Understanding the Forest: A Visualization Tool
to Support Decision Tree Analysis

Catarina Magas and Jodo R. Campos and Nuno Lourengo
University of Coimbra
CISUC, DEI
Coimbra, Portugal
{cmacas, jrcampos, naml} @dei.uc.pt

Abstract—Decision Trees (DTs) are one of the most widely
used supervised Machine Learning algorithms. The algorithm
constructs binary tree data structures that partition the data
into smaller segments according to different rules. Hence, DTs
can be used as a learning process of finding the optimal rules to
separate and classify all items of a dataset. Since the algorithm
relies on a decision process similar to rule-based decisions, they
are easily interpretable. However, DTs can be difficult to analyse
when dealing with large datasets and/or with multiple trees, i.e.
ensembles. To ease the analysis and validation of these models, we
developed a visual tool which includes a set of visualizations that
overview and give details of a set of trees. Our tool aims to provide
different perspectives over the same data and provide further
insights on how decisions are being made. In this article, we
overview our design process, present the different visualization
models and their iterative validation. We present a use case in the
telecommunications domain. In concrete, we use the visual tool
to help understand how a model based on DTs decides which is
the best channel (i.e., phonecall, e-mail, SMS) to contact a client.

Index Terms—Visual Analytics, Heat maps, Random Forests,
Decision Trees

I. INTRODUCTION

Machine Learning (ML) algorithms are often used in clas-
sification problems so it is possible to predict the class of
objects whose class is unknown [1, 2]. One example of such
algorithms are Random forests (RF), an ensemble ML model
that consists of many independent Decision Trees (DTs) [3].
In short, the RF model receives a testing data as input and
generates the final classification/prediction by feeding the
input to all DTs and summarising their results [4]. A DT
is a classifier with a tree structure with leaf and decision
nodes. The decision nodes split the data samples according
to a rule, defined by a split feature and threshold. These splits
originate each branch of the tree structure that ends in leaf
nodes, containing the class label attached to them.

Despite RFs’ good performance, its interpretability is usu-
ally difficult as it may contain hundreds of independent DTs.
In each DT, the same feature may appear in different depth
levels of the tree or even not showing at all. The comparison
of hundreds DTs and their paths (i.e., rules) may be a complex
and time-consuming task [4]]. Still, for classification tasks, the
understanding of how the ML models classified the samples is
of great importance, to increase data scientists confidence in
such models. For these reasons, a summary of the RF may
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be provided to the users to enhance its interpretability. To
facilitate this task, visualization models can be employed so
the users can analyse RFs more efficiently. In relation to what
to visualise, several aspects may be of importance: (i) the RF’s
feature importance may reveal insights about their relevance in
the classification process; (ii) the relationship between feature
and classification may provide insights on the range of values
associated with each class; and (iii) with each independent tree
may enable the improvement of the model.

To explore the aforementioned challenges, we propose a
visual tool that aims to ease the analysis and validation of
RF models. In our tool, we use Information Visualization to
overview the RF model and give details of the corresponding
trees. Our main aim is to provide different perspectives over
the RF model, so the user can understand how decisions are
being made. To do so, we use a set of visualization models and
apply multiple views technique to uncover the relationships
between features and classification. We validate our approach
with a use case in the telecommunications domain. More pre-
cisely, we use our tool to help data scientists understand how a
RF model decides which is the best channel (i.e., phonecall, e-
mail, SMS) that an operator of a telecommunication company
should use to contact a client. Nonetheless, our model can
be applied to any RF model. In summary, our contributions
are: (1) the analysis of RF through feature and classification
relationships; (2) a pixel-based matrix grid that enables the
comparison of pairs of features; (3) the demonstration of our
tools insights over a use case and a user study to evaluate our
models and justify our decisions.

II. RELATED WORK
A. Decision Trees

Decision Trees (DTs) are usually visualised through node-link
diagrams, such as tree-maps, radial trees, and icicle plots [1 5+
7]. A DT model contains two kinds of information: the tree
structure (e.g., number of levels, decision and leaf nodes)
and each node’s data (e.g., number of items and their class).
Usually, each node is represented by glyphs [8].

Tree-maps are the most common visualization model for
DTs. However, it may require more canvas space. To overcome
this, Ambarsari et al. [9] propose the Phytagoras Tree to
position different squares, representing the data subdivisions
at each level of the tree. Pham et al. [[10] propose a radial
node-link diagram with a fish-eye zoom technique. Regarding
a more pixel-based approach, Ankerst et al. [L1] use pixel
bar charts, which although being scalable, cannot represent
gaps between classes. Wlodyka et al. [12] created a matrix of
features that shows only the percentage of the majority class at
each leaf, not giving insights over the class distribution. Wang
et al. [[13] also propose a matrix view, enabling the analysis of



the node distribution. Finally, Liu and Salvendy [1]] use icicle
plots to represent the distribution of items per node.

Regarding the use of multiple views, Barlow and
Neville [14] created a tool to overview the structure of a
selected tree through icicle plots and tree views. Liu and
Salvendy [1] propose an Interactive Visual Decision Tree
(IVDT) tool to improve the effectiveness of DTs in terms of
classification accuracy and to reduce the tree sizes, enhancing
their interpretability. IVDT combines parallel coordinates [15]]
and mosaic displays [16]. Also, in the IVDT process, the
decision tree is visualised using the icicle plot structure as it
facilitates the identification of tree topology, node relationships
and sizes. A similar approach is the work of van den Elzen
and van Wijk [8], in which a tree-map, a streamgraph, and a
visual confusion matrix are applied to support domain experts
in growing and optimising DTs.

From the related work overview, we can highlight two main
characteristics: (i) the representation of node-link diagrams
(i.e., tree maps, icicle plots) to enable the analysis of the DT
structure; and (ii) the nodes represent only the distribution of
samples per class. From our review, only [8]] tackles a more
complex visualization. However it may be too complex when
dealing with dense tree structures. To overcome scalability
issues, matrix-like visual metaphors have been used [17, [18]].
However, these models may also be complex to analyse when
dealing with large and complex trees.

B. Random Forest Visualization

Random Forest (RF) is an ensemble model composed of
independent decision trees and, by aggregating their outputs,
it can outperform individual decision tree algorithms [19, 20].
A RF model can be represented by the multiple tree graphs,
but this may hinder model interpretability [4]. To interpret the
RF model, it is important to understand and compare all tree’s
properties, which can be challenging [4]].

Although the visualization of entire models is still an open
challenge, some attempts have been made [4) 20-22]. For
example, Min Yang et al. 23], creates a forest where each
DT is represented as a 3D tree. Welling et al. [20] present an
overview by splitting features and projecting them into a 3D
space. ReFINE [22] combines a set of visualization models
(e.g., icicle plots and scatterplots) to show the connections
between proximity measures, interactions, and prototypes.

Another example is the iForest [4] that deals only with
binary classification problems. It applies a multidimensional
projection technique to overview path similarities between
DTs. To give more information about selected features, it also
presents a histogram of feature ranges by tree layer. Finally,
ExMatrix [21] uses a similar approach to RuleMatrix [18] by
employing a matrix structure, where rows are rules, columns
are features, and cells are rules predicates.

We can conclude that visualization tools which focus only
on the representation of each DT or focus only on features
may not provide a good analysis of the RF results. To provide
a more complete analysis of the data, multiple views can
be used. Additionally, the overview of all features through a
matrix metaphor may enable a better analysis and comparison
of all features and their impact on the RF. However, this model
may be improved by also enabling the analysis of how the
values of each feature impacts the classification.

III. RANDOM FOREST DATA

Random Forest algorithms combine multiple weak decision
trees to achieve better results and address some of the lim-

itations inherent to DTs, such as overfitting [2]. For the
visualization of DTs, Parr and Grover [24] define a set of
elements that should be highlighted in the visualization: (i)
the number and distribution of samples within the decision
and node, to perceive how separable the values at each feature
and threshold split and to know where most samples are
being routed through the decision nodes; (ii) decision node
feature and split value, to understand which feature was used
and where the split of observations occurred; (iii) purity of
nodes, to be able to understand the confidence in each split—
regarding classification, leaves with a majority target class are
more reliable; and (iv) number of samples in leaf nodes, so
we can distinguish trees with fewer, larger, and purer leaves
(the goal) from nodes with few samples, that may indicate
overfitting. In our work, we focus on the visualization of these
elements, but also on the presentation of a summary view of
each DT and of the whole RF model.

IV. UNDERSTANDING THE FOREST

Our tool’s main challenge is to support the analysis of RF. We
provide a summary view of all DTs results, and also provide
the visualization of each DT structure and classification dis-
tribution. Contrary to previous works [21] that focus on rules,
we focus on each individual feature. By doing so, we aim to
give the user a more interpretable view on feature relevance.
This decision was also made as our tool will be used by data
scientists, who aim to improve their models or gain confidence
in them, but also by non-data scientists that will need to make
sense of them. RF models will be applied to enable market-
ing operators from a telecommunication company to identify
which is the best channel to contact each client. Nonetheless,
we argue that this perspective is also relevant for other use
cases so our tool can be applied to any RF in any domain. Link
to video of tool: https://cdv.dei.uc.pt/understandingforest/.

Our tool is web-based and uses the library D3.js [25] to
implement the visualizations. It is divided into two main
areas: the upper part and the lower part. In the first (Fig. [5),
there is a fixed dashboard, which represents the resulting
feature importance of the RF model—represented with a bar
chart—and a scatterplot of all DTs positioned in the x-axis
according to their impurity and in the y-axis according to
the maximum feature importance value. To differentiate each
feature we use different colours. In the second, we present the
“Classification Grid” (Fig. E]) Then, the user can change this
view to the “Pyramid Matrix”.A more thorough description of
these models is given in Section Additionally, the user
can select any dot of the scatterplot, from the upper part, and
analyse the resulting tree structure in two different ways: a
Tree Visualization or “Pyramid Matrix”.

A. Goals and Tasks

Our main aim is to visualise a RF model in order to give
insights about the data structure and features relationships. We
divided our tool in two analysis moments: an overview and
a detailed view. These two moments were defined according
to two goals: (G1) reveal relationships between features and
classification; and (G2) understand the underlying rules. The
first goal aims to fulfil the user’s need to understand the model
results in general and to evaluate its predictions [26]. To do
so, we visualise the relationships between input features and
outcome classification, enabling the user to detect important
features and their influences on classification. The second goal
focuses on the need to inspect the DTs and make sense of
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classification rules [27]]. By analysing rule paths, the user can
drill down on the structure and detect similarities among trees.
To accomplish these goals, we defined the design tasks:

T1: Encode class distribution in different moments of the
tree path (G1). To reveal relationships between features, class
distribution, and tree depth level is important to understand the
influence of each feature in the classification. By summarising
this information, we are able to overview for each feature how
the classification changes from the upper levels of the tree
(with less influence of other features) to the lower levels (with
higher influence of others).

T2: Encode feature importance (G1 and G2). The rep-
resentation of the RF’s feature importances can reveal the
importance of each individual feature in the model’s classi-
fication. With this, the data scientist can improve its model
by discarding non important features, and a marketer may
understand better which feature is more important to analyse.

T3: Encode prevalence of different classes in different
feature ranges (G1 and G2). Understanding the number of split
occurrences by feature and corresponding values, may lead to
new insights. For example, a feature with various similar split
threshold values may indicate that that feature is sensitive to
values in that range, having high impact on classification.

T4: Encode the features influence on classification (G1
and G2). Representing the relationship between feature and
classification may provide insights on the range of values asso-
ciated with each class, which in turn may assist data scientists
who know the context of application, determining the correct
labelling of the model. The analysis of the proper functioning
of the model can also be enhanced by the visualization of each
independent tree and their summary.

TS: Support DTs model analysis (G2). Each DT has its
own characteristics (e.g., number of features used, number
of decision and leaf nodes). These structures may provide
information on the concrete rules used to classify the data.

B. Classification Grid

The “Classification Grid” visualises the class distribution per
feature (rows) and tree depth level (columns) (Fig. |§]) to ease
the understanding of how each feature can influence the clas-
sification individually (T1). Although the rule is what defines
the final classification, we aimed to give another perspective on
the features influence. Our goal is to see the class distribution
along depth and the differences between depth level (G1).
On the right side of the “Classification Grid”, we visualise
a histogram of the importance values by feature. In this
histogram, the higher the bar, the higher the number of DTs in
the corresponding importance value. Due to the small size of
this graph, bars representing a reduced number of values (i.e.,

with smaller heights) would be difficult to notice. To overcome
this, we draw a thin grey line below each bar, highlighting
visually values with a reduced number of occurrences. For the
“Classification Grid”, we explored three approaches (Fig. [T) to
represent the influence of a certain feature in the classification.
Hereafter, we overview each approach in terms of visualization
model and insight retrieval.

Before representing the distribution we needed to generate a
summary of all DTs. To do so, we defined the “relevant class”
per decision node through the true child-nodes. It is computed
as follows. For each node, we retrieve the class with the higher
number of samples and divide that number by the total number
of samples in that node. With this, we get a percentage of
relevance where nodes with only one class will have more
weight than nodes with more classes. Then, we calculate the
class distribution per tree depth level and feature.

Regarding the visualization, our first approach was to create
a stacked bar (Fig. I} Top). By doing so, we can perceive
the features’ influence in classification per tree depth level.
However, we lack the understanding of how many times each
feature appeared in the decision nodes.

The second approach follows the same idea, but we change
the width of the stacked bar according to the number of times
the feature is used in the decision nodes (Fig. [T} Middle). In
this approach, we are able to understand which features are
more used in the different levels, highlighting their relative
importance for the RF model. However, in the first levels, as
there are a smaller number of feature splits, the corresponding
stacked bar is too small.

Finally, we aimed to understand if the threshold split value
also influences the classification. Hence, we created a “Bar
of Occurrences”, in which we map the length of the bar to
the minimum and maximum values of threshold splits, and
then, place each split accordingly (Fig. [I| Bottom). The splits
are represented by vertical bars, coloured according to the
“relevant class” described earlier. A qualitative user study can
be seen in Section [V]

C. Pyramid Matrix

To represent the influence of the different features, we created
the “Pyramid Matrix” (T4). This model applies a similar
concept as the node adjacency visualization [28]. As the node
adjacency matrix is symmetric, we divide the matrix in half
along the diagonal and rotate 45 degrees, creating a pyramid
shape. To visualise the data and explore humans’ pattern
recognition ability [29] and to analyse how the different pairs
of features influence the classification (G1), we defined two
different approaches: a Heat Map and a Pie Chart.

1) Pie Chart: We opted for a pie chart due to the fact that
the number of classes are commonly small. The pie charts are
placed in the corresponding cell of the Pyramid Matrix. The
formula to calculate the class distribution is the same as the
one described in Section [[V-B] An image of this approach can
be seen in Fig. [f] The aim is to ease the identification of the
features that influence the classification the most.

2) Heat Map Grid: In this approach, we aimed to give
more details on the range of values that may influence the
classification (T3). In short, we created a grid in which each
cell represents a range of values (Fig. 2). We calculate the
class relevance (see Section [[V-B) in each cell and paint each
cell according to the most relevant class. We add a gradient to
represent cells in which classification is more or less evenly
distributed. This means that, for example, a cell in which
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Fig. 2.

The Heat Map Grid for the Pyramid Matrix. In this visualization we are able to analyse the distribution of classes and a more detailed analysis on

the range of values. Each colour represent one class. The darker the colour, the more relevant the class in that cell.

there is only one class, will be painted in the colour of that
class in darker colours than a cell with evenly distributed
classifications. With this, ranges with higher certainty of being
attributed to one class will stand out in relation to others.

To define the grid of cells, we first computed the
range of feature values. As we had no access to the
samples values, we calculated as follows: (MazValue —
MinValue) /numberCells. Then, as the split signals can
differ (i.e., “bigger than” or “smaller than”), our final grid
was defined by numberCells+2, so values smaller or bigger
than the grid limits can be represented.

D. Tree Visualization

To visualise the DTs (TS5) we used a node-link diagram to
represent single tree structures (Fig. [7). In our visualization,
nodes are divided into decision nodes and leaves. Both nodes
have represented the respective impurity through an horizontal
bar, with a grey scale, the lower the impurity value the lighter
the bar, and vice versa. Below this horizontal bar we write
the number of the feature, the signal of the split, and the split
threshold. We opted to write the number instead of the name
to prevent overlapping texts. The samples in leaf nodes are
visualised with a pie chart, representing the class distribution.

Regarding the decision nodes, we aimed to represent the
class distribution (i.e., which class has a higher number of
samples) but also to represent the number of samples at each
tree depth level. We tried two approaches of bar charts. The
first one is the application of a typical bar chart. This bar
chart appears above the impurity bar and has as many bars as
classes, representing the number of samples through height.
This method is simple to analyse, however, with high ranges
of values (nodes with many samples and nodes with fewer
samples) the smaller values are difficult to see. To overcome
this issue, we propose the application of a horizon bar chart. Its
representation is similar to the horizon graphs [30], but applied
in bars (Fig. [3). With this strategy, we aim to highlight higher
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#2 level
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Fig. 3. Scheme of the horizon bars. First, the white bars are divided according
to the dashed lines. Then, each part is collapsed and coloured as defined on
the left. Smaller and darker parts are placed in front.

values through colour, but improve the analysis of smaller
values in relation to a simple bar chart. In Section [V] we
provide a qualitative study on both approaches.

In our tree visualization, the links between nodes also
represent information. Their colour represents the split feature
used in the parent node and its thickness represents the number
of samples in each link. Hence, splits which are able to divide
the samples in subsets of different sizes are highlighted.

V. USER STUDY

We conducted a user study to analyse the three visual ap-
proaches on the “Classification Grid”, the horizon bar charts,
and the two visualizations for the "Pyramid Grid”. This study
was carried out using google forms and had a total of 11
participants, aged between 26 and 36 years, of which 3 are
professors, 8 are PhD students, and only two participants are
female. Regarding their backgrounds, 6 participants are from
Graphic and Multimedia Design, 3 are from the Artificial
Intelligence area, and 2 are from Information Visualization
and Data Science areas. The majority of the participants (6)
referred to have basic knowledge on Decision Tree algorithms,
and 6 participants referred to have a medium knowledge on
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Fig. 4. Distribution of the accuracy answers in Part 1 (top), Part 2 (middle),
and Part 3 (bottom). Answers are categorised as: do not know, accuracy 0
(wrong answer), 0.5 (close to correct), and 1 (correct answer).

Information Visualization. The wide range of backgrounds
enable us to test our models with a diverse public, which is a
key point in understanding their efficiency.

We divided our test into three main parts: (Part 1) analysis
of distribution, in which we analysed the “’Classification Grid”
approaches; (Part 2) analysis of magnitudes, in which we
tested the horizon bars with a typical bar chart; (Part 3)
analysis of correlations, in which we analysed the “Pyramid
Grid” approaches. The different parts were divided into sec-
tions, mixed throughout the test, so the participant would not
copy the answer from the previous question. In Part 1, we
applied the same data for the three models and asked three
open questions: two concerning the analysis of the feaure’s
distributions, and a third one in which the participants could
freely refer to what insights they could get from the image. In
Part 2, we defined a set of questions of multiple choice with
a “Do not know” possibility. We used a total of four images:
two with a typical bar chart, and two with the horizon bar
chart. We use the same data, but with different difficulties.

Finally, Part 3 is divided into two sections, one with the
“Pyramid Grid” with the pie charts and the other with the
heatmap grid. As we wanted to understand if the users could
properly analyse each model, the questions for each image
were slightly different. We added one last open question to
understand what could be analysed by the users.

A. Results

An overview of the answers in all parts of the test is provided
in Fig. @ Regarding Part 1, both questions (Ql and Q2)
were the same. We can see that, in general, the stacked
bar and the sized stacked bar overpass the third approach
(i.e., “Bar of Occurrences”). In the case of Q1 (“In which
feature the distribution of class SMS is bigger”), we can see
that all participants answered correctly. In the open answer,
all participants stated that they could easily perceive the
distribution of classes in the first two approaches, whereas in
the “Bar of occurrences” this task proved to be more difficult.
However, the last approach was referred to as a good overview
of the frequency of splits along the feature values.

In Part 2 (Fig. d), we can see that the bar chart outperforms
the horizon chart in Q1 and Q2—questions about images easy

mp Val Best Feature Importance Value (Yaxis) vs Impurity (X-axis

Class Distribution per Feature and Tree Level
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Fig. 5. Screenshot of the initial state of “Understanding the Forest”. In this
stage, the user can visualise a Feature Importance bar chart, a scatterplot with
all DTs and below, the “Classification Grid”.

to compare. From our analysis, the horizon chart performed
worse, as the colours used for the different levels were not
distinct enough. Then, in Q3 and Q4—questions about bar
charts with similar similar—the horizon graph is slightly better
than the bar chart. We argue that in the horizon chart, smaller
values can be compared more easily.

Finally, in Part 3 (Fig.[), we were able to perceive that both
models were understood correctly and most participants had
no doubts when answering the questions. Also, the pie chart
version has less correct answers than the Heat Map Grid.

VI. USE CASE

To demonstrate the interaction with our tool, we present a use
case in which the RF model uses data concerning the clients
characteristics from a telecommunication company. Each tree
from the RF model has the following information: importance
of each feature, tree impurity, and a list of nodes. Each node
has the following information: id, depth, split feature, split
threshold, list of child nodes, impurity, and number of samples
for each class. In total, we have three classes which define
the contact channel: “email”, “SMS”, and “voice”. Regarding
the features, they are the following: gender, average calls per
week, average GPRS duration per week, average kb per week,
average SMS per week, month antique, equipment, tariff,
bundle, existence of client app, and standing order. Also, the
RF model was trained with input data from 1 194 clients and
resulted in 500 DTs all with 5 levels of depth.

In the beginning, users can see, at the upper part, the Feature
Importance Values of the RF model (Fig. [5). In this case,
importance values do not vary much, however, as the bar chart
is sorted from left to right by magnitude, we can easily rank
all features by importance, being “tariff” the most relevant
feature and “gender”, the less relevant (T2). On the right of
this chart, we can see the DTs distribution along two axes—
impurity tree value in the x-axis and maximum importance
value in the y-axis (TS). With this distribution, we can easily
see that the features “avg sms/week” and “tariff” are the ones
which achieve higher values of importance in multiple DTs
(i.e., are positioned in the upper part of the scatterplot). Also
the features “client app” and “equipment” tend to appear in the
lower part of the graph, due to lower values of importance. By
hovering a certain bar, all dots whose maximum importance
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Fig. 6. The Pie Grid for the Pyramid Matrix. In this visualization we are
able to analyse the distribution of classes.

value corresponds to the hovered feature are highlighted. With
this, we can see that “month antique”, “avg kb/week”, and
“avg calls/week” appear less than 4 times, which means that
their importance values are low in the majority of the DTs.

To analyse in more detail the influence of each feature in
each class (i.e., email, sms, or voice) the users can view the
”Classification Grid”, represented in the lower part of the web-
page (T1). By analysing the distribution by tree depth level
(columns), we can perceive that as we go lower in the tree,
the class distribution tends to look similar between features.
This is due to the fact that at each depth level, specially in
the lower ones, the rules get more complex. However, we
can see different distributions in the last level. For example,
“month antique” presents a distribution in which there are less
classification as “email”, and more as “voice”. This may be
due to the fact that the older the clients the less prone they
are to use the e-mail. When analysing all the levels of this
feature, we can see a predominance of “voice” class.

On the right side of the Classification Grid”, we can see
a histogram of importance values (T2). We can see that the
majority of the importance values in features like “client app”
and “bundle” are placed in the beginning of the histogram,
which means that the majority of their values are low. We
highlight the features “tariff” and “avg sms/week”, which
are the ones with higher values of feature importance. This
endorses the analysis made previously over the scatterplot.

To analyse the influence of pairs of features,the user can
click on the button “Pyramid Grid” (Fig. 2). When analysing
the grid, it is possible to see that the “voice” class is the one
that appears the most (T3). We can see the influence of the
“avg kb/week” on the “email” class, as this feature is the one
that presents more blue cells (i.e., “email” class) in the corre-
sponding grid. Regarding the pairs of features, we can analyse
the ones in which only one class appears (i.e., [“bundle”, “avg
sms/week”] and [“avg sms/week”, “equipment’]).

To have a more general analysis of the class distribution,
the user can click on the “Pyramid Pie” button (Fig. @ (T4).
With this, the user more easily detects pairs of features in
which the classes are more even distributed (e.g., [“standing
order”, “gender’’]) and other features in which there are more
elements of one class than the others, as is the case of [“avg
sms/week, “avg kb/week”], in which the main class is “email”.

The user can also analyse each tree independently (TS). To
do so, the user can click on any dot represented in the upper
scatterplot. When a dot is clicked, a tree structure appears in
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Fig. 7. The resulting tree of a DT previously selected by the user.

the lower part of the tool. Besides, on the feature importance
values bar chart (upper left) the feature importance values of
the selected tree is represented by a black line.

By selecting one tree on the scatter plot (Fig. [7), the user
can perceive that right in the beginning the root node the
DT separated all samples classified as “sms” from the other
samples—in the child node on the left there is no green bar.By
clicking in the ”Pyramid Grid”, we can see that this DT does
not use all the features, as there are blank spaces. Also, we
can view similar patterns to the RF models "Pyramid Grid”.
Other conclusions can be made, but for the sake of simplicity
we will not continue the description.

VII. DISCUSSION

Regarding the User Study, we could perceive that from the
three approaches, the sized stacked bar was the one with
more positive comments. However, this representation does not
work well when the number of occurrences is low. Although
the “Occurrences Bar” had lower accuracy, the participants
said it was important to represent the number of splits in
each feature. Hence, we should combine both stacked bars
and split threshold methods, or enable the user to chose from
the different methods. The feedback given at the end of the
user test and their different backgrounds may provide some
hints over the usefulness and efficiency of our tool. It can
be generally understood, if properly contextualised, and can
provide to a data scientist the necessary tools to improve the
RF models. It can also be used by marketing operators, to
interpret the RFs results and use this knowledge to improve
their marketing campaigns.

In terms of generalisation, we argue that our tool can be
used in any other tree-based ensemble models. Also, our
tool can be used both for the analysis and interpretation as
well for verification and improvement of RF models. Another
aspect to be considered is the scalability of our tool. In the
“Classification Grid”, the higher the number of tree depth
levels the wider the grid. This may be an issue as all depths
may no longer be visible. To overcome this, we can reduce the
length of the bars and add a horizontal scroll. Regarding the
”Pyramid Grid” approach, the addition of more features would
create a too complex shape. One possible solution would be
to decrease the grid density (i.e., reduce the number of cells)
so the squares for each feature pair would be smaller.

VIII. CONCLUSION

We presented a visualization tool for the analysis and interpre-
tation of RF models. We focused on the analysis of features
and their influence in classification. Our tool is divided into



several visualization models with different purposes. First,
we aim to give context on the RF results, regarding feature
importance. Then, we provide a summary view on feature,
class, and tree depth level. We also overview relations of
features and their impact on classification through: a pie
chart grid, to overview the distribution of classes among
pairs of features, and a heatmap grid, to give more details
on the influence of different feature values in classification.
Additionally, we provide a Tree visualization, so the user
can analyse each individual DT. Finally, we also presented
a qualitative evaluation and a use case of our tool.

Although a more thorough analysis of the tool is recom-
mended, from our qualitative user studies and use case, we
argue that this is an important starting point to analyse RFs in
different perspectives, allowing and widening its interpretabil-
ity. We reckon our model requires improvements, such as the
aggregation of the “Occurrence Bars” and stacked bars in
the “Classification Grid”. As future work, we aim to improve
colour scales and the interactive details on demand. We argue
that more research on how to make sense of DTs and RF is
of high importance, especially due to its high applicability.
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