tests suggest that the two datasets
should also not be considered different. Based on the results of this analysis, we combine
the two datasets into a single dataset and make no further distinctions. In order to maintain
the integral future assurance of the soundness of our data, we have decided to block any
new samples, after V1.1.6, coming from Battery Double.

7 GreenHub Pipeline

This section will briefly describe the GreenHub Pipeline which was used to support the
data cleaning, data processing, and the results of the previous sections. For easier manipu-
lation of the data, we created a CSV to Parquet converter49 for our GreenHub data tables,
significantly reducing the size of our datasets. For the analysis, we used the Python Pandas
library50 and Jupyter Notebooks,51 an open-source web-based interactive computing envi-
ronment for creating notebook documents. These notebooks are human-readable documents

48Vegan: https://cran.r-project.org/web/packages/vegan/index.html
49Dataset-Converter Tool: https://github.com/greenhub-project/dataset-converter
50Pandas: https://pandas.pydata.org/
51Project Jupyter: https://jupyter.org/
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Fig. 18 The GreenHub Analysis Pipeline

containing both computer code and text elements for analysis descriptions and results (such
as figures, tables, etc) and are executable to perform data analyses.

This structure allows easy to update modular processes for data cleaning, transforma-
tion, statistical modeling, and data visualization and can be automatized to keep all the
results within GreenHub up to date and public. Additionally, this base pipeline can be used
to update and increment new notebooks by members within the research community. Our
GreenHub Jupyter Pipeline can be found at:

https://github.com/greenhub-project/notebooks
Shown in Fig. 18 is the GreenHub Pipeline. It is divided into 4 different parts: Dataset-

Converter, Clean Parquets, Data Queries, and PPM Queries.
The dataset converter pipeline tool converts the large CSV files, from GreenHub Farmer,

into efficient Apache Parquet52 binary files. It uses configuration files to describe how the
conversion for a given CSV file should be performed, which columns to include, and which
plugins to use. The tool returns, for each configuration file, a parquet file and a pickle file
containing the pandas data types for later reuse.

Afterwards, Clean Parquets is for data cleaning and transformation of each parquet file,
including normalization of values, string treatments, etc. Additionally, it contains the note-
books for both identifying the period slices and calculating the PPM metrics explained in
Section 4.1.

Finally, Data Queries and PPM Queries contains the queries and results shown in
Section 3 and Section 4.2 respectively, including further data and results not presented
directly in this paper.

It is worth noticing that the CSV file for the App Processes are a smaller set containing
the top 15 most represented apps (excluding system apps, pre-loaded non-play store apps,
and GreenHub data collecting apps) as the App Processes data is far too large to be effi-
ciently processed. In this case, the results were provided by directly querying and manually
filtering the GreenHub Farmer data, prior to generating the App Processes CSV files.

8 Threats to Validity

We discuss two of the main possible threats to the validity of our study: GreenHub’s data
integrity and the findings from the data analysis.

52Apache Parquet: https://parquet.apache.org/
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In regards to the data integrity, GreenHub’s open-source data collection infrastructure
was inspired by that of the open-source Carat (Oliner et al. 2013) project.

The data collecting system and data models was from an initial fork of the Carat code,
which itself was based off accessing the public Android API to gather the data regarding all
the various aspects of the smart phone, and also uses the phone specification models which
are provided by manufacturers. From this fork, the data model was updated in GreenHub
to also consider further modern device characteristics and data aspects (e.g. NFC, Flash-
light, etc.), and in such cases, GreenHub thoroughly followed the same spirit, methods, and
protocols of data collection as in the original Carat system.

All the collected data is completely through the public Android API, with no manip-
ulation within the GreenHub infrastructure, which is then sent to the GreenHub Farmer
database. By design, no data is discarded whatsoever (from what could be collected), as
removing data could limit or prevent it from being used in a particular scenario by other
researchers, which could not have been initially envisioned.

In some cases, such data are measurements (such as battery level, temperature, bright-
ness, etc.), other cases they are a sensor boolean value (Bluetooth on or off), and finally in
other cases they are values from a given subset of possibilities (country codes). The auto-
matic constraint check of the data types when inserting a new sample within the database
guarantees another level of data assurance and quality. As such, the data present within
Farmer is purely that of a direct reporting of a device’s sample containing all the attributes
shown in Table 1. Thus, there is no corrupt data collected and the Android API guarantees
that each such attribute contains an associated value (there are no empty or null values).

Nevertheless, as with any data science research or data analysis, the data must undergo
a data cleaning step, heavily based on the goals and objectives the data scientist has during
the analysis process. The second part of our open-source GreenHub pipeline (as shown in
Fig. 18) focuses on the such cleaning of the data, in line with our research goals. In this
step, we carefully analyzed the distribution of the data values, detected any inconsistent,
incomplete, or non uniform data, treated any detected syntax errors, added complementary
information, etc. Such issues occur due to the specification models, which manufacturers
provide, not following a normalized approach. In addition, during the data cleaning process,
we also discarded all statistically calculated outlier PPM values and their periods.

All such dirty data cleaning is openly documented within our GreenHub pipeline for any
researcher to further understand all the actions performed, and to contribute to the initiative
and data cleaning with their expertise and the addition of any complementing data which
they would wish to add.

In addition to the data collected through the BatteryHub app, there is data from a clone
app called Battery Double. Roughly 75% of the sample data we have collected came from
users of Battery Double, which quickly made us question the quality and validity of the data.
As detailed in Section 6, we ran statistical tests to understand if this doppelganger app was in
fact only a clone made for ad revenue, as it superficially seemed, and there was no tampering
with the data collecting process, or if the developer altered something (which would reduce
our confidence in the data). Through both statistical tests and manual inspection of source
code, we verified that we could in fact combine the two datasets, and make no further
distinctions. In addition to the analysis of the data samples from each app, we analyzed the
source-code and further guarantee with full confidence that the data collecting processes
within Battery Double suffered absolutely no modifications, and the data itself was being
correctly gathered up until version V1.1.6 as of July 2020, guaranteeing the past and present
assurance of the soundness of the data.
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In regards to our presented findings, it is important to understand the interpretation of
our presented percentage-per-minute metric, or PPM. The actual measuring of the energy
(Joules) or power (watts) consumed by the devices is not only difficult, but at the scale of the
GreenHub project considering such varied real-world usage, would be impossible. Thus, we
defined the PPM metric (detailed in Section 4.1) as a proxy to the battery discharge/charge
rate within a given continuous period of time, from one specific user. This metric equates to
the tendency which various factors, such as the different models, brands, networks, settings,
applications, and even countries have on the battery. The principal idea behind PPM is that
it is not to be seen as a direct and concrete value of efficiency, but how a single (or group
of) characteristic (i.e., device brand, certain settings turned on/off, different apps) tends to
affect the battery, considering all the wide ranges of (secondary) factors which exist.

For example, let us consider that we were analyzing app processes, and one of the specific
social media apps in question has a consistently higher reported PPM value than the others.
This would indicate that this app has, across a broad range of samples across varied usage
patterns, devices, brands, setting configurations, operation systems, background/foreground
apps, etc., (essentially across all the possible characteristics which differ across devices), a
tendency to be present when there is a higher charge/discharge pattern in a smartphone. This
does not directly mean that the app in question is without a doubt inefficient, but that there
is a high possibility of it contributing to such patterns. In other words, the PPM metric rep-
resents the tendency one (or a group of) characteristics have on the battery, factoring in all
the other characteristics from real-world usage, and points to possible efficiency problems
or advantages.

Thus, our findings and results are of a reporting nature of this tendency metric, detail-
ing what our data seems to state and are the first iteration of understanding what factors
influence a smartphone’s battery. As such, these findings open paths to deeper and more
detailed studies which may further answer underlying questions to understand why such
results occurred.

9 RelatedWork

A number of previous initiatives aiming at collecting information about energy usage in
a crowdsourced manner have been devised. For example, Carat (Oliner et al. 2013) col-
lects information about smartphone usage to identify energy bugs, situations where an app
running on a device consumes much more energy than it usually does under the same cir-
cumstances in other devices, and energy hogs, situations where the app consumes much
more energy than other apps on the same device. The work of Chon and colleagues (Chon
et al. 2016) leverages crowdsourced information to estimate the battery capacity of a smart-
phone when compared to a new one and provides hints for users to assist them in configuring
their phones to save energy. Guo et al. (2017) have performed intra device analysis inde-
pendently of manufacturer and operating system versions to identify battery discharging
patterns, types of mobile apps, and their energy consumption patterns. Compared to these
previous initiatives, GreenHub has a more collaborative approach, since it was designed
to be used by third parties and all the collected data is made publicly available. Further-
more, it gathers information about modern sensor utilization (e.g., NFC) and concerning the
battery itself (e.g., electric current), which are neglected by previous work. The combina-
tion of these distinctive factors may potentiate further breadth studies, possibly performed
by members of the community other than us, as well as depth studies, since more data is
available.
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Energy profiling is an active area of research that has received significant attention lately
and is also related to GreenHub. A number of energy profilers have arisen in the last few
years, including ones within the major mobile computing platforms. Android provides since
2014 tools called BatteryStats and Battery Historian (LLC 2014) to collect information
about energy usage from Android devices and support the visualization and analysis of
the evolution of these measurements, respectively. Previous work has shown that energy
measurements produced by these tools are comparable to those produced by a mid-range
physical meter (Di Nucci et al. 2017). Furthermore, since 2018 Android Studio includes a
full-fledged battery profiler (LLC 2018). Apple’s Xcode also includes an energy profiler as
part of its Instruments tool (Inc. 2018). Qualcomm also had a profiler for Android devices
running on its Snapdragon family of processors named Trepn (Incorporated 2014). Besides
being capable of measuring energy consumption with very high precision, Trepn was one of
the few energy profilers we are aware of that is capable of reporting on GPU energy usage.
It is, however, no longer supported by Qualcomm.

In academia there are also multiple proposals for energy profilers. For example,
PETRA (Nucci et al. 2017) is a software-based profiler that leverages Batterystats to esti-
mate method-level energy consumption. Eprof (Pathak et al. 2012) goes in a different
direction. It instruments applications and the OS so as to trace system calls and identify
components that consume more energy. The work of Hoque and colleagues (Hoque et al.
2015) analyzes in detail a variety of profilers from both industry and academia.

Such energy profilers are typically used to address the issue of not only monitoring the
energy consumption of software, but also to properly relate it with specific components of an
application. Nevertheless, the information that one could achieve with GreenHub diverges
from the one offered by profilers, although both share the same ultimate goal. GreenHub
leverages Batterystats to collect data about battery usage. However, it combines informa-
tion about tens of thousands of devices and the apps running on them to support app and
platform developers, researchers, and device manufacturers to study how these devices and
apps behave in the wild, under real-world usage conditions and on a large scale. In this
sense, it complements existing energy profilers.

10 Conclusions

This paper presents the results of the data we gathered that stem from the GreenHub
initiative. The GreenHub dataset contains over 23 million samples of real-world usage
crowd-sourced over 1.6k+ different brands of Android devices running over 50 Android
versions and across 160 countries. The data is both representative, and publicly available,
allowing a collaborative approach in the usage of the gathered data for analyzing and iden-
tifying opportunities for optimization of battery consumption in Android devices. But, we
believe that this dataset also contains a rich set of data that will be valuable for researchers
in other areas, other than Android battery consumption. Thus, to further promote the analy-
sis and identification of opportunities for research, we presented a detailed characterization
and a high-level overview of the GreenHub dataset, and present various potentially new
avenues of research, which we deemed research paths.

Focusing on our own interests, concretely on analyzing battery consumption in smart-
phones, and to further help us understand how our data on battery discharging and charging
relates to usages in the real-world, we defined a metric called Percentage Per Minute or
PPM. This helped support our analysis on the tendencies of battery consumption in regards
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to different aspects and settings of smartphone usage by factoring in real-world human
interaction across varied user usage profiles.

During this analysis we were able to understand things such as what are the charge/dis-
charge tendencies across different countries; are there observable battery tendencies across
brands and models; is battery usage improving between Android versions; how do pop-
ular applications compare in terms of battery consumption tendencies; among others. We
also gathered results that defied common intuition, and even identified potential anomalies
within a popular Android application. During our analysis and while providing answers to
our own research questions, many new research questions and paths (focusing on Android
smartphone battery consumption) emerged and deserve their own dedicated studies.

To easy the replication and automation of our work for other researchers, and allow
others to further contribute to the GreenHub initiative, we have also presented the Green-
Hub Pipeline. This processing and analysis pipeline supports the results presented in this
paper, and allowed for easier manipulation and visualization of the data. Based on the Pan-
das library and Jupyter Notebooks, we present human-readable documents containing both
computer code and text elements for analysis, descriptions, and results. As this pipeline is
modular, it allows any future analyses on the data to be reproduced. Furthermore, it also
allows new modules to be introduced and updated by other members of the community to
further expand the analysis on the data and perform new queries focusing on new questions.

We aim to preserve a sustained movement towards extracting useful information from
the collected data. For this, we invite other researchers and developers to both analyze and
contribute to our dataset, analysis pipeline, and the GreenHub initiative.

Continuing with what we have presented in this paper, we intend to further expand
the dataset schema with different domains of information, such as data on demographics
to better understand the mobile device user profile and respective usage pattern. Upgrad-
ing the infrastructure is also an important consideration in order to sustain the scalability
of the dataset size, which will continue to be open-source. This process will result in an
incremental improvement of the data provided regarding the quality and the availability
factors.

For the dataset analysis and future research directions, we aim to study which features
(or combination of features) of mobile devices may impact the energy usage behavior the
most, how the different environments affect energy consumption and how accurately can
we predict energy related patterns.
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