
Chapter 10
Evolutionary Generative Models

João Correia, Francisco Baeta, and Tiago Martins

Abstract In the last decade, generative models have seen widespread use for their
ability to generate diverse artefacts in an increasingly simple way. Historically, the
use of evolutionary computation as a generative model approach was dominant, and
recently, as a consequence of the rise in popularity and amount of research being
conducted in artificial intelligence, the application of evolutionary computation to
generative models has broadened its scope to encompass more complex machine
learning approaches. Therefore, it is opportune to propose a term capable of accom-
modating all these models under the same umbrella. To address this, we propose the
term evolutionary generative models to refer to generative approaches that employ
any type of evolutionary algorithm, whether applied on its own or in conjunctionwith
other methods. In particular, we present a literature review on this topic, identifying
themain properties of evolutionary generativemodels and categorising them into four
different categories: evolutionary computation without machine learning, evolution-
ary computation aided by machine learning,machine learning aided by evolutionary
computation andmachine learning evolved by evolutionary computation. Therefore,
we systematically analyse a selection of prominent works concerning evolutionary
generativemodels.We conclude by addressing themost relevant challenges and open
problems faced by current evolutionary generative models and discussing where the
topic’s future is headed.
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10.1 Introduction

In recent years, the growth of interest in artificial intelligence research and develop-
ment has sparked the development of increasingly more complex systems in many
fields. In particular, generative models have seen widespread use in the fields of
machine learning and evolutionary computation for their ability to generate new
instances that follow the probabilistic distribution of a set of pre-existing ones. Due
to their recent advancements and impressive results, generative models have become
a hot topic. Their outputs can be diverse and applied to a broad range of application
domains, e.g. image, music, text, engineering and game design.

Within generative machine learning, the proposal of generative adversarial neural
networks (GANs) in 2014 by Goodfellow et al. [72] dramatically changed the land-
scape in research on generative models by proposing an effective adversarial way
of training them. Consequently, GANs quickly gained acclamation to the extent of
being coined as “the most interesting idea in the last 10 years in Machine Learning”
by Yann LeCun. However, before the advent of GANs, evolutionary computation
was the de facto approach employed in generative modelling [171]. With the rapid
surge of interest around GANs and other deep learning generative approaches, most
machine learning-based approaches surpassed what most evolutionary computation
generative approaches and models have achieved. This was the case until the last
few years when a paradigm shift happened propelled by the maturity of the field of
evolutionary machine learning, where methods from evolutionary computation and
machine learning are combined as a unified solution.

This chapter surveys the work on evolutionary generative models. We propose
this term to identify generative models that use evolutionary computation in any part
of the generative process. This definition of evolutionary generative model means
that a substantial body of the surveyed work includes plain evolutionary computation
approaches that date back to the 1980s, although authors such asRichardDawkins and
Karl Sims have never described their work as evolutionary generative models. Given
the increasing adoption of evolutionary machine learning techniques by the research
community as well as the rise of the popularity of generative models, the study of
evolutionary generative models is ever more frequent in the literature. Despite this,
to the best of our knowledge, there is still no comprehensive review focussed on the
existing literature for evolutionary generative models. Therefore, in this chapter, we
survey the existing literature related to this type of model and analyse existing work
from both a historical and scientific point of view.

During the survey, we found that the evolutionary generativemodel can be divided
into four different categories based on the role of machine learning in the generative
process: evolutionary computation without machine learning, evolutionary compu-
tation aided by machine learning,machine learning aided by evolutionary computa-
tion, andmachine learning evolved by evolutionary computation. The division along
the four categories is central to the structure and narrative of this chapter.

The document outline is as follows. In Sect. 10.2, we introduce the core con-
cepts and definitions regarding evolutionary generative models and outline the main
properties of these models, thus providing a knowledge base for the chapter and



10 Evolutionary Generative Models 285

defining its scope. Then, in Sect. 10.3, we propose a taxonomy to classify evolution-
ary generative models. Next, in Sect. 10.4, we provide a brief historical overview
to contextualise research on this type of generative model, describing the most rel-
evant works and presenting a visual timeline. The following four Sects.10.5, 10.6,
10.7 and 10.8, analyse the collected papers of the four defined categories. Then,
in Sect. 10.9, we overview open problems in the area of evolutionary generative
models and identify new research opportunities. Finally, Sect. 10.10 lays the closing
remarks by enumerating the main contributions, opportunities and the conclusion of
this chapter.

10.2 Fundamentals

We define an evolutionary generative model as a generative model that employs
evolutionary computation in any part of the generative process. Although the evolu-
tionary part of this definition is explicit, we believe that generative model may have
different interpretations.

When we look at the broader concept of generative model and generative mod-
elling, we can encounter different definitions. For instance, in machine learning,
generative models are considered models capable of generating new data instances.
More formally, given a set of data instances X and a set of labels Y , generativemodels
capture the joint probability p(X, Y ), or just p(X) if there are no labels. Therefore,
a generative model describes how a dataset is generated in terms of a probabilis-
tic model that can create instances from a distribution similar to the training data
instances. In statistics, a generative model is a statistical model of the joint probabil-
ity distribution p(X, Y ) of a given observable variable X and target variable Y . In
graphic design, a generative process is concerned with the creation of an algorithm,
or model that produces multiple designs that instantiate a concept. Considering these
definitions and our analysis of varied works in this area, we can define a common
ground in what concerns the specifications that characterise generative models.

A generative model typically implements an algorithmic process that generates
outputs that serve a certain objective or concept. This way, the generated outputs tend
to follow a given distributionwithin an objective class, thus forming a spacewhere the
outputs share common characteristics. In addition, the generative model can often
receive input information that influences the generative process and consequently
changes the outputs. This generative process can be implemented using evolutionary
computation or enhanced by it.

During our analysis of existing evolutionary generative models, we identified five
properties which we consider relevant to study in each model: application domain,
evolutionary algorithm, population, representation and fitness. These 1properties are
outlined in Fig. 10.1 and described in the following paragraphs.

Domain corresponds to the application domain of the model being analysed:
image, music, text or other applications such as engineering, architecture and even
less common disciplines such as dance [59] and culinary recipes [152]. It can be
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Fig. 10.1 Main properties of evolutionary generative models

argued that this property pertains to the applications of the model and not to the
model itself. However, as far as evolutionary computation is concerned, we found
that most algorithms follow specific representations and parameterisations according
to the application domain.

Evolutionary Algorithm establishes which evolutionary paradigm is employed by
the evolutionary generativemodel, namely, genetic algorithms, genetic programming
or evolutionary strategies.

Population relates to the fact of the generative model having a single or multiple
populations of individuals being evolved. Within approaches with multiple popula-
tions, we have two different types: cooperative and adversarial. In a cooperative
setup, multiple populations collaborate to achieve a common goal, where typically
each population specialises in a specific task or sub-problem, and their combined
efforts contribute to the overall solution. On the other hand, in an adversarial setup,
different populations are evolved and compete with each other.

Representation refers to the structure of the genotype. Based on the categorisation
of evolutionary art systems byMachado [123], we generalised the categorisation and
divided the representations used in the analysedworks into threemain types: descrip-
tive, parametric and procedural. In a descriptive representation, we evolve values
that directly define the properties of each individual. In a parametric representation,
we also evolve values, but they are used as input parameters for amodel that generates
each individual. This way, individuals are defined explicitly by the parametric model
and the properties of these individuals are controlled by varying the parameter values
of the model, which are encoded in the genotype. In a procedural representation, on
the other hand, we evolve a sequence of procedures or rules, which can be seen as
a model that is then used to generate the individual. In summary, while descriptive
and parametric representations are data oriented, as they encode values, procedural
representations are process oriented, since the evolutionary algorithm evolves, for
instance, mathematical expressions, networks or rules.

Fitness evaluation in the generative process is crucial, and according to the liter-
ature, there are several ways of doing it and it depends on many factors. However,
in this chapter, we are mainly interested in whether the fitness evaluation changes
throughout the evolutionary process or not. Thus, we divided the surveyed works
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into two categories: static and dynamic. In the case of static fitness, if the individual
is the same, no change should occur to its fitness throughout the evolutionary pro-
cess. As for dynamic fitness, we consider cases where the output of the evaluation
may vary during the evolutionary process, i.e. when different fitness values can be
assigned to the same individual in different moments of the evolutionary process.
Among the approaches that implement dynamic fitness, we can find, for instance,
those that employ user feedback to guide the evolutionary process, i.e. interactive
evolutionary computation approaches. We consider that fitness assignment based on
user feedback, i.e. interactive evolutionary computation, is dynamic.

All these properties helped to structure and sort the analysed works, as can be seen
later in this chapter, in Tables10.1 and 10.4, which contain the analysed evolutionary
generative models.

Table 10.1 Examples of evolutionary generative models categorised as evolutionary computation
without machine learning

Domain Year Authors EA Population Represent. Fitness

Image 1986 [52] Dawkins GA Single Procedural Dynamic

Image 1991 [185] Sims GP Single Procedural Dynamic

Image 1991 [187] Smith GA Single Procedural Dynamic

Image 1992 [199] Todd and Latham GP Single Procedural Dynamic

Image 1993 [11] Baker and Seltzer GA Single Descriptive Dynamic

Image 1993 [186] Sims GP Single Procedural Dynamic

Image 1995 [74] Graf and Banzhaf GA Single Descriptive Dynamic

Image 1996 [5] Angeline GA Single Parametric Dynamic

Image 1996 [214] World GP Single Procedural Dynamic

Image 1997 [157] Nishio et al. GA Single Parametric Dynamic

Image 1998 [76] Greenfield GP Single Procedural Dynamic

Image 1999 [14] Bentley and Kumar GA/GP Single Descrip./Proced. Static

Image 1999 [207] Unemi GP Single Procedural Dynamic

Image 2000 [77] Greenfield GP Single Procedural Dynamic

Image 2000 [104] Lewis GA Single Procedural Dynamic

Image 2000 [124] Machado and Cardoso GP Single Procedural Dynamic

Image 2001 [31] Chapuis and Lutton GP Single Procedural Dynamic

Image 2002 [125] Machado and Cardoso GP Single Procedural Dynamic

Image 2002 [172] Rooke GP Single Procedural Dynamic

Image 2003 [7] Aupetit et al. GA Single Parametric Dynamic

Image 2004 [78] Greenfield GP Multi. (advers.) Procedural Dynamic

Image 2005 [55] DiPaola GP Single Procedural Static

Image 2005 [58] Draves GA Single Procedural Dynamic

Image 2005 [79] Greenfield GA Single Parametric Static

Image 2006 [6] Ashlock ES Single Parametric Static

Image 2007 [56] DiPaola and Gabora GP Single Procedural Static

Image 2007 [80] Hart GP Single Procedural Dynamic/Static

(continued)
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Table 10.1 (continued)
Domain Year Authors EA Population Represent. Fitness

Image 2008 [35] Collomosse GA Single Parametric Dynamic

Image 2008 [129] Machado and Graça GP Single Procedural Dynamic

Image 2008 [154] Neufeld et al. GP Single Procedural Static

Image 2008 [208] Ventrella GA Single Procedural Dynamic

Image 2010 [131] Machado et al. GP Single Procedural Dynamic/Static

Image 2011 [24] Brown et al. GA Single Parametric Static

Image 2011 [169] Reynolds GP Single Procedural Static

Image 2012 [15] Bergen and Ross GA Single Descriptive Dynamic/Static

Image 2012 [37] Colton GA Single Parametric Static

Image 2012 [54] den Heijer and Eiben GP Single Procedural Static

Image 2012 [75] Greenfield GP Single Procedural Static

Image 2012 [132] Machado and Pereira GA Single Parametric Dynamic

Image 2013 [16] Bergen and Ross GP Single Procedural Static

Image 2014 [126] Machado and Correia GP Single Procedural Dynamic/Static

Image 2016 [170] Rodrigues et al. GA Single Parametric Dynamic

Image 2018 [121] Maçãs et al. GA Single Parametric Dynamic

Image 2018 [217] Zoric and Gambäck GA Single Procedural Static

Image 2020 [50] Cunha et al. GA Single Parametric Dynamic

Image 2020 [161] Parente et al. GA Single Parametric Dynamic

Image 2020 [167] Rebelo et al. GA Single Parametric Static

Image 2021 [9] Baeta et al. GP Single Procedural Static

Music 1991 [91] Horner and Goldberg GA Single Procedural Static

Music 1994 [18] Biles GA Multi. (colab.) Descriptive Dynamic

Music 1994 [102] Laine and Kuuskankare GP Single Procedural Static

Music 1994 [92] Horowitz GA Single Parametric Dynamic

Music 1994 [188] Spector and Alpern GP Single Procedural Static

Music 1995 [95] Jacob GA Single Descriptive Dynamic

Music 1999 [196] Thywissen GA Single Parametric Dynamic

Music 2000 [151] Moroni et al. GA Single Descriptive Static

Music 2002 [53] de la Puente et al. GP Single Procedural Static

Music 2003 [69] Gartland-Jones GA Single Parametric Static

Music 2003 [138] Manaris et al. GP Single Descriptive Static

Music 2007 [19] Bilotta et al. GA Single Parametric Static

Music 2007 [98] Khalifa et al. GA Single Descriptive Static

Music 2009 [168] Reddin et al. GP Single Procedural Static

Music 2010 [165] Prisco et al. GA Single Descriptive Static

Music 2010 [184] Shao et al. GP Single Procedural Dynamic

Music 2011 [57] Donnelly and Sheppard GA Single Descriptive Static

Music 2011 [147] McDermott and O’Reilly GP Single Procedural Static

Music 2012 [61] Eigenfeldt and Pasquier GA Single Descriptive Dynamic

Music 2012 [97] Kaliakatsos-Papakostas et al. GP Single Procedural Dynamic

(continued)
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Table 10.1 (continued)
Domain Year Authors EA Population Represent. Fitness

Music 2012 [122] MacCallum et al. GP Single Procedural Dynamic

Music 2012 [164] Pirnia and McCormack GP Single Procedural Static

Music 2015 [85] Hofmann GP Single Procedural Static

Music 2015 [101] Kunimatsu et al. GP Single Procedural Static

Music 2015 [115] Loughran et al. GP Single Procedural Static

Music 2015 [193] Sulyok et al. GP Single Procedural Static

Music 2016 [84] Hickinbotham and Stepney GP Single Procedural Dynamic

Music 2016 [116] Loughran et al. GP Single Procedural Static

Music 2016 [119] Loughran and O’Neill GP Single Procedural Static

Music 2016 [180] Scirea et al. GA Multi. (colab.) Descriptive Static

Music 2017 [117] Loughran and O’Neill GP Single Procedural Dynamic

Music 2017 [197] Ting et al. GA Single Descriptive Static

Music 2018 [159] Olseng and Gambäck GA Single Descriptive Static

Music 2020 [4] Alvarado et al. GA Single Descriptive Static

Music 2020 [166] Prisco et al. GA Single Descriptive Static

Music 2021 [3] Albarracín-Molina et al. GP Single Procedural Static

Music 2021 [174] Santos et al. GA Single Parametric Static

Music 2021 [93] Hui Yap et al. GA Single Descriptive Static

Music 2022 [142] Martínez-Rodríguez ES Single Descriptive Static

Text 2000 [140] Manurung et al. GP Single Procedural Static

Text 2003 [139] Manurung GP Single Procedural Static

Text 2006 [150] Montero and Araki GA Single Descriptive Dynamic

Text 2007 [82] Hervás et al. GA Single Procedural Static

Text 2012 [141] Manurung et al. GA Single Procedural Static

Text 2013 [70] Gervás GP Single Procedural Static

Text 2015 [202] Tomasic et al. GA Single Procedural Static

Other 1996 [177] Schnier and Gero GA Single Procedural Static

Other 2008 [62] Ekárt GP Single Procedural Static

Other 2008 [66] Frade et al. GP Single Procedural Dynamic

Other 2010 [26] Browne and Maire GP Single Procedural Static

Other 2010 [28] Byrne et al. GP Single Procedural Dynamic

Other 2012 [183] Shaker et al. GP Single Procedural Static

Other 2014 [29] Cardona et al. ES Single Descriptive Static

Other 2015 [87] Hoover et al. GA Single Procedural Dynamic

Other 2016 [114] Lopes et al. GA Single Descriptive Static

Other 2017 [40] Cook et al. GA/GP Multi. (colab.) Descrip./Proced. Static

Other 2017 [120] Lucas and Martinho GA Single Descriptive Static

Other 2017 [153] Muehlbauer et al. GP Single Procedural Static

Other 2018 [39] Cook and Colton GA/GP Multi. (colab.) Descrip./Proced. Static
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10.3 Taxonomy

We propose a taxonomy to classify evolutionary generative models into four cat-
egories according to the existence and role of machine learning in the generative
model. The proposed categories are described next.

Evolutionary computation without machine learning—systems where the gener-
ative model only uses evolutionary computation with no intervention of any kind of
machine learning technique. Themodelling is purely based on evolutionary computa-
tion and the evaluation typically involves user guidance, hardwired fitness functions
or a set of rules and conditions.

Evolutionary computation aided by machine learning—systems that combine
evolutionary computation and machine learning, where the utilisation of machine
learning enhances the capability of the evolutionary generative model. For instance,
using the activation of a machine learning classifier to assign fitness and guide evo-
lution towards outputs that maximise the classifier activation or using a clustering
technique to aid in the selection of evolved individuals.

Machine learning aided by evolutionary computation—systems which are
machine learning-based andwhere evolutionary computation is employed to enhance
the capability of the machine learning part. For instance, neuroevolution approaches
fall into this category; the same applies to approaches that explore the latent space
of a GAN to generate suitable outputs or use evolutionary computation instead of
gradient optimisation to train or fine-tune generative machine learning models.

Machine learning evolved by evolutionary computation—systems in which evo-
lutionary computation evolves entire machine learning generative models or entire
machine learning components. For instance, neuroevolution of augmenting topolo-
gies (NEAT) evolves artificial neural networks and their components using a genetic
algorithm or the evolution of populations of GANs.

10.4 Historical Overview

This section provides a brief historical overviewof key publications in each of the four
proposed categories for evolutionary generative models. In particular, in each of the
following subsections, we summarise the publication timeline of each category while
presenting a table containing several examples and their main properties. Figure10.2
presents a timeline for the four proposed categories.

10.4.1 Evolutionary Computation Without Machine Learning

This category of evolutionary generativemodels is the onewith the highest volume of
publications (please refer to Fig. 10.2), which is explained by the fact that before the
popularisation of GANs and neuroevolution, evolutionary computation approaches
represented the early instances of evolutionary generative models.
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Fig. 10.2 Timeline showing all publications on evolutionary generativemodels cited in this chapter.
Publications are ordered chronologically (oldest at the top and most recent at the bottom) and
divided horizontally by category (from left to right: evolutionary computation without machine
learning, evolutionary computation aided by machine learning, machine learning aided by evolu-
tionary computation andmachine learning evolved by evolutionary computation). Each publication
is represented with a rectangle containing the corresponding reference number. The colour of each
rectangle indicates the number of citations of the corresponding publication according to the scale
shown at the bottom of the figure (darker colours indicate a greater number of citations). The number
of citations was queried to Google Scholar on June 7, 2023

The biomorphs presented by Dawkins [52] in his book The BlindWatchmaker, in
1986, were one of the earliest examples of using evolutionary computation to create
images using user interaction, basically setting the start for interactive evolution-
ary computation. Afterwards, in 1991, Sims [185] employed user-guided evolution
to create images, solid textures and animations encoded as Lisp-based expressions
of mathematical functions, variables and constants, also referred to as symbolic
expressions. The idea of using symbolic expressions in evolutionary algorithms had
previously been explored by Koza [100] in 1990 and would eventually give rise to
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the nowadays prolific field of genetic programming. Despite gaining popularity later
on, the approach of using evolutionary computation for image generation was not
yet common in the computer science community at this point in time (see Fig. 10.2).
That would change, however, in 1992 with the work by Todd and Latham [199],
who popularised evolutionary art in general with their work on the generation of
2D and 3D images and by making it available to the general public. In line with this
idea, in 1999, Draves [58] created the collaborative abstract artwork “Electric Sheep”
that evolved fractal flames, a generalisation and refinement of the iterative function
systems. Several researchers were experimentingwith varied representations for evo-
lutionary algorithms. Bentley and Kumar [14] explored the importance of different
embryogenesis processes, i.e. the mapping from the genotype representation to phe-
notype, in the same generative design problem demonstrating the impact of having
a direct genotype on phenotype mapping on the final solutions and evolution with
distinct solutions using a genetic algorithm or genetic programming.

Given the impact and amount of publications regarding evolutionary computation
for image generation, we can conclude that the first half of the 1990s sparked more
interest in evolutionary art in general following its appearance. This interest was
eventually picked back up around the turn of the millennium, with many works in
evolutionary computation being published (see Fig.10.2). Within this period, it is
worth mentioning the work by Lewis [104] concerning aesthetic evolutionary design
with network data flows, a direct acyclic graph representation of transformations on
geometric primitives for generating specific types of images such as cartoon faces
and human figure geometry. Greenfield [78] used the image generation approach of
Sims [185] with a bio-inspired coevolutionary fitness scheme, inspired by hosts and
parasites dynamics, to instantiate an evolutionary simulation for the generation of
aesthetic image tiles. Aupetit et al. [7] created an interactive genetic algorithm to
evolve parameters for an ant colony optimisation approach to generate paintings.
Hart [80] proposed newmutation operators for expression-based evolutionary image
generation and tree alignments schemes for improving the morphing between two
individuals, thus enabling a smoother animation process and expanding the possible
solutions for the cross-dissolve process between individuals [186]. Genetic program-
ming was used extensively around this time, with a few more notable examples to
be mentioned. Di Paola and Gabora [56] tried to evolve a portrait of Charles Darwin
using genetic programming, an endeavour that presented many hurdles, such as han-
dling fitness values plateaus which proved difficult to overcome. The work by den
Heijer and Eiben [54] used a scalable vector graphics format as a genetic represen-
tation of their genetic programming approach for the evolution of abstract images.
Outside of expression-based image generation, we should mention the work by Col-
lomesse [35], which performed non-photorealistic rendering by generating images
with pre-processed and parameterised brush strokes based on a starting image. To the
best of our knowledge, althoughmany genetic programming approaches have done it
before [185], this work represents one of the first efforts in using genetic algorithms
to evolve filters from existing images. In 2010, Machado et al. [131] presented an
evolutionary engine that allows the evolution of context-free grammars using a graph
representation and operators.
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The early use of genetic algorithms in the generation and evolution of music was
explored by Jacob [95], who employed an interactive system to assign fitness in
music composition, and by Biles [18], who introduced the framework Genjam to
generate Jazz solos. It is important to note that these first studies in music generation
mainly focussed on the evolution of melodic progressions. One of the first studies
specifically targeting metric and rhythm was performed by Horowitz [92] in 1994.
Furthermore, around this period, the use of expression-basedmethods to createmusic
was introduced by Spector and Alpern [188] with a system to create Bebop music
using genetic programming. These first efforts were later picked up and extended
upon, which saw the introduction of new frameworks and techniques. It is also
worth mentioning the work by de la Puente et al. [53] in the early 2000s, which,
to the best of our knowledge, corresponds to the first application of a grammatical
evolution algorithm to music composition. Moreover, Donnelly and Sheppard [57]
proposed the use of a genetic algorithm to evolve four-part melodic harmonies, and
frameworks such as DarwinTunes [122] were introduced using genetic programming
tree-like representation to represent full songs. In addition to this publication, it
is important to mention MetaCompose [180], a framework still used nowadays,
consisting of a graph-based chord sequence generator, as well as a melody and
accompaniment generator. More recently, a system that has been gaining interest is
Evocomposer [166]. The novelty of this framework is the hybrid evaluation function
capable of multi-objective optimisation to solve a four-voice harmonisation problem,
i.e. given a music line as input, the algorithm must generate the remaining three
accompanying voices.

Concerning the domain of text generation, the body of existing research seems
to be more sparse. At the beginning of the millennium, Manurung et al. [140] pre-
sented the first efforts in applying evolutionary techniques to the development of
an English poetry generation system using genetic programming. Manurung [139]
would later extend upon this research in poetry generation, this time employing
grammatical evolution. Although poetry seems to be the preferred text type for
generative systems, it is worth highlighting pioneers in other genres, such as the
work by Montero and Araki [150] in 2006, who has worked on the generation of
dialogue in natural language. Also in the mid-2000s, Hervás et al. [82] proposed
an evolutionary approach to assist in the generation of alliterative text that pre-
serves the meaning of a given input sentence. Gervás [70] used an evolutionary
algorithm coupled with his “wishful automatic Spanish poet” (WASP) system for
poetry generation.

Lastly, beyond the image and music domains, we should also note the integration
of evolutionary techniques with other types of domains of applications throughout
the timeline. It is the case of the work by Frade et al. [66], which uses genetic
programming for the evolution of realistic video game terrain. Additionally, the
work of Shaker et al. [183] used grammatical evolution for the generation of Super
Mario Bros. levels. Aside from the efforts of creating gaming assets, Browne and
Maire [26] presented an approach to evolve interesting game designs from a human
perspective with the Ludi framework. Still, in the domain of game design, the work
byHoover et al. [87] represents one of the first systems using evolutionary techniques
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to develop multiple aspects of a level, including visuals, audio and gameplay, along
with the work by Cook et al. [40] with the ANGELINA framework.

10.4.2 Evolutionary Computation Aided by Machine
Learning

After summarising the timeline of evolutionary generative models that use solely
evolutionary computation, we now move on to evolutionary generative models that,
in addition to evolutionary computation, also use machine learning on any part of
the generative process.

The machine learning approaches have aided evolutionary generative models
mostly in two aspects: fitness assignment or auxiliary representations for select-
ing individuals. Starting with the latter, Saunders and Gero [176], in the early 2000s,
proposed a system that used a self-organisingmap to categorise each generated image
and acted as a short-term memory of their agent-based and evolutionary generative
model. This is one of the first examples of using an auxiliary representation to help
the evolutionary process. Nevertheless, based on our collection of works, most of the
work done on evolutionary generative models aided bymachine learningmostly uses
machine learning to evaluate or assist in evaluating generated individuals. Until the
early 1990s, the evolution of images had been done by resorting to user interaction to
assign fitness to individuals, i.e. an interactive evolutionary computation approach.
Albeit effective, interactive fitness assignment is tied to problems such as user fatigue
or inconsistent evaluation, and it is hard to scale. Thework by Baluja et al. [12] aimed
to change this paradigm by proposing an automatic fitness assignment scheme based
on the evaluation of images using machine learning, more precisely, an artificial
neural network, to automate the evolutionary process. However, this approach only
had partial success, the main problem being the employed artificial neural network
was not able to generalise and distinguish between different visually striking image
features and properly guide the evolutionary process. Most works at that time tended
to use interactive fitness assignment schemes or opted for a semi-automatic form
with the help of machine learning approaches, as is the case of the incorporation
of an artificial neural network to aid fitness assignment in the enhanced GenJam
framework proposed by Biles et al. [17].

In 2008, Machado et al. [133] experimented with automatic fitness assignment
using artificial neural networks, similar to the work by Baluja et al. but promoting an
adversarial scenario between an artificial neural network and the evolutionary com-
putation approach. The artificial neural network was trained to discriminate among
images previously generated by the evolutionary approach and famous paintings.
Then the evolutionary approach was used to generate images that the artificial neural
network classifies as paintings. The images created throughout the evolutionary run
were added to the training set, and the process was repeated. The iterative process led
to the refinement of the classifier forcing the evolutionary approach to explore differ-
ent types of images after each refinement. Based on this work, Correia et al. [41] used
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a machine learning approach trained with multiple object detectors to evolve figu-
rative images consistently, i.e. images that contain a certain object according to the
machine learning approach. Although different types of images generated resem-
ble the object, some of the images evaluated by the machine learning approaches
yielded high confidence but did not resemble it or were exploits of the machine
learning approaches that did not correspond to the intended object. The work was
later extended by Machado et al. [134], generating images that were ambiguous
from a human and machine learning approach perspective. Following up on the idea
of having fitness assignment schemes with machine learning approaches and their
exploits, the work by Nguyen et al. [156] demonstrated how easily state-of-the-art
machine learning approaches based on deep artificial neural networks can be fooled,
i.e. classify images with high confidence of belonging to a certain class, when in
reality the images do not resemble that class from a human perspective. The authors
have shown that it is possible while using a simple genetic algorithm with a direct
encoding or using compositional pattern-producing networks (CPPNs) to generate
images that were unrecognisable by humans but recognised by deep neural networks
with high confidence. Despite its exploits, machine learning intervention in fitness
assignment schemes proliferated and is still one of the most used approaches for
automating the fitness assignment process.

The idea of using machine learning to assist with fitness assignments was also
used in other types of applications. For sound generation, the work by Johanson
and Poli [96] presented the generation of music with automatic fitness using an
artificial neural network to rate the generated music. Manaris et al. [137] proposed
a hybrid approach that saw the combination of evolutionary techniques along with
machine learning to compose and analyse music. In terms of text generation, akin to
Manurung et al. [140], Levy [103] explored evolutionary techniques coupled with
machine learning for poetry generation, generation of stories with plot induction
by McIntyre and Lapata [148] and Al-Najjar and Hämäläinen [2] worked with the
generation of culturally satirical movie titles. As an example of an evolutionary
system employing machine learning for other applications, we include the work by
Morris et al. [152] concerning evolutionary food recipes using a genetic algorithm
and an artificial neural network trained on a starting set of recipes.

10.4.3 Machine Learning Aided by Evolutionary
Computation

In this subsection, we shift our focus to evolutionary generative models that are
machine learning-based andwhere evolutionary computation is employed to improve
the capability of the machine learning part.

As can be seen in Fig. 10.2, this is the section with the least entries among all the
categories. This can be mostly related to the fact that the generative models based on
machine learning gained traction around 2014 with the advent of GANs, and most of
the researchers working on evolutionary approaches started to explore models that
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combined the machine learning models with the evolutionary ones. Before 2014, the
work by Manaris et al. [136] introduced in 2011 the Monterey Mirror, a system that
uses a genetic algorithm to evolve musical phrases provided by a Markov model.

After 2014, in this category of evolutionary generative models, most publications
pertain to latent variable evolution, a term initially coined by Bontrager et al. [22] to
refer to the evolutionary exploration of a given latent space. Latent spaces in gener-
ative machine learning are intermediate compressed versions of the original inputs,
e.g. bottleneck layer of auto-encoders. Thus, these compressed versions, which are
typically composed of numerical vectors, encode original samples and by sampling
the latent space and decoding via the generative model, we can explore samples that
were learnt by the generative model. This exploration by sampling and decoding
vectors of the latent space holds potential that has been researched until today. For
instance, in the work of Bontrager et al. [22], the authors trained a GAN to generate
fingerprints capable of matching a high percentage of users and afterwards explored
the generated latent space of the model using covariance matrix adaptation evolu-
tion strategy (CMA-ES). In a different setting, Fernandes et al. [64] explored the
latent space to evolve groups of diverse images using genetic algorithms and multi-
dimensional archive of phenotypic elites (MAP-elites). In the context of a procedu-
ral content generation scenario and following similar procedures, Volz et al. [210]
generated game levels using latent variable evolution with CMA-ES and a GAN.
Moreover, in the work by Schrum et al. [178], instead of directly evolving latent
vectors, it evolves parameters for CPPNs that will, in turn, generate latent vectors
for GANs.

10.4.4 Machine Learning Evolved by Evolutionary
Computation

Lastly, we overview the timeline of the last category of evolutionary generative
models, in which evolutionary computation is used to evolve entire machine learning
models or entire machine learning components.

A significant instance in the literature of machine learning models evolved by
evolutionary computation for generative purposes would be the NEAT framework
in 2002 by Stanley and Miikkulainen [191]. NEAT represented one of the first neu-
roevolution approaches capable of automatically evolving and adjusting the topol-
ogy and weights of an artificial neural network. Stanley [190] would later extend
upon his work by proposing CPPNs and evolving these networks with the NEAT
method. Thus, in 2008, the CPPN-NEAT approach was made publicly available in
the form of an online evolutionary tool named Picbreeder [181], capable of guiding
evolution using an interactive fitness assignment scheme. Furthermore, Dubbin and
Stanley [59] generated dance moves using the CPPN-NEAT model.

Around the same time, Togelius et al. [200] explored a competitive coevolutionary
generative model for racing car controllers. These early studies regarding controllers
led the way to the evolutionary exploration of game design features, which was
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mostly set in motion by Togelius et al. [201] with the evolution of controllers to play
Super Mario Bros. Other works followed, such as the generation of shapes in video
games by Liapis et al. [111] and the evolution of gameplay in the work of Cardona
et al. [30], using competitive coevolution to evolve agents for both the player and the
non-player characters in the classic game Pac-Man.

In the realm of music, we mention the work by Bell [13] in the generation of
musical compositions by evolving populations of Markov models with a genetic
algorithm. Despite this, and perhaps motivated by a saturation of research concern-
ing traditional machine learning methods to improve the performance of GANs, the
end of the last decade saw an increase in evolutionary machine learning research
mostly based on coevolution. Aside from neuroevolution being central in the same
timeline, evolutionary approaches that operate to evolve entire generative models,
such as GANs, have a high computational cost. Here the advantages of the optimi-
sation aspect of evolutionary computation were to be explored while minimising the
computational cost of an already demanding training process of the state-of-the-art
generative machine learning models.

Extending upon the GAN scheme, in 2018, Garciarena et al. [68] presented a
method for generating Pareto set approximations of generators and discriminators.
In this method, the authors resort to the coevolution of generators and discrimina-
tors where a single individual represents both components. In the same year, the
Lippizanner framework was proposed by Al-Dujaili et al. [1] as the first system
encompassing a spatial approach to coevolution where a grid of cells was used for
evolving groups of GANs. Moreover, in 2019, Wang et al. [211] proposed the evo-
lutionary GAN (E-GAN) model, which consisted of the evolution of a population of
generators within a GAN model. This approach was later enhanced by Costa et al.
[49] with the proposal of coevolutionary GAN, a model based on coevolution where
an additional population of discriminators is evolved alongside the population of
generators. Additionally, Toutouh et al. [203] extended the Lippizanner framework
by incorporating the generator training method from the E-GAN model, thus effec-
tively combining variation operators and population-level approaches to improve the
diversity of GANs.

10.5 Evolutionary Computation Without Machine
Learning

In the last section, we provided a historical overview and timeline of the works in
each category. In this section, as well as in the three following ones, we will cover the
collected works on evolutionary generative models. We start by analysing the works
that only use evolutionary algorithms. Table10.1 enumerates a series of evolutionary
generative models which we consider to belong to the category evolutionary compu-
tation without machine learning. The listed publications are grouped by application
domain (first column) and then sorted by year (second column) and by authors (third
column).
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Our analysis beginswith applications in the image domain, including shape gener-
ation, 3D modelling and video generation, among others. Afterwards, we delve into
sound applications, covering everything from sound effects to full-fledged music
composition. Next, the most relevant works in text generation are analysed, and we
finish the section with other applications which do not fit into the mentioned appli-
cation domains. Each of the works analysed in each domain is further subdivided by
the type of evolutionary algorithm used.

When it comes to using evolutionary computation as an image generative model,
the two most common approaches are by far genetic programming and genetic algo-
rithm, with genetic programming taking a slight preference within the literature
analysed (see Table10.1). Most of the approaches that employ genetic programming
do so by evolving symbolic expressions that generate images through the process of
feeding coordinates as input. This way, to evaluate an individual, each pixel coordi-
nate is fed into the expression that will generate a colour (typically a tuple of values
representing RGB channels) of which the output image, i.e. the individual, will be
composed of. These approaches have been applied to the generation of a diverse
range of image types, including aesthetic imagery [76–78, 80, 126, 172, 185, 186,
207, 214], fractals as iterated function systems [58] or the generation of specific
image classes [9, 16, 55, 56, 124, 125, 169]. Other works define the features of
an output image iteratively: vector graphics [54], stochastic sequencing of points to
generate iterated function systems [31], evolving image filters [154] and the evolu-
tion of 2D renders of 3D compositions [129]. Regarding the type of fitness function,
for the purposes of image generation with genetic programming, we observe that
there are more static than dynamic (see Table10.1), mostly due to automation of the
generative model via hardwired fitness functions.

Akin to genetic programming, genetic algorithms were also used to generate
abstract imagery [37, 52, 187]. Aside from image generation, genetic algorithm-
based generative systems were used to generate drawings of a specific category by
evolving properties of primitives such as coordinates, rotation and size. Line drawings
are perhaps the simpler examples of these approaches. Within fractals, Ventrella
[208] used a genetic algorithm to explore different configurations of the Mandelbrot
set. Baker and Seltzer [11] evolved lines either using line drawings coordinates or
by evolving agents that live on a canvas and spread their raster until they die. This
aspect of agents having an energy limit to operate was a typical aspect of agent-based
approaches [79, 145, 175].

The evolution of vector graphics is also explored in genetic algorithms and evolu-
tionary strategies for image generation [15]. Aside from vectors, similar works made
use of other primitives. Examples include examples of evolving images directly
bitmaps via transformations and distortions [74], the generation of cartoon faces
[104, 157], emojis [50], letterings [161], posters [167], the evolution of renderings
based on existing images (non-photorealistic rendering) [35, 132] and the evolution
of context-free grammars [131]. Animation is another field where genetic algorithms
stand out, with some works evolving fractals [5, 6, 24] and screensavers [58].

Other works demonstrated the interplay between the image andmusic domains by
generating images based onmusical input directly [217] or based on systems evolved
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usingmusic [170]. Other authors developedmeta-models by evolving the parameters
of these algorithms [7, 121] or resorted to an indirect way of generating the outputs,
e.g. Greenfield [75], although not concerning image generation directly, produced
controllers for drawing robots that, in turn, created visually appealing imagery.

Readers interested in a thorough analysis of evolutionary computation for the
purposes of image generation are encouraged to read the works by Galanter [67],
Romero and Machado [171] as well as Lewis [105].

Akin to image generation, genetic algorithms and genetic programming are again
themost prolific techniques in the generation of sound,with genetic algorithms taking
a slight preference within the literature reviewed. Concerning genetic programming,
many works deal with the generation of musical melodies [97, 164], some of them of
a particular style such as Jazz [188]. However, the largest body of research includes
both the generation of rhythm along with accompanying melodies [51, 85, 101, 102,
122, 138, 147, 193]. Some of these are music guided towards specific properties
of sound and musical score [51], while others focus on the methods behind the
compositional process [193]. Other works resort to grammatical evolution for the
generation of music that has been applied mainly to musical composition [3, 184],
including melody formation [53, 115, 116, 119, 168] as well as live coding [117].

Regarding genetic algorithms, a number of works dealt with the generation of
specific parts of music such as the melody [19, 71, 151, 196] and the rhythm [92].
Some studies delved into the problem of harmony production, i.e. given a musical
line/voice, the system is tasked with the creation of accompanying lines/voices to
have a complete musical piece with chords for each input note [57, 165, 166], with
the harmonisation of bass lines being a recurring theme, in particular [165].

However, most works in this section tackle the broader problem of automated
musical composition [61, 69, 93, 98, 159, 180], some of these deal with the gen-
eration of responses to given musical phrases instead of generating sound from the
ground up [18]. It is worth noting that in musical composition, many approaches
tackle different problems, such as generatingvariations fromexistingpieces, thematic
bridging and live coding. The generation of variations deals with the composition
of pieces given an existing source [4, 95, 197]. On the other hand, thematic bridg-
ing concerns the generation of lines capable of seamlessly transitioning between two
givenmusical phrases [91].More recently, thematic bridgingwas also explored using
evolutionary strategies in the work by Martínez-Rodríguez [142], who proposed fit-
ness as a weighted neighbourhood average distance metric between a solution and
the target. More applications include live coding, which tackles the use of domain-
specific languages for generating new musical patterns in a live concert setting [84].

Generally,we canobserve thatmost systems for soundgeneration based ongenetic
algorithms and genetic programming implement static fitness assignments,with user-
defined fitness being aminority. Still, in music composition, more recent works try to
gather inspiration from different domains. An example of this is the work by Santos
et al. [174], which bridges the fields of image and music generation by using images
as a source of inspiration for the compositional process.

The above-mentioned works illustrate examples from the literature for evolu-
tionary computation in music. Readers who seek a complete analysis of the appli-
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cation of evolutionary computation to music should refer to the following surveys
by Todd and Werner [198], McCormack [146], Loughran and O’Neill [118] and
Eigenfeldt et al. [60].

The body of work analysed regarding the application of evolutionary compu-
tation for text generation is rather lacking compared to the domains of image
and sound. Nevertheless, the genetic algorithm is by far the most used approach,
with applications to the generation of poetry [70, 139–141], dialogue (i.e. natu-
ral language generation) [150], as well as alliterative text [82]. In particular, it is
worth mentioning the work by Manurung [139], where the evolution of grammars
was used to generate poetry. For the more curious reader, a survey by Oliveira
[158] analyses automated poetry, which goes beyond the scope of evolutionary
computation.

Finally, we list works that one way or another concern the generation of arte-
facts that do not fit the categories of either images, sound or text. Here it is worth
mentioning the automatic evolution of designs for Lace Knitting Stitch Patterns by
Ekárt [62], and the modelling of terrain maps by Frade et al. [66], both resorting to
genetic programming techniques.Moreover, theworks dealingwith 3D [28, 177] and
shape design [153] are worth noting. Similar to what was verified for sound, text and
other applications, most of these applications implement fixed fitness assignment
as well. Lastly, another avenue where evolutionary computation has been applied
is to aid game design. In this context, we include Ludi, a general game system
introduced by Browne and Maire [26] to synthesise and evaluate new games capa-
ble of captivating the interest of human players, as well as the use of a (1+ 1)
evolutionary strategy for the generation of decks of cards by Cardona et al. [29].
Regarding genetic algorithms, we can mention the works by Cook et al. [40] and
Cook and Colton [39] in the automated and cooperative coevolution of game design.
Still pertaining to game design, some other examples consist in the co-generation
of game levels alongside a human designer [120] as well as the evolution of level
design to increase the feeling of in-game tension [114]. Refer to the survey of Liapis
[109] for a thorough analysis of the applications of evolutionary computation and
procedural content generation, among other techniques to the generation of game
design.

In terms of representation used in the analysed evolutionary generative models,
we found instances of the different types of representation, with a clear predomi-
nance of procedural representations (70 procedural, 23 descriptive and 19 parametric
representations).

10.6 Evolutionary Computation Aided by Machine
Learning

This section includes approaches where models are inherently evolutionary, but their
functionality or performance is improved with machine learning approaches. A com-
mon example is an approach where the evolutionary model uses machine learning in
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their fitness assignment or one of the components of the evolutionary computation
model is replaced bymachine learning. Table10.2 presents examples of evolutionary
generative models, which we consider to belong to the category evolutionary compu-
tation aided by machine learning. The listed publications are grouped by application

Table 10.2 Examples of evolutionary generative models categorised as evolutionary computation
aided by machine learning

Domain Year Authors EA Population Represent. Fitness

Image 1994 [12] Baluja et al. GP Single Procedural Static

Image 1994 [176] Saunders and Gero GP Multi. (colab.) Procedural Dynamic/Static

Image 2008 [36] Colton GA Single Parametric Dynamic

Image 2008 [133] Machado et al. GP Single Procedural Dynamic

Image 2009 [32] Chen et al. GA Single Parametric Static

Image 2012 [127] Machado et al. GP Single Procedural Static

Image 2012 [128] Machado et al. GP Single Procedural Dynamic

Image 2013 [41] Correia et al. GP Single Procedural Static

Image 2015 [134] Machado et al. GP Single Procedural Static

Image 2015 [143] Martins et al. GA Multi. (colab.) Descriptive Static

Image 2015 [156] Nguyen et al. GA Single Procedural Static

Image 2016 [44] Correia et al. GA Single Parametric Static

Image 2016 [209] Vinhas et al. GP Single Procedural Static

Image 2019 [42] Correia et al. GP Single Procedural Dynamic

Image 2019 [43] Correia et al. GA Single Parametric Static

Image 2019 [144] Martins et al. GA Single Procedural Static

Image 2019 [195] Tanjil and Ross GP Single Procedural Static

Image 2020 [113] Lopes et al. GA Single Procedural Dynamic/Static

Image 2021 [45] Correia et al. GP Single Procedural Static

Image 2022 [10] Baeta et al. GP Single Procedural Dynamic

Music 1991 [71] Gibson and Byrne GA Single Descriptive Static

Music 1995 [189] Spector and Alpern GP Single Procedural Static

Music 1996 [17] Biles et al. GA Single Descriptive Static

Music 1998 [27] Burton and Vladimirova GA Single Descriptive Dynamic

Music 1998 [96] Johanson and Poli GP Single Procedural Dynamic/Static

Music 2001 [162] Pearce and Wiggins GA Single Descriptive Static

Music 2007 [137] Manaris et al. GP Single Procedural Dynamic

Music 2007 [163] Phon-Amnuaisuk et al. GP Single Procedural Static

Music 2016 [94] Ianigro and Bown GA Single Procedural Dynamic

Text 2001 [103] Levy GA Single Descriptive Static

Text 2010 [148] McIntyre and Lapata GA Single Procedural Static

Text 2018 [2] Al-Najjar and Hämäläinen ES Single Descriptive Static

Text 2021 [213] Winters and Delobelle GA Single Descriptive Static

Other 2012 [152] Morris et al. GA Single Procedural Static

Other 2018 [108] Liapis GA Single Parametric Static
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domain (first column) and then sorted by year (second column) and by authors (third
column).

Similar to Sect. 10.5, the use of genetic programming in this section mainly per-
tains to the generation of specific image classes/types [41, 127, 128, 134, 143, 195,
209] or to aesthetic imagery [12, 42]. In addition to this, genetic programming meth-
ods for the transformation of existing images have also been presented, such as the
evolution of image pipelines by Correia et al. [45]. Machado et al. [133] and Correia
et al. [42] explored the stylistic change in evolutionary art in a framework similar to
GANs using an adaptive classifier along with a genetic programming engine. Simi-
larly, Baeta et al. [10] proposed another example of a system having a competition
between isolated components, where the generator of a standard deep convolutional
GAN is replaced by a genetic programming approach.

Regarding genetic algorithms for the image domain, examples of machine learn-
ing for the fitness assignment phase include the use of artificial neural networks either
by evolving false positive images [156], false negatives [44] or even to perform data
augmentation [32, 43]. Lopes et al. [113] and Martins et al. [144] also employed
a genetic algorithm guided by a machine learning model to evolve vector graphics,
and stencils for typefaces, respectively. Similar to the work by Bergen and Ross [15]
(see previous section), both modalities of fitness function (static and dynamic) were
explored, the latter as a separate experiment and the former by mixing a static target
function with user-defined options. Graph evolution is another example of the appli-
cation of genetic programming to image generation, as exemplified by Vinhas et al.
[209].

Concerning genetic programming, there are examples for the generation of
melodies [96, 163], including Jazz [188], and the generation of rhythm with accom-
panying melodic tracks, explored by Manaris et al. [137] as well as Spector and
Alpern [189]. Using genetic algorithms, many works dealt with the generation of
specific parts of music such as melody [71] and rhythm [27]. Other works focussed
solely on harmony generation [162], i.e. musical responses, instead of generating
sound from scratch. Like in the category evolutionary computation without machine
learning, automated music composition is also addressed in this section with the
work of Biles et al. [17], who used artificial neural networks for fitness assignment.
Although almost all examples of the application of genetic algorithms to music gen-
eration dealt with music, the broader exploration of audio, in general, was addressed
by Ianigro and Bown [94].

Relating to text generation, a genetic algorithm was used by Levy [103] for the
purposes of poetry generation with an artificial neural network as a measure of
adaptive fitness. Other examples include the study of satire generation by Winters
andDelobelle [213] and byAl-Najjar and Hämäläinen [2]. Finally, examples of other
applications include the works by Liapis [108] for the evolution of colour palettes,
the evolution of scene elements by Colton [36] and the introduction of a system for
generating novel culinary recipes by Morris et al. [152].

In this section, most of the analysed works in terms of representation have repre-
sentativity of the three types of representation but with a prevalence of the procedural
ones (20 procedural, 9 descriptive and 6 parametric representations).
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10.7 Machine Learning Aided by Evolutionary
Computation

In this section, we include the approaches where evolutionary computation is used to
enhance the functionality or performance of themachine learningmodel.As an exam-
ple, latent variable evolution belongs in this section because these approaches use
evolutionary computation to explore a latent space previously built using a machine
learning model. Table10.3 contains examples of evolutionary generative models
which we consider to belong to the category machine learning aided by evolution-
ary computation. The listed publications are grouped by application domain (first
column) and then sorted by year (second column) and by authors (third column).

The idea of latent variable evolution was introduced by Bontrager et al. [22, 23]
to explore the latent space of inputs to the generator network of a GAN using a
CMA-ES approach to generate fingerprints that maximise the number of imposter
matches. Concerning genetic algorithms, Schrum et al. [178] evolved parameters for
CPPNs, which in turn generated a variety of different latent vectors for GANs.

Other examples concerning the application of genetic algorithms to latent variable
evolution include the work by Grabe et al. [73], who used Gaussian mixture models
to explore possible latent vectors to evolve distinct images, along with interactive
methods to perform the evolutionary search by Zaltron et al. [215], among others
[21, 64, 135]. Outside of latent variable evolution but still pertaining to image gen-
eration, Colton [38] also proposed a system to generate image filters using a genetic
algorithm with MAP-elites or the work by Korde et al. [99], which uses an evolu-
tionary algorithm to train in the initial iterations to stabilise the weights before using
normal optimisation techniques to train GANs.

Table 10.3 Examples of evolutionary generative models categorised asmachine learning aided by
evolutionary computation

Domain Year Authors EA Population Represent. Fitness

Image 2018 [22] Bontrager et al. ES Single Parametric Static

Image 2018 [21] Bontrager et al. GA Single Parametric Dynamic

Image 2018 [23] Bontrager et al. ES Single Parametric Static

Image 2019 [99] Korde et al. GA Single Parametric Dynamic

Image 2020 [64] Fernandes et al. GA Single Parametric Static

Image 2020 [178] Schrum et al. GA Single Parametric Static

Image 2020 [215] Zaltron et al. GA Single Parametric Dynamic

Image 2021 [38] Colton GA Single Parametric Static

Image 2021 [110] Liapis et al. GA Multi. (colab.) Procedural Static

Image 2022 [73] Grabe et al. GA Single Parametric Static

Image 2022 [135] Machín et al. GA Single Parametric Static

Music 2011 [136] Manaris et al. GA Single Procedural Static

Other 2018 [210] Volz et al. ES Single Parametric Dynamic/Static

Other 2020 [160] O’Reilly et al. GP Single Procedural Dynamic
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Concerning other applications, an approach combining genetic algorithms and
Markov chains was proposed by Manaris et al. [136] to evolve musical phrases. Volz
et al. [210] worked on the generation of game levels using latent variable evolution
with adversarial training. Moreover, the work by O’Reilly et al. [160] in cyber-
attacks and defencemechanisms using genetic programming in an adversarial setting,
among other techniques, explored generating and evolving executable adversarial
programs. Lastly, we mention the work of Liapis et al. [110] for the creation of
suitable spaceships for arcade-style games using CPPN-NEAT and novelty search.

One of the most noticeable aspects of this section lies in the fact that, when
compared to other ones, the body of work concerned with aiding machine learning
with evolutionary computation is significantly less, especially when compared to
Sect. 10.5.Moreover, in terms of representation,we can observe thatmost approaches
are parametric, with just a few being procedural (in total, there are 3 procedural, 11
parametric and no descriptive representations). This is because the analysed works
mostly use latent variable evolution, which evolves parameters to generativemachine
learning models.

10.8 Machine Learning Evolved by Evolutionary
Computation

This section addresses approaches where evolutionary computation is used to evolve
one or more populations of generative machine learning models. We present direct
applications of evolutionary computation to machine learning or parts thereof. These
applications are direct in the sense that the evolutionary computation techniques are
applied as is, i.e. without modifications, over the set of machine learning individuals.
As an example, here we include the NEAT-like approaches because the NEAT algo-
rithm evolves a population of artificial neural networks. Table10.4 presents exam-
ples of evolutionary generative models which we consider to belong to the category
machine learning evolved by evolutionary computation. The listed publications are
grouped by application domain (first column) and then sorted by year (second col-
umn) and by authors (third column).

Most of the research within the literature concerning machine learning models
evolved by evolutionary computation has to do with the evolution of artificial neu-
ral networks and CPPNs [190], and with the use of neuroevolution techniques such
as NEAT [191]. Because most fixed-topology neuroevolution models typically gen-
erate artificial neural networks to be used for classification tasks, such approaches
are not within the scope of this section. For literature regarding the use of evolu-
tionary approaches in supervised and unsupervised learning, see Sects. 1.6 and 2.5,
respectively.

There have been a number of works inspired by the CPPN-NEAT framework
proposed by Stanley [190] to generate images by augmenting and evolving a CPPN
[63, 181, 182, 206, 216]. It is worth noting that some of the mentioned works have
been applied to the GAN model, as is the case with the replacement of a standard
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Table 10.4 Examples of evolutionary generative models categorised as machine learning evolved
by evolutionary computation

Domain Year Authors EA Population Represent. Fitness

Image 2007 [190] Stanley GA Single Procedural Dynamic

Image 2008 [181] Secretan et al. GA Single Procedural Dynamic

Image 2011 [182] Secretan et al. GA Single Procedural Dynamic

Image 2015 [216] Zhang et al. GA Single Procedural Dynamic

Image 2017 [192] Suganuma et al. GP Single Procedural Dynamic

Image 2018 [1] Al-Dujaili et al. GA Multi. (advers.) Procedural Dynamic

Image 2018 [68] Garciarena et al. GA Single Procedural Dynamic

Image 2018 [206] Turhan and Bilge GA Single Procedural Dynamic

Image 2019 [34] Cho and Kim GA Single Parametric Dynamic

Image 2019 [46] Costa et al. GA Multi. (colab.) Procedural Dynamic

Image 2019 [49] Costa et al. GA Multi. (colab.) Procedural Dynamic

Image 2019 [203] Toutouh et al. GA Multi. (advers.) Procedural Dynamic

Image 2019 [211] Wang et al. GA Single Procedural Dynamic

Image 2020 [47] Costa et al. GA Multi. (colab.) Procedural Dynamic

Image 2020 [204] Toutouh et al. GA Multi. (advers.) Procedural Dynamic

Image 2021 [33] Chen et al. GA Multi. (colab.) Parametric Dynamic

Image 2021 [63] Ekern and Gambäck GA Single Procedural Dynamic

Image 2021 [81] Hemberg et al. GA Multi. (advers.) Procedural Dynamic

Image 2021 [107] Li et al. GA Single Procedural Dynamic

Image 2021 [205] Toutouh and O’Reilly GA Multi. (advers.) Procedural Dynamic

Image 2022 [65] Flores et al. GA Multi. (advers.) Procedural Dynamic

Music 2008 [88] Hoover et al. GA Single Procedural Dynamic

Music 2009 [89] Hoover and Stanley GA Single Procedural Dynamic

Music 2011 [13] Bell GA Single Procedural Dynamic

Music 2011 [86] Hoover et al. GA Single Procedural Dynamic

Music 2014 [90] Hoover et al. GA Single Procedural Dynamic

Music 2015 [179] Scirea et al. GA Single Procedural Dynamic

Text 2020 [112] Liu et al. GA Single Procedural Dynamic

Other 2007 [200] Togelius et al. ES Multi. (advers.) Procedural Dynamic

Other 2009 [201] Togelius et al. GP Single Procedural Static

Other 2010 [59] Dubbin and Stanley GA Single Procedural Dynamic

Other 2012 [111] Liapis et al. GA Single Procedural Dynamic

Other 2013 [30] Cardona et al. ES Multi. (advers.) Procedural Dynamic

deep convolutional GAN generator with a CPPN evolved with NEAT, proposed by
Ekern and Gambäck [63]. Another example related to GANs is the work by Turhan
and Bilge [206], which combined a variational auto-encoder with the pixel-wise
generative capability of CPPNs to create a GAN-variational auto-encoder model,
i.e. a GAN with an inference mechanism in the form of an extra encoder network.
Similar to Sect. 10.6, despite most models in this section not exhibiting competition,
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these last two studies can be identified as having a competition between isolated
components [63, 206].

Apart from NEAT approaches, but still within the context of genetic algorithms,
Wang et al. [211] proposed E-GANs, which consisted in the evolution of populations
of generators. Similar works also used GANs to evolve samples from the generator
[34]. Costa et al. [49] worked on the coevolution of sub-populations of generators
and discriminators based on CoDeepNEAT [149] with multiple variants, e.g. one
based on novelty search with local competition [47]. The technique of evolving both
the generator and the discriminator was applied in other works, both with different
sub-populations for each component [33] and in a single population where each
individual represents a tuple consisting of both components [68].

Regarding coevolutionary approaches, we can identify a sub-category of models
dealing with spatial coevolution. This idea was first proposed by Al-Dujaili et al. [1]
with the introduction of the Lipizzaner framework using a grid of cells where GANs
are allowed to evolve and communicate. Other works expanded on Lipizzaner by
hybridising it with E-GAN and Lipizzaner to increase solution diversity [203] and
proposing a ring topology for the spatial cell grid instead of a toroidal one [205].
Other works apply the same idea by scaling the framework in the context of a high-
performance computing setting for the medical domain [65] or by further exploring
the features of Lipizzaner [81, 204]. Lastly, although during our literature review, we
did not find a substantial body of work in this section outside of the image domain,
it is interesting to note the evolution of Markov chains in the realm of music using
genetic algorithms [13], an approach later explored further by Scirea [179] for the
generation of music from scientific papers.

In the realm of music generation, many of the studies analysed here also employ
NEAT to evolve CPPNs. These approaches typically use functional scaffolding, a
technique that exploits the fact that a pattern of notes and rhythms in different instru-
mental parts of the same song is functionally related. These studies were initially
performed byHoover et al. [88] andHoover and Stanley [89], who started by present-
ing a framework called NEAT Drummer for the generation of drum patterns, which
was later extended to the application of full-fledged music composition [86, 90].
Concerning text generation, we point out the work of Liu et al. [112] pertaining to
the creation of a category-aware model employing a genetic algorithm to evolve a
population of GANs.

Albeit not many, there are a few noteworthy works in the scope of this section that
are concerned with the generation of artefacts not pertaining to imagery or music.
It is the case with the generation of shapes in video games by Liapis et al. [111], as
well as other work exploring the coevolution of controllers [30, 200]. Furthermore,
Dubbin and Stanley [59] generated dance moves using the CPPN-NEAT model.

As shown in Table10.4, genetic algorithms account for the vast majority of
approaches in this section (31 out of 32 papers), with only one using genetic program-
ming to design both the structure and connectivity of the convolutional neural net-
works [192]. As a matter of fact, the standard NEAT framework
representation is used in almost half of the models analysed herein and it is proce-
dural by definition (in total there are 33 procedural, 2 parametric and no descriptive



10 Evolutionary Generative Models 307

representations). Lastly, regarding the fitness assignment, we conclude that most
approaches are dynamic, especially the ones in an adversarial setting.

10.9 Open Problems and Challenges

Throughout the history of evolutionary generative models, several problems have
been tackled progressively. It is the case with the fitness assignment of early evolu-
tionary computation as discussed in Sect. 10.4. Thefirst explorations of the generative
capabilities of evolutionary computation models required the user to select the out-
puts for the evolutionary generative model. For many years, and especially in the
fields of evolutionary art and music generation, user fitness assignment was the de
facto technique. However, researchers noted that having the user in the loop with
the system presented an enormous bottleneck that had to be addressed for the field
to progress, and thus some papers started tackling this issue [12]. Nowadays, even
though interactive systems are still very prolific, the most standard way of dealing
with fitness assignment is to have some automatic algorithm, be it analytical, statis-
tical (such as Markov models and classifiers) or indirectly informed in some other
way. This section addresses some of these problems along with the strides that have
recently been taken in addressing them.

Throughout this survey, we have identified the following challenges when dealing
with evolutionary generative models.

10.9.1 How to Represent the Space of Solutions Generated
by the Model?

GANs and other generative machine learning approaches are characterised by hav-
ing a latent space, from which one selects a sample from that space, inputs it into
the model and generates the output solution. Moreover, GANs allow for the condi-
tional exploration of solutions through algebraic vector operations such as addition,
subtraction and interpolation, to mention a few, which will, in turn, ease the explo-
ration of such solutions. However, most evolutionary generative models, especially
those that apply evolutionary computation directly (see Sect. 10.5), do not aggregate
solutions in such an organised latent space. Therefore, a way to better represent the
space of generated solutions is oftentimes needed. In this scope, several viable alter-
natives are considered throughout the literature. Although not latent spaces, spatial
representations of the solutions have been constructed by resorting to an archive
that stores solutions according to their novelty [42, 144] or by employing mani-
fold learning algorithms to aggregate solutions on a space with lower dimension-
ality with techniques such as t-distributed stochastic neighbour embedding (t-SNE)
[48]. Another trending solution is to build a latent space by combining a variational
auto-encoder into the model by training an additional network that learns to encode
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an image into a smaller latent vector. These are called the GAN-variational auto-
encoder approaches [206]. At the moment, this challenge differentiates evolution-
ary computation without machine learning and evolutionary computation aided by
machine learning approaches from machine learning aided by evolutionary compu-
tation and machine learning evolved by evolutionary computation because by using
machine learning as a generative approach, typically the machine learning model
will have the latent space with a solution space to be drawn. In the case of evolu-
tionary computation-based approaches, we have solutions being evolved but they are
independent solutions, unstructured, and not contained in a defined space, which can
be seen as a drawback.

10.9.2 How to Navigate the Generated Space of Solutions?

This challenge concerns the exploration of all feasible solutions that can be gener-
ated by the model. Within the models that organise their solutions in a latent space,
an effective way of exploring these solutions is to perform latent variable evolu-
tion directly over this space. Because a latent vector is the genotype representation
of latent variable evolution, the types of algorithms used are mostly genetic algo-
rithms [64, 73], and evolutionary strategies in some cases [22] (see Sect. 10.7 for a
thorough analysis). For models where a latent space does not exist, the exploration
of the solutions space cannot be done directly, and thus other methods need to be
employed to aid solution exploration during evolution, e.g. explorationwith variation
operators or novelty search [110, 209]. Suchmethods typically involve hand-crafting
specific variation operators to fence off the bias of the models. This can be seen, for
instance, in the work by Li et al. [107] with the proposal of a new crossover operator
for the E-GANmodel and in the implementation of a mutation operator with features
tailored to ease the process of interactive 3D design by Byrne et al. [28].

10.9.3 How to Evaluate the Generative Capabilities
of a Model?

In this challenge, we are concerned with evaluating the generative capabilities of
the model by itself without comparing it to similar generative models, whether evo-
lutionary or not. This problem is often difficult to tackle as it depends a lot on the
desired output of the model and the process itself. For instance, when it comes to
music composition, Ng and Jordan [155] used genetic programming to examine
evolving compositional processes instead of a musical piece. As further explained
by Loughran and O’Neill [118], it is imperative to look beyond the generated output
of a model when investigating the ability of the system to compose. This way, as
analysed by Li et al. [106], there are two ways to evaluate a music composer: by
evaluating the music it composes or by evaluating the composition process. This
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idea can be extended outside the specific domain of music generation. Given the
difficulties in evaluating isolated solutions, we might see more works where models
evaluate the generative process itself and not only the output solutions.

10.9.4 How to Compare Evolutionary and Non-evolutionary
Models?

Following the challenge of isolated evaluation, we turn our attention to the compari-
son of performance between different generativemodels, namely, between generative
models with and without evolutionary computation. It is demonstrated that in adver-
sarial generative models, the loss function is not stable enough to be taken as a
comparative measure of generative performance [46]. In fact, it is shown that even
simple metrics such as the inception score, which applies the Inception Model [194]
to every generated image in order to get the conditional probability distribution of
classes in the original data [173], fails to capture similarities between generated
images adequately. For this reason, the Frechét inception distance metric [83] has
been proposed. Although the Frechét inception distance was specifically developed
to evaluate the performance of GANs, it can be applied to any image generation
model. The Frechét inception distance directly compares the statistics of real sam-
ples with the statistics of generated ones, allowing for the capture of features used for
a collection of both real and generated images gathered from training the network on
image classification tasks. Onemajor shortcoming of the inception score and Frechét
inception distance scores is that they fail to determine whether the proposed model
is overfitting or underfitting [20]. This problem pertains not only to evolutionary
generative models but also to standard generative models. To overcome this hurdle,
metrics such as the Reconstruction Error [212] and the Kernel Inception Distance
were introduced [20]. Even though applying these metrics in evolutionary generative
models still seems very rare, we posit that using these more advanced metrics will
become more widespread in the study of evolutionary generative models as research
in the field keeps taking off.

10.9.5 How to Improve the Computational Efficiency
and Scalability of Evolutionary Generative Models?

Generally speaking, when it comes to improving computational efficiency, there
are two ways a model can be optimised: through macro-optimisations, i.e. algo-
rithmic improvements in our case, or through micro-optimisations, which in com-
puter science typically means small statement-level optimisations to the source code.
However, by micro-optimisations, we refer to the adaption of the model to run in
different hardware according to the demands of operations in its algorithm. As an
example, the work by Turhan and Bilge [206] tackles the problem of efficiently
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generating high-resolution versions of handwritten digits, which is a slow task in
conventional GAN-variational auto-encoder models. The proposed model converges
more efficiently and thus faster than the baseline models by allowing the feature-
wise reconstruction of a GAN-variational auto-encoder hybrid model instead of
the standard pixel-wise reconstruction approach. This is a typical example of an
algorithmic improvement. Another noteworthy example in the category of computa-
tional performance is TensorGP [9]. TensorGP is a genetic programming engine
that not only performs algorithmic optimisations by changing the internal rep-
resentation of symbolic expressions from the traditional tree graph to a directed
acyclic graph, thus avoiding code re-execution but also has the option to evaluate
expressions in dedicated hardware if available. This way, while most of the evolu-
tionary stages such as variation operators, selection and other control mechanisms
run on the central processing unit (CPU), the evaluation can take place in graph-
ics processing units (GPUs) or tensor processing units (TPUs), which are capable
of vectorising the pipeline of genetic programming operations, something that is
still not implemented in many off-the-shelf genetic programming engines [8]. With
the continued slowing down of Moore’s law and GPU computing still on the rise,
it makes sense to expect an increase in the number of frameworks using paral-
lel capable hardware not only in evolutionary generative models but in generative
models.

Coupled with the problem of computational efficiency, there is the problem of
complexity associated with the generative process. The early works by Sims [185]
in image generation using symbolic expressions are straightforward examples of
low computational cost in terms of the generative process. As a counter-example,
the work by Correia et al. [45] in enhancing image pipelines is fairly heavier than
most generative processes because the evolutionary generative model encompasses
more transformation steps. In this work, genetic programming was used to evolve
image filters that, aside from requiring the traditional evaluation of the individual
tree graphs, are then applied to a predefined image, which is, in turn, evaluated using
an external classifier for fitness assignment. Overall, it seems that as time passes by,
generative models tend to complexify, demandingmore computational resources and
thus becoming harder to scale and deal with.

10.9.6 How to Improve the Interaction of Evolutionary
Generative Models?

Another aspect that we believe to be extremely relevant is the way we interact with
evolutionary generative models. Not all generative models are easy to use for the
average user, offering a poor user experience which will probably limit their reach
to a broad audience. Therefore, it is essential to explore effective ways to control
and visualise the different elements of an evolutionary generative model. This goes
beyond facilitating a given action. Interaction can help to understand a certain func-
tionality or aspect of the models that are often very technical.
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For instance, although interfaces for large language models such as ChatGPT1

have been trending as of late, the generative pre-trained transformer (GPT) model
from which ChatGPT was built is not widely known despite having been created
earlier [25]. The main reason for this lies in the fact that ChatGPT has a simple,
natural and inviting user interface. Likewise, Midjourney,2 a system which offers a
model for the generation of images from natural language descriptions in the form
of text prompts, is another example of an increasingly popular artificial intelligence
service. Both examples have the benefit of being easily accessible: ChatGPT through
the OpenAI website and Midjourney through a server hosted on Discord, a popular
chat application.

Historically, interfaces in evolutionary generative models were created to aid the
user to interact with them, control the evolutionary process, preview individuals and
assign fitness [124, 181]. Other systems allow the designing of fitness functions
[130, 144], a process that poses challenges in terms of interpretability and explain-
ability to its design. There are other systems that allow for inspecting and navigation
of the outputs [80, 143, 182], which also poses challenges from the implementation
and user interaction perspectives.

However, themajority of evolutionary generativemodels possess neither this level
of user-friendliness nor accessibility. In fact, most evolutionary generative model
frameworks use their own interfaces,with different layouts and sometimes unintuitive
functionality, lacking both generalisation and scalability.

We believe that the interaction with these models can be planned not only with
human users in mind but also with other computational systems with which they can
be integrated, following the example of nowadays machine learning-based systems.
This can be done by developing APIs that allow for the development of new systems
while promoting their modularity. The solution of using APIs solves the decoupling
of the generative model, however, does not solve the part of adding a standardised
experience for the interaction with the generative model which can be seen as an
open problem.

10.9.7 How to Increase the Availability of Evolutionary
Generative Model Systems?

As a final open challenge, we address the availability of the implemented systems
to the general public. Within the surveyed literature, the number of papers with
publicly source-code repositories is relatively scarce. Truth be told, this is not a
problem specific to the field of generative models or even to artificial intelligence
but one that is common in most research fields. Albeit a big challenge, websites such
as huggingface.com and paperswithcode.com are a good step forward as they help
disseminate and organise machine learning and artificial intelligence papers alike,

1 https://chat.openai.com/.
2 https://docs.midjourney.com/.

https://chat.openai.com/
https://docs.midjourney.com/
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along with their respective code. Moreover, we believe that having open access to
newmethods and their respective implementations is especially important to advance
the field of evolutionary generative models.

Having identified the core challenges and future trends in evolutionary generative
models, it is clear that some are inherently more difficult to tackle than others.
Challenges such as the availability of implemented evolutionary generative model
systems aremore of an ongoing problem that, arguably, is not expected to be solved so
soon as it is pervasive in many other fields. Similarly, despite recent breakthroughs,
technical challenges such as the construction of organised solution spaces or the
evaluation of the generative capabilities of a model are non-obvious challenges that,
due to being very dependent on the type of evolutionary generative model, will likely
keep posing challenges as the topic of evolutionary generative models evolves, and
new approaches are proposed. In contrast, challenges such as bottleneck mitigation
and overhead reduction can arguably be easier to implement in the sense that they
typically consist of general techniques that can be applied to a wide range of models.
For instance, with the continuous rise in parallel computing, techniques as well as
research and development investments in hardware with vectorisation technologies
are increasing. Nonetheless, instead of dwelling on the many hurdles surrounding
this topic, it is also worth praising the number of positive efforts being put in place
to help advance and develop research on evolutionary generative models.

10.10 Conclusions

In this chapter, we presented a comprehensive survey on evolutionary generative
models, analysing their main properties, along with a taxonomy to categorise these
models. The lack of a well-established categorisation of these models in the litera-
ture led us to identify four main categories of evolutionary generative models: evolu-
tionary computation without machine learning, evolutionary computation aided by
machine learning,machine learning aided by evolutionary computation andmachine
learning evolved by evolutionary computation.

The importance of this contribution is twofold. First, it aims to standardise or
at least provide a basis for further classifications of evolutionary generative models
while easing the process of analysing the existing body of research. Second, we
collected and categorised some of the most prominent literature concerning evolu-
tionary generative models. We are aware that the work in evolutionary generative
models is extensive, and therefore it is not feasible to carry out an exhaustive survey
of all existing approaches.

Early instances of evolutionary generative models started as plain evolutionary
computation approaches. With the growth in the research and adoption of machine
learning seen within the past decades, the evolutionary computation approaches
evolved into models incorporating machine learning techniques. For this reason,
we have performed an in-depth listing of applications, surveys, position papers and
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other research pertaining to and spanning from the beginnings of the use of evolution-
ary computation as a generative model to the state-of-the-art approaches. Overall,
more than 200 publications ranging from plain evolutionary computation systems to
evolutionary generative machine learning for the generation of images, music, text,
as well as other domains were explored and classified. Each publication was clas-
sified according to the main properties that we have identified, namely, application
domain, evolutionary algorithm, population, representation and fitness.

Furthermore, the extent of the present studymade it possible to identify open prob-
lems and challenges for evolutionary generative models. Namely, challenges such as
the need for adequate metrics for evaluating and validating generative performance,
the aggregation of the generated outputs in a single, organised solution space as well
as the search for well-suited operators capable of efficiently navigating through the
associated solutions space is at the forefront of current open problems. It is worth
noting that the growth of evolutionary generative models is tied to the maturity of the
field of evolutionary machine learning, which, as an emerging field, is primarily pro-
pelled by the transparency and availability of the implemented systems to the general
public. This challenge is in no way less relevant than the above-mentioned ones.

With the emergence of more promising methods such as GANs and other deep
learning techniques, the use of evolutionary computation in the context of generative
models might seem lost at first sight. However, based on recent trends demonstrated
throughout this chapter, the future of the topic seems to point towards the symbio-
sis between both fields, where the power of machine learning interplays with the
representation flexibility of evolutionary computation to improve the generative per-
formance and computational efficiency of current and future evolutionary generative
models.
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