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ABSTRACT

Before the advent of Generative Adversarial Networks (GANs), Evo-
lutionary Computation approaches made up the majority of the
state of the art for image generation. Adversarial models employing
Deep Convolutional Neural Networks better fitted for GPU comput-
ing have been at this point more efficient. Nevertheless, motivated
by recent successes in GPU-accelerated Genetic Programming (GP)
and given the disposition of expression-based solutions towards
image evolution, we believe in the prospect of using symbolic ex-
pressions as generators for GANSs, instead of neural networks. In
this paper, we propose a novel GAN model called TGPGAN, where
the traditional convolutional generator network is replaced with
a GP approach. The generator iteratively evolves a population of
expressions that are then passed to the discriminator module along
with real images for backpropagation. Our experimental results
show that it is possible to achieve comparable results to a typical
Deep Convolutional GAN while benefiting from the flexibility en-
abled by an expression-based genotype. Moreover, this work serves
as a proof of concept for the evolution of symbolic expressions
within adversarial models.
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1 INTRODUCTION

In the seminal 2014 paper, Goodfellow et al. introduced Generative
Adversarial Networks (GANSs) [11], a new approach that was quick
to revolutionize the training dynamics of generative models. Since
its inception, the GAN model has taken traction comparatively to
other generative models, with impressive results in several domains,
of which image generation proved to be one of the most successful.
In essence, GANs employ an adversarial training model consisting
of a generator and a discriminator, which are mutually trained by
optimize opposing metrics within in a zero-sum game.

However, despite their self-evident generative capabilities, GANs
are still plagued by training issues such as mode collapse, instability,
amongst other problems that compromise their generative perfor-
mance [10]. For this reason, several variants based upon the tradi-
tional GAN model were suggested in attempts of augmenting the
robustness of the learning process [1, 20]. Most of the proposed ap-
proaches were, nonetheless, either met with partial success, solved
the problem at the cost of extra computational resources or took
advantage of otherwise unrealistic datasets that are either too large
or too complete to represent real-world scenarios. We believe that a
possible solution to such problems may lie in a field not so strange
to generative modelling.

Before the proposal of GANs, Evolutionary Computation (EC)
was, arguably, the most commonly used approach in the context
of image generation [9]. In particular, expression-based evolution
techniques, such as Genetic Programming (GP), constituted effi-
cient means of representing and evolving images [13, 16]. Never-
theless, these approaches tended to be computationally expensive
and largely fell into disuse in favor of image-specific GAN varia-
tions such as Deep Convolutional Generative Adversarial Networks
(DCGAN:Ss) that take advantage of the parallelization capabilities of
modern hardware (such as GPUs and TPUs).

Recently, a substantial body of research has focused on aiding
the traditional adversarial pipeline using Evolutionary Machine
Learning (EML) approaches that aim to combine the discriminative
power of ML with the representation flexibility provided by EC.
This way, motivated by recent successes in accelerating domain
evaluation in GP using GPUs. we believe that EC can be reconsid-
ered as a viable option to tackle the aforementioned training issues
of GANs without the excessive computational burden. Namely, in
this work, we implement and test a model that serves as a proof
of concept for the “raw” evolution of symbolic expressions within
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an adversarial model; an idea that is somewhat unexplored in lit-
erature. The model we propose, named TGPGAN, implements a
conventional DCGAN with a standard convolutional discriminator
but with an evolutionary GP run serving as the generator module.

The outline for this paper is as follows. The following section pro-
vides an analysis of the literature review of the interaction between
EC and adversarial models in the image domain. Subsequently, a de-
scription of our model is presented along with relevant integration
efforts. The experimentation section follows with a documentation
of the preliminary testing carried out with the model and corre-
sponding results. Finally, the main conclusion points from this work
are highlighted, along with some problems to tackle in future work.

2 LITERATURE REVIEW

Perhaps the most intuitive way to couple EC techniques with ML
algorithms is to directly evolve a population of ML solutions. To
stabilize GAN training and improve generative performance, Wang
et al. proposed Evolutionary GANs (EGANSs) [19], which saw the
evolution of populations of generators that adapt to the environ-
ment through normal selection and reproduction. Costa et al. then
extended the EGAN model by integrating neuroevolution and co-
evolution, aimed at optimizing deep learning architectures through
the evolutionary process, introducing CoEGANS [6].

Early efforts in expression-based image generation were per-
formed by Karl Sims using symbolic expressions as genotypes for
the artificial evolution of generative art [9] with representations
reminiscent of Compositional Pattern Producing Networks (CPPNs)
[16]. Another popular approach is The NeuroEvolution of Aug-
mented Topologies (NEAT), which focuses on evolving both the
architecture and the weights of a neural network thus enabling
the evolution of increasingly more complex solutions using genetic
encodings[18]. In his seminal work, Stanley combined the proposed
CPPN approach with NEAT, introducing the aptly named CPPN-
NEAT model and demonstrating the power of neuroevolution when
applied to generative models [17]. Ha then applied the CPPN-NEAT
framework to generative art by modifying the model to accept a
randomly initialized random vector z in order to allow for mor-
phing images [12]. Ha also introduced the incorporation of the
CPPN architecture with the adversarial pipeline using a Variational
Autoencoder (VAE) GAN, aided by the standard backpropagation
through the generator network. Nevertheless, the model trained on
the CIFAR dataset demonstrated the limitations of this approach in
generating a truthful representation of rich images. Later, Metz and
Gulrajani [15], extended upon the proposed model by using a DC-
GAN architecture and training different discriminators for different
datasets. Notwithstanding the impressive generative performance,
the presented model was “unable to reach the same visual qual-
ity of existing convolution transposed models”. More recent work
by Ekern et al. further revealed the effectiveness of CPPN-GAN
models [8]. However, there is still no study aimed at incorporating
GP instead of CPPNs within the generator of GANs. Nonetheless,
because GP retains, at its core, the same flexibility of representation
as CPPNs, this research path seems motivating.

Lastly, one of the core challenges of coupling GANs with the
expression-based paradigm lies in the fact that isolated solutions
are generated instead of a latent space, which is characteristic of
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GANSs and other generative approaches. Alternatives to mapping
individual solutions into an organized latent space include the ad-
dition of an archive that stores solutions according to their fitness
and novelty [5, 14], local embeddings [7], manifold learning algo-
rithms [4] or VAEs that trains an additional network to learn image
encodings.

3 TGPGAN

This section provides a description of TGPGAN. We start by in-
troducing TensorGP, the GP engine used in our model, and follow
this by presenting some of the interactions between the different
components, as well as the challenges faced during the process of
integrating expression evolution with a DCGAN pipeline.
TensorGP is the engine that powers the generator component
of TGPGAN. It was developed to address arguably the biggest
drawback to GP: its computational demands. Despite requiring
the evaluation of each individual for all fitness cases, the expres-
sion to evaluate remains constant, making GP highly parallelizable.
Besides, the mechanism of evolution makes it so that highly fit
sub-expressions proliferate throughout generations, meaning that
we can save these intermediated results to avoid recalculation. Ten-
sorGP applies both the parallelization of the GP operations and
the caching of intermediate fitness results [2, 3]. The process of
genotype to phenotype translation in TensorGP can be divided into
three steps: transform the initial expression (the genotype) into a
tree graph, convert the tree graph into a Directed Acyclic Graph
(DAG) to avoid the recalculation of identical nodes, and finally,
traversing the DAG to produce a tensor/image (the phenotype).
As mentioned, the model that we propose in this work is a vari-
ation of a conventional DCGAN where, instead of a convolutional
network for the generator, we have a population of symbolic ex-
pressions being evolved at each training step. In this paradigm, the
discriminator module remains a Convolutional Neural Network
(CNN), which is trained by standard backpropagation using both
real and generated images. For the current iteration of the model,
each training step can be defined by the pseudocode in Algorithm
1. The source code for this project is publicly available on GitHub. !

Algorithm 1: Main training loop of the model.

foreach training step do
Generate batch from GP run with n generations, and k

best individuals from last step if applicable;
Update solution archive;
Get real batch from dataset;
Train discriminator with real batch;
Train discriminator with generated batch;

Calculate losses;

The algorithm can be explained as follows. To generate the batch
of fake images, a GP run consisting of n generations is performed
using TensorGP. After performing n generations, the resulting indi-
viduals are then converted to their respective images phenotypes.
In this evolutionary process, candidate solutions will be assessed by

ITGPGAN GitHub repository: https://github.com/AwardOfSky/TensorGP_DCGAN
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a forward pass on the discriminator network. For the first training
step, the initial GP population is randomly generated while in sub-
sequent steps, a given portion of the best-fitted individuals is taken
from the last population. Similarly to the standard generational
elitism, this mechanism enables us to implement a certain degree
of elitism for the generator across training steps. Next, another
batch of images is retrieved from the original dataset. After this,
the weights of the discriminator network are updated by passing
in both the real and generated data samples for standard backprop-
agation training coupled with the Adam Optimizer. The described
algorithm is then repeated for each training epoch.

To address the problem of generating an organized latent space,
an archive of solutions was implemented to collect the best-fitted
individuals found throughout the training process. The archive is
updated on each training step where only the fittest individuals
amongst the generated ones and the ones already in the archive
are chosen. This ensures that individuals with lower fitness values
are kicked out if better ones are produced by the generator.

4 EXPERIMENTATION

This section defines the experimental setup used and provides an
analysis of the results from training TGPGAN on the MNIST dataset.
Despite many considering the MNIST dataset to be too simplistic
of a classification task for most modern ML applications, the fact
that the evolution of symbolic expressions in adversarial models
resorting to GP is largely uncharted territory in literature warrants
a more basic start as some validation is needed before moving onto
more challenging tasks. In addition to the experimentation on our
model, we include comparative results from a conventional DCGAN
model, adapted from TensorFlow’s website, which represents a
quick baseline ideal for prototyping.?

Table 1: Parameterization of the TGPGAN model and GP run.

Parameter Value
Generations 50
Population size 32
Elitism (Elite Size) 1
Meta-elitism 1
Tournament size 2
Mutation probability 0.3
Mutation operators delete, insert, point, subtree
Crossover probability 0.8
Crossover operators random sub-tree swap
Initial Depth [min, max] [3, 6]
Allowed Depth [min, max] | [3, 14]
Generation method RHH (population)
Function Set add, sub, mul, div, abs m.in, max, neg,
warp sign sqrt, pow, mdist, sin, cos, if

Concerning TGPGAN, the generator is a Genetic Programming
run parameterized according to Table 1. As alluded to in the pre-
vious section, the “meta-elitism” parameter refers to the number
of best-fitted individuals that are taken from the last population of
the previous training step. Preliminary experimentation performed
with the framework consisted in training the model on the entire

Discriminator adapted from: https://www.tensorflow.org/tutorials/generative/dcgan

218

Conference’17, July 2017, Washington, DC, USA

dataset for 5 epochs. This task proved difficult as many digits as
targets made the generated populations rather random in nature.
For this reason, we decided to focus on the task of evolving each
digit individually, keeping the same 5 epochs with a batch size of
32.

(a) TGPGAN

(b) DCGAN

Figure 1: Best-fitted individuals stored in TGPGAN’s archive throughout the
training process (top) versus generated throughout the training process for
the DCGAN mode (bottom).

The results for the best-fitted populations after training are
shown in Figure la. As demonstrated, the batches clearly start
resembling digits after only 5 training epochs. It is also worth not-
ing that the individuals manage to mimic the handwritten style of
the digits present on the MNIST dataset by mixing various GP op-
erators instead of producing simple geometric shapes. Additionally,
we verify the variety of best-fitted solutions that were stored in the
TGPGAN’s archive throughout the training process. For instance,
more complex digits such as 5’s and 9’s, which were shown to be
difficult to generate in the previous experiment involving the whole
dataset, proved evolvable at this stage. It is interesting to note of
some of the individuals display the strike in the middle of digit 7
while others opt for a more simplistic approach but with different
traces. This type of diversity is also made evident in some of the
other digits.

For completeness, we provide the results of running the same
setup on a typical DCGAN model specifically tailored for MNIST.
The evolved model is in all aspects similar to the official Tensor-
Flow implementation, except for the batch size, which was set to
32, alongside other minor necessary modifications to match the
proposed pipeline. Akin to TGPGAN’s archive, Figure 1b show-
cases, for every digit, some examples of the best-fitted individuals
found throughout the training process for the DCGAN model. As
we conclude, even though most of the imagery starts to share many
resemblances to digits, it is still hard to make out certain instances
being evolved such as for 5’s and 4’s. By querying an external clas-
sifier !, we can get the percentage of correct classifications over
the best-fitted populations on both models. The classifier used for
this task is a CNN pre-trained on MNIST digits, reaching a test
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accuracy of 99.25%. As shown, the average percentage of correct
classifications across all digits for our model is 57% versus 47% for
the DCGAN model.

Table 2: Percentage of correct digit classifications over the best-fitted popula-
tion for all digits on both models (bold marks the highest percentage).

Digit | DCGAN TGPGAN

0| 65.63% 40.63%
1 68.75% 96.88%
2 43.75% 43.75%
3 96.88% 100.00%
4| 90.63% 0.00%
5 12.50% 87.50%
6 0.00% 18.75%
7 93.75% 100.00%
8 0.00% 12.50%
9 0.00% 9.38%

Average | 47.19% 56.65%

5 CONCLUSION AND FUTURE WORK

In this work, we propose a variation on the standard DCGAN model
for image generation by replacing the generator module with a GP
approach, while keeping the feedback of the discriminator to guide
the evolutionary process. This approach is attractive because, along
with the produced images, we also benefit from the corresponding
symbolic expressions, allowing for an arbitrary level of resolution
over the generated image phenotypes. The unaided evolution of
expression-based solutions within adversarial models is an unex-
plored topic in ML literature. However, based on the success of EC
approaches applied to the generation of images prior to the proposal
of GANs, we believe this is mostly due to the computational cost
imposed by expression evaluation. To alleviate the computational
burden inherent to our proposed approach, we couple a standard
convolutional discriminator implemented in Keras with TensorFlow
and TensorGP, an engine specifically developed to accelerate the
domain evaluation phase in GP.

Our experimentation focused on training TGPGAN on digits
from the MNIST dataset. The choice of a more simplistic generation
task lies in the need for validating our approach given the lack of
exploration, to the best of our knowledge, in the related research.
Results demonstrated that, after only 5 training epochs, the TGP-
GAN model managed to generate perceivable artifacts for every
digit. Moreover, the developed model achieved a higher percent-
age of correct classifications on archived solutions across all digits
when compared to a conventional DCGAN model. These successes
were, however, achieved at the cost of more computational time to
train the generator. More importantly, our developments should
not be taken as a replacement for current adversarial models but
rather as a proof of concept for the capabilities of expression-based
evolution within the context of image generation.

We consider this the first step towards an expression-based GAN,
and as such, some avenues should be considered for future work. As
a priority, a more dynamic approach for organizing the latent space

IClassifier taken from: https://github.com/kj7kunal/MNIST-Keras
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of expressions should be implemented. Feasible alternatives include
using variational autoencoders and local embeddings alongside
other types of manifold learning techniques. Likewise, reducing the
computational cost of TGPGAN will be a requirement in bridging
the gap between expression-based and GANs.
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