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ABSTRACT Many fields of study still face the challenges inherent to the analysis of complex multidi-
mensional datasets, such as the field of computational biology, whose research of infectious diseases must
contend with large protein-protein interaction networks with thousands of genes that vary in expression
values over time. In this paper, we explore the visualization of multivariate data through CroP, a data
visualization tool with a coordinated multiple views framework where users can adapt the workspace to
different problems through flexible panels. In particular, we focus on the visualization of relational and
temporal data, the latter being represented through layouts that distort timelines to represent the fluctuations
of values across complex datasets, creating visualizations that highlight significant events and patterns.
Moreover, CroP provides various layouts and functionalities to not only highlight relationships between
different variables, but also dig-down into discovered patterns in order to better understand their sources
and their effects. These methods are demonstrated through multiple experiments with diverse multivariate
datasets, with a focus on gene expression time-series datasets. In addition to a discussion of our results,
we also validate CroP through model and interface tests performed with participants from both the fields of
information visualization and computational biology.

INDEX TERMS Computational biology, data visualization, human-computer interaction, interactive sys-
tems, time-series analysis.

I. INTRODUCTION
The graphical representation of information has long been
used by many fields of study to record their research, usually
through the use of abstract representations or metaphors that
help portray the relationships between data and the real world.
As such, Information Visualization has been and continues
to be applied within these domains not only to document
and organize large quantities of data, but also to provide
the means to explore, analyze and extract new information
from it. In particular, we want to focus on the challenges
that are inherent to the study of complex datasets that con-
tain networks of relationships and temporal variables, requir-
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ing the analysis of multiple processes changing over time
simultaneously [1], [2]. Such challenges are prominent in the
field of computational biology, where data from measuring
various biological systems is being gathered increasingly
faster [3], [4] due to biological related technologies and data
mining techniques [5]. These datasets include protein-protein
interaction networks (PPI), metabolic pathways and regula-
tory networks, commonly represented through graph visual-
izations. Additionally, these datasets may also describe pro-
cesses that change over time, such as the variation of gene
expression values in infected cells. Proper analysis of such
data may lead to new knowledge regarding basic molecular
mechanisms in cells and the behaviors of infections, as well
as a better understanding of the underlying biology and there-
fore to the development of new treatments [6].
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Researchers are faced with the task of exploring increas-
ingly larger and more complex datasets in order to discover
any meaningful relationships that could lead to the extrac-
tion of new information, and so they turn to visualization
tools that allow them to model and study the relationships
of various processes [7]. However, the ability to present
complete sets of data to the user in a comprehensive manner
still presents a significant bottleneck. Despite the advance-
ments of the past decades, the representation and analysis
of relational and temporal data continue to be pertinent top-
ics of research within the field of data visualization, with
relevancy towards various problems from different domains
that have no singular solution. This is our main motiva-
tion to explore and develop novel paradigms and visual-
ization techniques. More specifically, we have focused our
research on the development of dynamic visualizationmodels
for networks and time-series data, as well as approaches
that can facilitate their exploration, analysis and pattern
discovery.

In this paper, we present CroP, a visualization tool that
utilizes a multiple coordinated views layout, designed as
a platform that can receive external datasets and represent
them through comprehensible visualizations, while provid-
ing methods that facilitate their navigation and analysis.
Working in an interactive environment enables the amount
of information on screen to be controlled by the users,
allowing them to switch to the most appropriate visualiza-
tion model, navigate between different levels of detail, and
filter less relevant data points to highlight those that are
more significant. Moreover, CroP integrates dynamic lay-
outs that promote self-organization between points in net-
work models, revealing relationships between variables that
would otherwise remain hidden. In particular, we are inter-
ested in applying such methods to time-series visualization,
not only to represent how the data behaves over time, but
also to highlight moments or periods that denote significant
events. For instance, the Time Curves layout [8] is a rel-
evant layout that warrants further exploration as it distorts
timelines to represent temporal behaviors, achieved by using
multi-dimensional scaling to position time points relatively to
their similarity. As noted previously, challenges related to the
representation and analysis of relational and temporal data
continue to be pertinent within the field of Biology, mainly
due to the characteristics of such datasets. In this regard,
we are also particularly interested in biological datasets that
fit our target research objectives, such as PPI networks and
gene expression time-series data, whose analysis still repre-
sents a challenge in molecular biology [9], [10]. The analysis
and identification of different types of temporal behaviors
and patterns may allow for a deeper understanding of such
datasets and foster new knowledge.

Our contributions in this paper focus on the representa-
tion and analysis of multivariate datasets, in particular time-
series data, through interactive visualizations and coordinated
multiple views. While CroP has been featured in previous
publications [11]–[13], this paper presents the cumulative

result of our research and development from which we can
highlight the following contributions:

A. MODULAR WORKSPACE
CroP utilizes a modular workspace where each visualization
model and respective interface functionalities are contained
within a flexible panel that can be resized and moved, allow-
ing users to adapt the workspace to the current dataset. More-
over, the workspace is divided by a grid and automatically
adjusts the size of panels and prevents overlaps as to help
maintain its organization. This modular framework accom-
modates the integration of new visualization models and
functionalities, and allow for multiple datasets to be simulta-
neously visualized and compared through juxtaposition and
difference views.

B. MULTIVARIATE VISUALIZATION
The implemented visualization models employ various func-
tionalities to explore and organize data, including differ-
ent network layouts, clustering, an integrated biological
database, and a timeline for navigating through time-series
data. Multiple variables can also be visualized through
visualizations that either employ dimensionality reduction
techniques or force-directed layouts, spatially positioning
attributes according to their similarity in order to highlight
patterns in their relationships. For instance, the time curve
visualization utilizes a dynamic layout that bends timelines
to reveal how the data behaves over time. These visualization
models are presented through the representation of multiple
biological datasets, and validated through model tests per-
formed by users from relevant fields of study.

C. MULTIDIMENSIONAL ANALYSIS
In parallel to the CroP’s visualization models, we also
presentmethods that further explore large time-series datasets
functionally and aesthetically. Firstly, we complemented the
implementation of a dynamic Time Curve model with tem-
poral glyphs, a supporting timeline graph and a lens-based
approach, directed at aiding in the interactive discovery
and analysis of temporal patterns across complex datasets.
Secondly, we introduced Time Paths, a force-directed and
parameter-based layout that can dynamically transform a time
curve visualization to not only smoothen the visual elements
and transitions between time points, but also reduce visual
noise in favor of overall patterns. These functionalities are
presented in the discovery and analysis of events and pat-
terns in datasets with diverse characteristics, including gene
expression time-series data, and employed by users from
relevant fields of study in multiple interface tests.

This paper is structured as follows: we begin by presenting
a summary of related work, including biological visualiza-
tion tools and methods for analyzing relational and temporal
datasets; we then present an overview of CroP, its visual-
ization models and functionalities, followed by a description
of these methods applied to pattern discovery and analysis;
the implemented models are further showcased through the
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visualization of multiple diverse datasets, throughout which
we employ data analysis methods to highlight patterns in
the data, which are then discussed; finally, we present the
validation of the visualization tool through multiple usability
tests and model surveys, complemented with a discussion of
the results and obtained feedback.

II. RELATED WORK
Visualization has been shown to be an important tool in
knowledge discovery, being used alongside data analysis
to identify and highlight patterns, trends and outliers and
aid users in decision-making [14]. The need for analyzing
unstructured and increasingly larger datasets has led to the
continued emergence of visualization tools that seek to pro-
vide methods that facilitate the exploration and analysis of
such datasets. For instance, datasets that are often the target of
modern research in the field of computational biology may be
classified as complex due to containing large volumes of mul-
tivariate data with a wide range of values and patterns [15],
[16]. In this regard, it is necessary to not only understand
the range of visualization models and tools that are available,
but also the modern data analysis methods that can be used
cooperatively to explore and analyze such datasets.

A. DATA ANALYSIS
In order to explore visualization methods directed at large
and complex datasets, it is necessary to overview some of
the supporting data analysis methods that are able to extract
knowledge from the data, such as dimensionality reduction,
feature selection and clustering. Dimensionality reduction
is used to map data to a lower dimensional space, reduc-
ing the number of variables while minimizing the loss of
information, extracting relationships between multiple vari-
ables and highlighting batch effects or outliers [17]. In bio-
logical datasets with high dimensionality, they have been
used to study molecular pathways in cells and their role in
diseases [18], as well as in pattern analysis in gene expres-
sion data, which is often characterized as containing a sig-
nificant amount of noise [19], [20]. Such methods include
singular value decomposition (SVD) and principal compo-
nent analysis (PCA), which search for patterns and linear
combinations across complex and noisy data, minimizing
redundancy and grouping elements with similar patterns [21],
[22]. Moreover, there is t-Distributed Stochastic Neighbor
Embedding (t-SNE), a non-linear dimensionality reduction
algorithm that uses machine learning to attribute a position
on a two-dimensional plane to every data point based on their
proprieties and the implicit structure of the dataset.

Clustering can also play an important role in data analysis
by organizing large volumes of data into a discrete set of
groups of points with similar proprieties [23]. While there
is not one single clustering algorithm that can be effectively
applied to every problem, multiple algorithms have been
developed to answer the needs for different types of dataset
and analysis [24]. For instance, hierarchical agglomerative
clustering algorithms apply a bottom-up strategy that succes-
sively groups the closest clusters until only a single cluster

remains, which creates a hierarchical tree that represents the
nested grouping of patterns [25]. Despite its higher computa-
tional cost, it only needs to be calculated once before it can be
used to create any number of clusters, having been applied to
gene expression datasets to group genes that exhibit similar
expression patterns over time or over diverse experimental
conditions [26], [27]. Alternatively, k-means is an unsuper-
vised machine learning algorithm which requires the number
of clusters to be pre-assigned, creating random centroids and
then iteratively adjusting their position to the closest data
points until they stabilize which determines their respective
cluster [28]. Its fast execution time makes it suitable for
discovering temporal patterns in complex datasets [29], and
has also resulted in the development of additional algorithms,
such as the bisecting k-means algorithm which is able to
recognize clusters of any shape and size [30].

We can also highlight DBSCAN (Density-Based Spatial
Clustering of Applications with Noise), a clustering algo-
rithm that finds clusters of points based on the density,
grouping points that have many neighbors while marking
points from areas with low-density as noise [31]. While this
algorithm requires parameters specific to each dataset, it is
proficient at discovering cohesive clusters of various shapes
while excluding less relevant points. Furthermore, the same
principles are applied by OPTICS (Ordering Points to Iden-
tify the Clustering Structure), which produces an augmented
ordering of the database that represents its clustering struc-
ture based on its density, from which clusters can then be
extracted [32]. However, unlike DBSCAN, sorts data points
based on their neighbors, creating an hierarchical order for
each cluster and also takes into consideration an additional
distancemeasure to further filter noise, making it better suited
for larger datasets.

B. VISUAL ENCODING
Despite the wide range of possible representations for var-
ied types of data, there are works that have established
guidelines for visual encoding, such as Bertin’s Semiology
of Graphics [33] which evaluates the effectiveness of each
visual propriety in conveying different information, and the
Gestalt laws [34] which explain how graphical elements are
perceived based on their relative position, color, shape and
orientation. These guidelines serve to not only better convey
different variables, but also represent and highlight patterns
of relationships between them, which includes the creation
and visual categorization of groups of similar elements [35].
The development of clear and precise data visualization is
further supported by the principles for ‘graphical excellency’
established by Tufte [36], which emphasize the importance of
accuracy over aesthetics, as well as the taxonomy proposed
by Dasgupta et al. [37] that classifies and reviews cases of
uncertainty resulting from limitations of the canvas, miss-
ing values in the data, and illegible relationships caused by
cluttered visuals.

One of the main challenges in the comprehensive rep-
resentation of complex datasets is visual scalability, as the
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simultaneous representation of large volumes of multivariate
data points naturally contribute towards visual noise that
obfuscates potentially significant details and patterns [38],
[39]. Visualizations can be simplified through aggregation,
where data is grouped using data mining methods into groups
of similar elements, which can be represented by a lower
number of visual elements. Moreover, such elements can
use compounds of visual proprieties and other elements to
represent multiple proprieties simultaneously, such as glyphs.
An early example of this is Chernoff faces, which repre-
sented the living conditions in Los Angeles by using faces
where variables are mapped to different eyes, mouths, faces
and colors [40]. However, the same concept can be applied
with higher levels of abstraction, such as the symbols pro-
posed by Dunne and Shneiderman which represent common
sub-structures in graphs through different shapes and colors,
in order to simplify complex networks [41].

Abstraction can also be applied to the visualization as a
whole in order to highlight patterns and significant points of
data through visual transformations. For instance, the Time
Curves model, presented by Bach et al., utilizes multidi-
mensional scaling to position time points in low-dimensional
space, bending timelines with a force-directed layout so that
the relative distance between each point represents the sim-
ilarity between their attributes [8]. The shape of the result-
ing layouts is capable of visually representing how the data
behaves, such as periods of stagnancy, cycles and moments
marking significant events. A similar concept was presented
by Elzen et al. which utilizes bending timelines to repre-
sent the structural changes in a network over time, creating
visualizations that show the overall behaviors of complex
systems [42].

Abstraction inherently increases the complexity of visu-
alizations, as visual elements that have been subjected to
transformations may not reflect the proprieties of the data
as accurately. For instance, aggregation methods may reduce
the granularity of the data and hide significant individual
elements. However, while abstraction can be employed to
distort visual elements, interactive systems can provide the
means to dig-down on sections that were highlighted by these
methods, such as switching between different levels of details
or even manipulate the level of abstraction. For instance,
VisANT [43] and AVOCADO [44] are two visualization tools
that utilize aggregation in networks to conceal child nodes,
allowing these to be accessed individually by selecting the
respective parent nodes, while iHAT [45] applies the same
concept to heatmaps, where users can aggregate rows of gene
expression data.

C. COORDINATED MULTIPLE VIEWS
The exploration of multivariate datasets can be supported by
an environment that enables multiple visualization models,
as differentmodels focus on the representation and analysis of
different data proprieties. It is in this respect that visualization
tools integrate Coordinated Multiple Views (CMV) frame-
works, where datasets can be represented simultaneously

through varied visualization models that can be coordinated
with each other to facilitate their exploration and discovery
of meaningful new information [46].

The most common composition of multiple views is
through juxtaposition, where each view is assigned to its
own space in the work environment, either by diving the
workspace [47] or by containing them within individual win-
dows [48]. This allows users to compare visualizations that
specialize in different proprieties and identify relationships
and patterns through common graphical properties. Views
can also be arranged in favor of navigation by providing
an overview of the dataset in one view and using another
to focus on specific sections [49], [50], allowing users to
more easily explore visualizations with multiple levels of
detail. For instance, MizBee utilizes four different scales
simultaneously to enable the comparison and analysis of
sets of chromosomes [51]. TimeLineCurator utilizes multiple
windows to not only represent a timeline of encoded events,
but also provide detailed views of these events and a control
panel to manage them [52]. Moreover, juxtaposition can also
be employed through small multiples, where visualizations
using the same model are displayed in a sequence or grid in
order to either compare between different states of a dataset,
such as simultaneously visualizing the temporal profiles of
multiple clusters [53], or to compare between datasets with
similar structures, such as the expression data of different
experiments performed over the same PPI network [54].

In addition to juxtaposition, data visualizations can also
be compared through composition mechanisms that involve
direct integration. For instance, views can be superim-
posed by overlaying multiple visualization models, which
may highlight both correlations and differences between
them [55]. Views can also be nested within others, where
individual data elements are represented with visualization
models instead of simple graphical elements, similarly to
glyphs, such as replacing the nodes of a network with
linear graphs [43], [56]. Additionally, similarities between
views can also be computed and encoded into new visu-
alizations that highlight significant elements [57], such as
encoding changes over time by animating transitions between
a sequence of states in the dataset.

Visualization tools with CMV frameworks can employ
multiple composition mechanisms simultaneously, supported
by interactive functionalities coordinated across different
views, which facilitates navigation between distinct visual-
ization structures [58], [59]. Saraiya et al. created a tool
that encodes time-series in graphs through heatmaps and
line charts, using multiple views and coordinated brushing
to explore groups of time-series. Pathline [60] and Mul-
teeSum [61] represent time-series gene expression profiles
through small multiples of area plots displayed in a grid,
known as a curvemap, where the plots from each row and
column are superimposed to create representations of their
average values. Additionally, Pathline encodes genes and
metabolites into a pathway visualization which are added
to the curvemap when brushed, while MulteeSum maps
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FIGURE 1. CroP’s user interface with a loaded temporal dataset, showcasing the options sidebar (left) and three different
panels in its workspace: a network panel (middle), a data table panel (top right) and a time curve panel (bottom right).

the spatial position of the cells corresponding to the curve
map’s expression profiles onto a plot visualization. Similarly,
Cerebral is a Cytoscape plugin that uses small multiples
of plots to present time-series profiles of clustered genes,
highlighting the respective groups on a network view through
selections [62]. Moreover, Cerebral also represents different
temporal states of that network through small multiples of
networks, which coordinate panning and zooming to always
focus on the same region across all views.

III. COORDINATED PANELS VISUALIZATION
CroP is a data visualization tool developed in Java using the
Processing library [63], designed to represent and analyze
multivariate data, in particular relational and temporal data.
While it is able to process generic datasets, there is additional
support for biological datasets, such as the integration of
an external database for cross-referencing gene proprieties,
allowing it to be used to explore PPI networks and gene
expression time-series.

CroP uses a CMV framework, where loaded data is rep-
resented through visualization models within flexible panels
that can be arranged according to each user’s objectives and
queries. Data can also be sorted, clustered and filtered, which
is reflected through its dynamic visualization models. Addi-
tionally, multiple datasets can also be loaded and visualized
simultaneously, then compared through multiple panels and a
differences view. In this section, we will provide an overview
of CroP and its functionalities, presenting its capabilities for
data analysis, the representation of multiple variables, the
layouts provided by each type of panel, and its ability to
handle multiple datasets.

A. USER INTERFACE
CroP’s user interface is divided into an options sidebar and
a workspace (Figure 1). In the options sidebar, users can
import data files and manage datasets, while the workspace

consists of a modular environment where panels containing
the visualization models are set on a grid-based layout, which
adapt to any changes made to the size of CroP’s window.
The options within the sidebar are categorized into differ-
ent groups and their visibility can be toggled based on the
needs of the user. Circular icons with question marks are
located next to options with complex functionalities in order
to provide users with instructions or context regarding that
function. This information is contained within a text prompt
that appears when the icon is hovered with the mouse.

At any point, users can select the ‘‘Save All‘‘ option to
generate a file containing the current state of CroP, which
includes the entire dataset as parsed by the application, clus-
tering, panel positions, settings and parameters. This file can
be loaded at any point through the ‘‘Load All‘‘ option in order
to restore the workspace to its previously saved state with
minimal loading times, as it bypasses the need to recalculate
layouts or clustering.

B. DATA MANAGEMENT
CroP can receive relational data – which describes the
edges of a network, containing all of the direct relationships
between existing data points –, time-series data – ordered lists
of values, describing how a propriety of each point varies over
time –, and multivariate data – a set of independent quanti-
tative variables, which can be used define general attributes
for each data point without a defined order. Loaded files will
be parsed and the user will be alerted any detected errors,
along with the line numbers in which they occurred so that
these can be more easily located and corrected. Multiple
files can also be loaded and either merged or filtered. If any
values in time-series and multivariate files are left blank, the
application will interpret this as nodes being ‘‘inactive’’ at
those time points or for those variables, and theywill be repre-
sented in the visualization models accordingly. In support of
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FIGURE 2. List of the color palettes available in CroP; the final color in
each palette is used to represent inactivity.

biological data analysis, the Gene Ontology (GO) databases
were integrated into the application in order to provide addi-
tional information and the ability to compare biological ele-
ments. Data points with names that correspond to those in the
database will be associated with the biological processes of
their corresponding proteins.

After a dataset has been loaded, data can be clustered into
groups of nodes with similar proprieties using the options
in the sidebar located under ‘‘Clustering’’. Users can select
the type of clustering, the attribute being clustered, and the
merging criteria. Data elements can be clustered by their
position in the network panel, by temporal attributes, or by
the values of variables. Data points and clusters selected in
the visualization panels can also be removed or copied using
the options provided in the sidebar under ‘‘Filtering’’.

C. COLOR PALETTES
In order to consistently represent the same types of values
across different visualization models, we established a set of
ten color palettes which were chosen based on their ability
to represent various ranges of values across different types of
datasets (Figure 2). In the options sidebar, different palettes
can be chosen to map general numerical values, temporal
progression, and differences between multiple datasets.

These palettes were based on those fromColorBrewer [64],
a work in which such color schemes have been shown to
distinctively represent different ranges of values while also
being appropriate for users with any of the common types
of colorblindness. The first five color palettes are sequen-
tial, representing low values with light tones and high val-
ues with dark tones: ‘‘Blues’’ and ‘‘Greens’’ vary between
brightnesswithin the similar hues, while ‘‘RdPu’’, ‘‘YlOrRd’’
and ‘‘YlGnBl’’ present variation in both their brightness
and hue. While sequential palettes will generally emphasize
higher values, those with higher variation in hue (in particular
‘‘YlGnBl’’) allow users to differentiate between values more
effectively. The remaining five color palettes are divergent,

FIGURE 3. Examples of mapping colors to values (a.), variation (b.), and
tendency (c.), using the ‘‘RdYlGn’’ color palette.

representing either two very distinct colors at each of their
extremes with light colors in the middle, as is the case for
‘‘BrBG’’, ‘‘PiYG’’, ‘‘RdYlGn’’ and ‘‘RdYlBl’’, or represent-
ing a larger gamut of colors, as does ‘‘Spectral’’. Furthermore,
as CroP is able to receive and process null values as to
explore patterns of inactivity in datasets, we established a
color for each palette that highlights inactive nodes. While
each sequential palette was assigned a bright color that was
able to contrast against any other color mapped between
its values, divergent palettes simply represent inactive nodes
with black, as to contrast with their generally large variation
in hue.

D. DATA MAPPING
To explain how values loaded from time-series or multivariate
data files are mapped to a color palette, we will use the
‘‘RdYlGn’’ palette as a reference as it better distinguishes
between extreme and middle values. CroP normalizes val-
ues by default, mapping colors between the minimum and
maximum values of each time-series or variable, from red
to green respectively (Figure 3.a). However, values can be
unnormalized in the option sidebar, in which case colors
will be mapped between the minimum and maximum values
across the entire dataset.

As time-series data describes a list of ordered values, this
allows for color to represent how the values change over time,
using either its variation or tendency. We define variation as
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FIGURE 4. Sets of table panels showing an element being selected (top) and various information about that element
(bottom): a temporal profile (left), a list of its edges (middle), and a list of its Gene Ontology proprieties (right).

the difference between the current value and that of the pre-
vious time point, as to represent the variation of values over
time. Color is then mapped to the intensity of the variation
and whether it is negative or positive, approaching either red
and green respectively (Figure 3.b). When values have not
changed significantly from the previous time point, points
will approach with middle tones, in this case yellow.

Tendency consists of a simpler approach that does not take
into account values, only how the data shifts between the
previous and next time points. Each of the color palette’s
extremes corresponds to a shift in variation, where green
represents a peak of values and red represents a valley, while
middle colors represent other behaviors, such as light green
representing increasing values, orange representing decreas-
ing values, and yellow representing values that did not change
(Figure 3.c). Tendency mapping is aimed at the analysis of
datasets where shifts between positive and negative variation
mark significant moments in the data, such as gene expres-
sion time-series where peaks of expression represent when
proteins have become over-expressed.

E. VISUALIZATION MODELS
Visualization panels contain models and layouts that rep-
resent loaded datasets, each one dedicated to analyzing a
different type of data. Every panel contains specific consistent
elements that allow users to organize them: the top bar can be
dragged to move the panel, and the corner of the panel can be
dragged to resize it. Additionally, the bar contains a button to
close the panel and a dropdown that selects the dataset being
visualized when there exist multiple datasets.

When a panel is moved or resized, its corners will always
snap to the closet point on the grid of the workspace. This
grid layout ensures that the organization of the workspace
is maintained, as panels can be sorted and adjusted to make
use of the available space. This, for instance, allows users
to easily place panels next to each other and resize them to
consistent sizes when comparing between multiple similar
visualizations. Overlapping panels are handled automatically,

where the overlapped panels are resized or moved to accom-
modate the new changes. There are four types of visualization
panels: Data Table, Network, Time Curve, and Multivariate
View. In this section, we will primarily utilize the ‘‘YlOrRd’’
color palette for values and the ‘‘Blues’’ color palette for time.

1) DATA TABLE
The data table panel shows every data point at its lowest
level, listing them in a table that can be sorted by any of
its columns (Figure 4). Each selected row will create a new
tab on the top of the table that describes the proprieties of
that point, including a line chart of its temporal profile, a bar
chart depicting the values of multivariate data, a list of its
edges between other nodes, and a table of corresponding
Gene Ontology terms, depending on the existing data. Alter-
natively, selecting a cluster will also create a tab with detailed
proprieties of that group, including aggregated profiles of
its data, a list of its nodes and a table of aggregated Gene
Ontology terms (Figure 5). Selected points are marked on
the scroll bar with colored bars, and are coordinated across
visualization models, highlighting these points in all network
and table visualizations of the same dataset. Moreover, the
‘‘CTRL’’ key can be used to select multiple rows and create
individual tabs, while the ‘‘SHIFT’’ key will toggle start/stop
points that create a group containing every row between every
two selections. Due to the high number of rows that could
selected simultaneously, the latter type of selection the latter
creates a single tab called ‘‘Highlighted’’ that contains the
aggregate data on every data point selected.

2) NETWORK PANEL
The network panel consists of a dynamic node-link graph
that represents data points and their relationships in two-
dimensional space. The position of nodes can reflect the
relationships between their attributes through multiple lay-
outs, which allows the network panel to be used even when
visualizing data that does not possess relational attributes.
The resulting visualization can be panned by clicking and
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FIGURE 5. Sets of table panels showing a list of clusters with one being selected (top) and various information about that
cluster (bottom): an aggregated temporal profile (left), a list of its elements (middle), and a list of the Gene Ontology
proprieties within the cluster (right).

FIGURE 6. Hovering a node will display information on its current value
in relation to the current value mapping and selected time point or
variable. The image displays temporal information shown for the same
node when colors are mapped by value (left), variation (middle) and
tendency (right).

FIGURE 7. In high amounts, edges are hidden by default (left), but can
be shown by selecting the ‘‘Always Show Edges’’ button (middle).
Selecting a node will only highlight that node’s edges (right).

dragging the mouse, or zoomed in/out on the current mouse
position using the mouse wheel, while nodes can be hovered
and selected to not only highlight their names and edges, but
also display a small information window with their propri-
eties (Figure 6).

If either time-series data or multivariate data have been
loaded, nodes will be colored and sized according to the type
of color mapping selected. This will also create a slider at the
bottom of the panel that will either display a timeline of the
time-series data, or a list of all the variables, smoothly tran-
sitioning between the colors and sizes at each step when the
slider is dragged. In regards to edge representation, a common
issue with the visualization of complex networks as graphs
is that overlapping edges may create visual noise that pro-
vides little information and obscures other visual elements.
To prevent this, we map the transparency of edges to their

FIGURE 8. Network panels with different layouts: Sunflower (top-left),
Yifan Hu (top-right), t-SNE (bottom-left), and force-directed clusters
(bottom-right).

quantity, fading them out as their number increases until
they are no longer drawn, only showing those from selected
nodes. However, this can also be reverted in the options menu
(Figure 7).

Nodes are initially displayed in a sunflower spiral layout,
which utilizes the order loaded from the original file. The
options menu provides two additional layouts for the network
that can sort nodes based their attributes: the Yifan Hu lay-
out [65] and the t-SNE layout (Figure 8). The Yifan Hu layout
sorts nodes based on their edges, positioning them so that
related nodes will be closer to each other, while the t-SNE
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FIGURE 9. Time curve panels displaying initial timeline layouts (top) and corresponding time curves (bottom). The first
timeline is sequential due to a low amount of time points (left), and when transformed into a timeline, time points
representing similar states are pulled together (middle). When the number of time nodes would exceed the available space
for a timeline, they are placed in a spiral layout (right).

FIGURE 10. Time curve with pie chart glyphs (left) and miniature network glyphs (middle). The data lens is being used to
select three time points (right), creating an aggregated visualization of their average values that depicts the similarity
between them.

layout will positions nodes based on the similarity between
their time-series values or multivariate data. These layouts
have parameters that are mapped to sliders in the options
menuwhich can be adjusted to balance the calculation time of
the layout against its accuracy in relatively positioning nodes.
Moreover, clustering the data will apply a force-directed
layout over the nodes, grouping them into circular areas and
sorting them into sunflower spirals that are ordered by the
clustering algorithm, meaning that neighboring nodes may
also be more similar to each other. The relative position of the
clusters also reflects the relationships between their nodes,
as clusters with nodes that have edges between them will be
placed closer to each other.

3) TIME CURVE
The time curve panel focuses on the representation and analy-
sis of time-series data through a timeline and layouts that dis-
tort in order to represent the general behaviors of the dataset
over time, such as significant changes in values, regressions
and cyclical shifts. The mouse can be dragged to pan the
visualization, while the mouse wheel will zoom in/out of the

current mouse position. Nodes can also be selected, which
will update the current time step on network panels. The top
left of the panel contains a list of options that offer control
over visual elements, such as animations that show the flow
of time, and parameters that control the current layout.

Each time point is initially converted into a node and
displayed sequentially as a timeline, either in a horizontal line
or as a spiral, with the latter being used when the width of the
former surpasses the amount of available space (Figure 9).
The timeline can then be distorted into a time curve, based on
the layout proposed by Bach et al. [8], by positioning time
points relatively to the similarity of the dataset at those times.
This is achieved by using either the force-directed layout –
adjustable attraction and repulsion forces that dynamically
pull similar nodes closer –, or the t-SNE layout – a static,
non-deterministic layout that is calculated with parameters
that offer a balance between quality and processing time.
To differentiate between the data states at each time point,
glyphs are used to represent clustered data (Figure 10). More-
over, the resulting visualization can then be further adjusted
through Time Paths, a layout that creates segmented edges
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FIGURE 11. Visualization of multivariate data in a grid layout (left) and sorted by the t-SNE layout (middle). Network
glyphs and the mouse lens are also available in this visualization panel when the data is clustered (right).

with adjustable proprieties that allows us to smoothen time
curves by controlling their trajectory, curvature and transi-
tions between colors and sizes. These parameters control
the level of detail of a time curve, either smoothing it to
remove visual noise in favor of portraying overall behaviors,
or emphasizing small variations by distorting the timeline
further.

To help better navigate and understand the time curve
visualization, the bottom of the panel contains a timeline
slider where time points are displayed in sequence. Dragging
the slider will highlight selected time points and create an
animated transition across the sequence of time points that
the user brushed. Additionally, when the timeline model is
distorted by a layout, the timeline slider (at the bottom of the
panel) will display a supporting wave graph that represents
the distance between sequential time points. As distance is
mapped to similarity, large waves portray moments when
significant changes in the data occurred, while flat sections
represent periods of low changes in the data.

4) MULTIVARIATE VIEW
The multivariate view panel represents independent, quanti-
tative variables as points in two-dimensional space, providing
tools to analyze relationships and discover patterns of corre-
lation between their values, similarly to the time curve panel.
The mouse can be dragged to pan the visualization and the
mouse wheel will zoom in/out of the current mouse position.
Nodes can also be selected, which will update the current
variable focus on network panels, and the top left of the panel
contains an optionsmenuwith proprieties for the existing lay-
outs. Nodes are initially displayed in a grid layout (Figure 11),
which helps list individual variables while distinguishing this
panel from others, and through the t-SNE layout they can be
positioned relatively to their values, grouping similar nodes.

F. VALUE AGGREGATION
If time-series or multivariate data have been loaded, or if
the names of biological nodes correspond with those of the
Gene Ontology database, then an additional analysis tool

FIGURE 12. Brushing a network with the mouse lens (top) to view the
average temporal profile (left) or a count of Gene Ontology proprieties of
the selected nodes. Selected nodes are also highlighted in the data table
panel (bottom).

will be available: the mouse lens. Right-clicking anywhere
on the network panel will create a circle around the mouse
which will act as a lens, following the mouse and selecting
every node inside of it. The aggregated data of every node
that is selected in this manner will be displayed in a small
visualization next to the lens (Figure 12). For time-series and
multivariate data, the visualization will be of a line chart that
depicts an average of all the values for every node selected.
For biological nodes, the lens will show the percentage of
each gene ontology propriety that exists within the selected
group. The size of the lens can be increased or decreased with
the mouse wheel, and it may be used to select large areas of
nodes.

To better discern between different states of the data
without having to solely rely on other views, we created
glyphs that portray the dataset at each time step or for each
variable. However, representing every data point through a
simple glyph may be unfeasible for significantly large
datasets, so instead we represent the groups of similar points
created through clustering. As such, applying clustering will
convert the nodes in the time curve andmultivariate view pan-
els into glyphs (Figure 10), which can take the form of either a
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FIGURE 13. The original data of the two selected datasets is represented in data tables on the left, while their average
differences are depicted in the table in the middle. This table can be sorted by its differences (right).

miniature network (circles which represent the clusters in the
network panel) or a pie chart (a space-filling layout where
each slice represents a cluster and its proprieties), which is
provides additional visibility at smaller sizes.

The mouse lens can be used to select these glyphs, which
will create a larger version of the miniature network next to
the lens where the color of each circle now represents the
average values of each cluster between the highlighted glyphs
(Figure 10). More importantly, arcs are also drawn around
every circle, indicating the percentage of similar behaviors
exhibited by data points within that cluster at the selected
glyphs. In other words, if around half the nodes within a
cluster are exhibiting the same behaviors in the nodes hovered
by themouse lens, then the arc around that cluster’s respective
circle would be drawn as a semi-circle.

G. MANAGING MULTIPLE DATASETS
While multiple files can be loaded and merged to combine
different sets of data points and attributes, CroP also allows
datasets to be stored, accessed and managed individually.
Individual datasets are stored within tabs, which can be
accessed and managed in the options sidebar. Sections of
interest can be copied into new tabs, allowing users to focus
on specific groups of data without altering the dataset.

Multiple datasets can be visualized simultaneously through
juxtaposition by using multiple panels, or compared through
a differences view which can highlight patterns of similarity
or dissimilarity. Loaded datasets will be listed in the data
table panel, and selecting two or more dataset rows will
create a table tab containing a small visualization that shows
the average similarity between every node, in addition to a
differences view table. This differences view consists of a
list of every common data point shared between the selected
datasets, where a column depicts a color matrix visualiza-
tion of the time-series or multivariate data from each data
point that represents the difference between the values across
all selected datasets (Figure 13). The color difference is
represented by a separate palette that can be changed in the
options sidebar, and it is depicted by default with the YlGrBu

palette, which emphasizes extreme and middle values, where
dark blue represents high similarity and light yellow repre-
sents high differences. Selecting this column will order all
the data points by the sum of their differences, allowing users
to either sort by those that are the most similar or the most
different.

When multiple datasets are selected in the data table panel,
the color of nodes in network panels will also be mapped to
their differences. Moreover, points that do not exist across all
selected datasets will not be shown in the differences view and
will be represented in the network panels using transparency.

IV. PATTERN ANALYSIS
Through its coordinated multiple views framework, CroP’s
functionalities can be used in conjunction in order to different
types of relationships, such as analyzing potential patterns
between multiple proprieties across large sets of data points,
in particular relational, temporal and certain biological pro-
prieties. As described previously, some of these functionali-
ties are also common between visualization models, although
their purpose and outputs may vary according to the type of
data. In this section, we will describe how the implemented
models and functions can be used individually or coopera-
tively to explore different datasets and discover meaningful
patterns.

A. VISUALIZATION LAYOUTS
CroP integrates a variety of visualization models and layouts
with the objective of allowing users to visualize, explore
and analyze different types of data. For instance, the data
table panel represents low level data through lists and linear
visualizations, supporting other panels through coordination.
By loading only necessary rows, these lists are able to contain
the entire dataset with minimal processing cost, providing
tools to order and brush between large sections, creating
aggregate data visualizations.

The remaining visualization panels make use of differ-
ent types of layouts to position data relatively to their
relationships. While the initial positions are determined by
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FIGURE 14. Time curve visualizations of the HIV-1 virus gene expression
time-series dataset (7589 data points) showing how maximum similarity
is mapped to the minimum distance between time points, reflecting their
percentage of similarity.

simple space-filling layouts that aim to display all nodes
without overlaps, users are then provided with other layout
options specific to each panel with adjustable parameters.
For instance, the Yifan Hu and t-SNE layouts use parameters
that balance the quality of their results and the processing
time required for their calculation, allowing users to choose
between quality and speed. While the Yifan Hu layout is spe-
cific to sorting networks based on edge data, the t-SNE layout
can be used to both sort data points based on their attributes
(network panel) or sort attributes based on the whole dataset
(time curve and multivariate view panels).

Alternatively, there is also a dynamic force-directed layout
that is used not only to create clusters in the network panel,
but also to bend timelines through adjustable parameters in
the time curve panel. These parameters control the strength of
the forces, the size of the layout, and the maximum similarity
that is mapped to the distance between nodes. In other words,
the maximum similarity slider defines the maximum percent-
age of similarity between two time points that will be mapped
to their minimum distance from each other. For instance, at a
maximum similarity of 55%, time points placed together will
represent states where the dataset is at least 55% as similar,
as illustrated in Figure 14. By adjusting this parameter, the
layout can be adjusted to datasets that may have patterns
between only a small percentage of data points. Moreover,
to more quickly identify such behaviors in any dataset, the
highest value of maximum similarity between any time point
in the current dataset is marked on the slider.

In comparison to the t-SNE layout, the force-directed lay-
out generally has more difficulties in dealing with larger
datasets, as the convergence of large quantities of nodes may
be very slow. However, it is comparatively more effective
on smaller datasets, displaying consistent results with more
accuracy.

B. CLUSTERING ALGORITHMS
In addition to the visualization models, clustering plays an
important role in the analysis of both simple and complex
datasets. If a dataset is represented in a network panel, points
can be clustered spatially, while if time-series data has been
loaded, data points can be clustered by their values, variation,
tendency, or patterns of inactivity, if the dataset contains null

values. As clustering can be an important step in the discovery
of new knowledge through the identification of meaningful
data patterns, CroP provides a range of clustering options for
analyzing different types of datasets: Hierarchical, K-means,
Bisecting K-means, DBSCAN and OPTICS.

Hierarchical clustering may result in long processing
speeds but allows the user to select between any number of
clusters after being calculated only once [25]. K-means has
a fast execution time, but requires the user to specify the
number of desired clusters beforehand [28]. These propri-
eties are shared by the bisecting k-means algorithm, which
is also able to recognize clusters of any shape and size,
iterating over each bisection step multiple times to improve
its results [30]. DBSCAN and OPTICS are also effective at
discovering clusters of different shapes and sizes [31], [32],
but require very specific search parameters, as points that do
not meet the established requirements are sectioned off as
noise. In particular, OPTICS orders points hierarchically and
utilizes an additional parameter to further filter noise.

As such, hierarchical clustering may be best suited for
smaller datasets, allowing users to quickly explore the diver-
sity of existing value profiles based on how clusters form
and divide using just default parameters. Meanwhile, large
datasets may be more quickly clustered through k-means and
even further refined through bisecting k-means if the user is
willing to search for an optimal number of clusters. On the
other hand, DBSCAN and OPTICS are able to quickly deter-
mine very cohesive clusters in large and complex datasets
with the correct parameters, but these are also much more
sensitive than those of other algorithms andmay require more
effort to reach desirable results.

The implemented hierarchical clustering is based on
Michael Anderberg’s approach [66] described by Müll-
ner [67], while the remaining algorithms were implemented
through the SPMF open-source data mining library [68].
When clustered, nodes in the network will be grouped into
circular areas representing each of the calculated clusters.
In order to organize nodes within each cluster and prevent
overlapping, these are sorted with a sunflower spiral layout
which is ordered by the chosen clustering algorithm, meaning
that neighboring nodes may also be more similar. Multiple
data tables can be juxtaposed to compare between multiple
individual or aggregated profile charts, as well as to quickly
navigate through attribute information, as panels focused on
attribute tabs will update dynamically with the user’s selec-
tions.

C. CLUSTER ANALYSIS
The mouse lens is a circular brush for selecting large areas of
nodes and analyzing their combined proprieties through small
data visualizations.While this lens can also be used to quickly
view information from individual nodes, such as line graph of
their value profiles or a table of Gene Ontology proprieties,
it is best used to visualize the predominant proprieties of
nodes positioned by visualization layouts or grouped through
the clustering algorithms. Regarding the latter, clustering the
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FIGURE 15. Time curve with three time points hovered by the mouse lens (1.) creating a larger visualization that measures
the similarity of each node through their surrounding arc. The similarity between time points is mirrored in the network
panel through the same arcs and through node transparency (a.), where nodes with consistent behaviors are less
transparent. Network clusters can be orders by this similarity (b.), where the nodes with the highest similarity between the
current selection are closer to the center.

dataset will convert nodes in the time curve and multivariate
view panels into glyphs that

These glyphs represent the average values of the clustered
dataset for each time point or variable, respectively, using
either a miniature network or a pie chart. The miniature
network glyph is a simplified representation of the visual-
ization in the network panel, converting every cluster into
a circle whose size and position is mapped to that of the
cluster and colored based on the average values of the cluster.
Furthermore, this also allows the glyph to be created without
clusters that have been classified as ‘‘noise’’ by the DBSCAN
or OPTICS clustering algorithms, allowing the remaining
clusters to be more visible and easier to analyze. However,
theminiature network becomesmore difficult to be readwhen
the glyph is too zoomed out, mainly due to the white space
between cluster nodes, in which case the pie chart glyphs are
used. Each slice of the pie chart glyph represents a cluster,
where the width of its arc represents the number of nodes in
the cluster and the color corresponds to the average properties
of its data points. The pie chart slices are sorted relatively
to the positions of the clusters on the network visualization,
allowing users to more easily match each slice to its corre-
sponding cluster.

Brushing these glyphs with the mouse lens will create a
large version of the network glyph, mapping the color of
each cluster to the average values between those that are
brushed. Furthermore, this visualization acts as a differences
view, where each cluster node is drawnwith a surrounding arc
whose diameter is mapped to their similarity, a percentage
that is calculated using the sum of differences of each data
point between all the selected glyph nodes. This is demon-
strated in Figure 15.1, where three time points are selected
with themouse lens and the resulting visualization shows arcs
of different lengths surrounding each cluster: the top cluster
has a full circle, indicating that every data point in that cluster
has consistent behaviors across all three time points, while
the bottom-most cluster shows that only two-thirds of its data
points are behaving similarly.

While glyphs and the mouse lens provide the means to
identify patterns of values between attributes without rely-
ing on additional panels, these functionalities are also coor-
dinated with the network panel to help dig-down into the
discovered patterns. When nodes in the time curve and mul-
tivariate view panels are selected through the mouse lens, the
arcs drawn around the clusters on the lens will also be drawn
around their respective clusters on the network panel. More-
over, the transparency and saturation of nodes in the network
will be mapped to their similarity between the selected nodes
(Figure 15). As such, the more consistent each data point’s
values are across the selected time points or variables, the
less transparent their corresponding network nodes will be,
highlighting them over data points with inconsistent values.

To help better identify individual nodes with high similar-
ity in each group, the cluster can be ordered by the similar-
ity of each node, resulting in the most similar nodes being
ordered from the center to the outside (Figure 15.b). This
allows users to more easily select the most similar nodes by
brushing the center of the cluster with the data lens and isolate
them if needed. However, this requires the order of each
cluster to be recalculated every time that the user changes
the nodes brushed by the mouse lens, which may be visually
overwhelming if the user is actively using the lens, as every
affected node must be re-positioned. Due to this, the user can
switch between ordering clusters by similarity, or to maintain
their original order in the network panel’s options menu.

D. EXPLORING TIME-SERIES
In what specifically concerns the analysis of temporal data,
the existence of a sequential order of values allows for the rep-
resentation and analysis of their shifts between time points.
To this end, data points can have their color mapped to either
their values, variations over time, or tendencies. This allows
visualizations to portray and highlight different types of tem-
poral behaviors, such as positive or negative trends, as well as
the moments when these tendencies shift, marked with peaks
and valleys of values. Such events are particularly significant
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in specific datasets, such as gene expression time-series data
where peaks mark the moments when proteins are over-
expressed.

The general temporal behaviors of the entire dataset are
reflected in the time curve visualization, which depicts the
similarity of values, variation and tendency between time
points. For instance, large distances between two sequen-
tial nodes will indicate a notable shift in values, clusters of
sequential nodes portray periods when the data did not change
significantly, and cycles or regressions are represented by the
curve travelling multiple times between two or more groups
of non-sequential nodes. However, constant erratic changes
in values may result in complex time curve visualizations
with visual noise caused by significant amounts of overlap-
ping edges. Moreover, while the Processing library provides
several options to manage the proprieties of the edges, its
methods offer limited control over visual attributes.

In order to not only to surpass the limitations of the basic
edge drawing tools in the Processing library, but also to
help create more comprehensible time curve visualizations,
we developed Time Paths. Time Paths is a layout that
redraws time curve visualizations through a brush controlled
by parameter-based attraction forces, creating segments that
allow for the creation of better transitions between colors,
opacity and line weight. The brush consists of a moving point
which is first placed at the initial time node on the original
time curve and it is then pulled towards the following time
node using a spring, calculated using Hooke’s law [69] and
a fixed attraction strength. The brush’s route is mapped by
intermediate points that are left behind as it moves between
time nodes. However, the transition between nodes is not
instantaneous as we apply momentum: a percentage value
that defines how quickly the attraction force from the pre-
vious time node is converted into the attraction force to the
next node. We defined two variables that can be controlled
through sliders which update the layout dynamically:
Intermediate Points — Defines the number of points that

make up the edges drawn between time points, controlling
the visual definition of each curve; extreme values will cause
distortions.
Smoothness — Controls the speed of forces converging

between time points, previously described as momentum,
where lower values create sharp turns between points, and
higher values result in wider loops.

The resulting timeline is defined by the sets of intermediate
points that were left in its path, which allow for increased
control over its visual representation as we can define gradual
transitions of visual proprieties between any time node. The
increased control over edge representation allowed for addi-
tion of two animations that convey the flow of time: a pulse
created from increasing and decreasing the weight of each
segment in sequence and arrow particles that move across the
time curve. Both of these animations convey the intensity of
variation between sequential time points, where the size of
pulses and speed of arrows both increase proportionally to
the difference of similarity between two time points.

FIGURE 16. Illustration of a segment from timeline graph that represents
high variation for the first three time steps and then a period of minimal
changes; First it is drawn as bar chart (a), then the middle points are
calculated to highlight moments of high variation (b); These points are
used to create a shape that masks the initial bar chart (c), smoothing the
spike shapes (d).

The calculation of a Time Path only needs to be
performed once for each set of parameters, as all of the
intermediate points are saved along with their properties.
Moreover, it should be addressed that the layout naturally
distorts the position of the time nodes from the original time
curve, in which their position best reflected their similarity.
To diminish this distortion, after the time path has been
calculated, we move time nodes along the new path to a point
that is closest to their original position on the time curve.

The analysis of temporal patterns is further supported by
the timeline graph, a wave graph located on the timeline
slider at the bottom of the panel. This graph shows how
data shifts over time by mapping the height of each wave to
the distance between that time point and the previous one.
As such, large waves highlight moments of intense changes
in the data, while periods of stagnation can be identified by
flat segments of the graph, allowing users to identify signif-
icant events or periods in complex time curve visualizations.
While a bar chart could also represent these changes in the
data, waves make it easier to differentiate between concur-
rent intense shifts of values, representing such periods with
matching visual fluctuations. Waves are created by adding
points between intense shifts in the data, which are then used
to calculate a shape that smoothens the graph (Figure 16).

V. EXPERIMENTATION
In this section, we present the visualizations created by our
models and discuss not only their performance in repre-
senting behaviors over time in diverse datasets, but also the
role they play in the discovery of significant data points or
temporal events. The first experiments are produced from
simple datasets comprised of single time-series which can
be easily compared with the resulting visualizations, fol-
lowed by experiments with biological datasets containing
thousands of data points with individual time-series, in addi-
tion to a multivariate dataset. Throughout these experiments,
we employ the developed methods to explore each dataset,
identify patterns, and analyze their composition, sources and
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FIGURE 17. Time curve visualization of a sine wave dataset (a), followed by time curves of the same dataset with different
gradual transformations: an increase of its amplitude (b), an overall increase of values (c), and an increase of its frequency
(d). A linear representation of each dataset is displayed below their respective visualizations.

FIGURE 18. Visualizations of the ‘‘Wolfer’s Sunspot Numbers’’ time-series, depicted as a line chart (1.), a Time Curve (2.),
and then transformed through Time Paths with different parameters (3.) where the level of smoothing is increased (a to d).

impact. Regarding representation, we will primarily utilize
the ‘‘YlOrRd’’ color palette for values and the ‘‘Blues’’ color
palette for time, unless specified otherwise.

A. BENDING TIME
The time curve layout aims to represent changes in values
across entire datasets through the distortion of a timeline.
In order to test how our implementation of this layout visually
translates different types of temporal behaviors, we utilized
single time-series datasets that describe simple and consis-
tent behaviors without noisy data. For this test, we chose
datasets that describe sine waves across 500 time points,
depicting cyclical increases and decreases of values with
additional behaviors. The resulting time curves and respec-
tive time-series are presented in Figure 17. The time curve
representing the initial sine wave dataset is described as
an oval with overlapping loops that match both the shifts
in variation over time and the number of cycles in the
dataset (Figure 17.a). The second dataset resulted from a
gradual increase to both the minimum and maximum values,
which resulted in a matching transformation where the oval
was increased to match the extreme values of each cycle
(Figure 17.b). The following dataset presented a gradual
increase to every value of the sine cycle, which was visually
translated into each cycle shifting in position in the same
direction (Figure 17.c). The last dataset featured a grad-
ual increase to the sine wave’s frequency, meaning that the

variation between values increased over time, which resulted
in each subsequent cycle being represented with wider loops
(Figure 17.d).

These tests were followed by the representation of two
time-series from real events that also depict cycles but with
varying characteristics and some noise, which also serve
to demonstrate how the Time Paths layout can utilize dif-
ferent parameters to smoothen curves, reduce visual clutter
and highlight general trends. The first dataset is ‘‘Wolfer’s
Sunspot Numbers’’, a yearlymeasurement of sunspots, which
are dark areas on the surface of the sun caused by concen-
trations of the magnetic field flux, from 1770 to 1869 [70].
This time-series is described by periodic value increases of
varying intensity, which resulted in a time curve containing
loops of varying sizes with minor distortions that match the
inconsistent shifts in values (Figure 18). The second dataset
depicts ‘‘Monthly Milk Production’’, measuring pounds per
cowmonthly from January of 1962 toDecember of 1975 [71].
The dataset is described by a yearly production cycle with
consistent increasing trend which stabilizes in the last five
years, and it was represented in the resulting time curve
through loops consistently shifting in one direction and only
overlapping during the period of stabilization (Figure 19).

The Time Paths layout was then applied over each of
these time curves using four distinct sets of parameters.
The first results were produced using default parameters
(3.a), smoothing both of the original time curves while still
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FIGURE 19. Visualizations of the ‘‘Monthly Milk Production’’ time-series, depicted as a line chart (1.), a Time Curve (2.),
and then transformed through Time Paths with different parameters (3.) where the level of smoothing is increased (a to d).

FIGURE 20. Time-series visualizations of personal consumption
expenditures (a.), personal savings rate (b.) and number of unemployed
(c.) in the U.S. between 1967 and 2015, along with their timeline (d.) and
time curve (1.) visualizations. Time points marking significant changes in
the data are highlighted (T1 through T5).

representing some of the smaller variations in the values.
With the increase of momentum and decrease of intermediate
points, the following Time Path visualizations progressively
lose the details that represent minor variations in favor of
visually exaggerating overall behaviors. As such, the last
set of Time Path visualizations (3.d) consist primarily of
the loops that describe the cycles in each dataset, but also
highlight some of the largest shifts in the data.

Finally, to demonstrate how the models handle simulta-
neous time-series, we visualized a United States economic
dataset that lists personal consumption expenditures (in bil-
lions of dollars), the personal savings rate and the number
of unemployed (in thousands), from July of 1967 to April of
2015. When viewing each of these time-series through the
data table panels, we can observe that expenditures have had
a consistent increasing trend, personal savings had an overall
decreasing trendwith some outliers, and unemployment num-
bers are characterized by slow changes with various peaks.

Figure 20 shows these time-series along with the result-
ing time curve visualization, highlighting six time points
that signal moments of significant changes in the data
(T1 through T6). Some of these appear to be a result from
outliers in personal savings, although some can be observed

FIGURE 21. Time-series visualizations U.S. economic time-series
(a., b. & c.), and respective timeline (d.) and time curve (1.) visualizations.
Time curve is smoothed by the time paths layout, and four clusters of data
points are highlighted, indicating periods of low variation in the data.

to match events on other time-series. For instance, T1 marks
the highest point in the rate of personal savings as well as one
of the initial peaks of unemployment numbers. More notably,
T5marks themoment where consumption expenditures broke
its consistent raising trend, followed by a significant increase
of unemployment. In the time curve, this period of time is rep-
resented with wider distances between time points, indicating
stronger shifts in values and setting it apart from the rest of
the visualization. This period matches the deep recession of
2007 and 2008, caused by the collapse of the housing bubble.
Additionally, the time curve was also smoothed by time paths
in order to decrease some of its visual noise in favor of por-
traying the general behaviors observed across its time-series,
as shown in Figure 21. The resulting visualization presents an
overall direction which reflects the main tendencies observed
in expenditures and savings, with several loops and clusters
that match the peaks of unemployment number and their
stabilization, respectively. In this regard, four clusters of time
points have been highlighted, which match periods of low
changes both in unemployment numbers and rate of savings.

B. HIV-1 VIRUS
While general tendencies and outliers can be more easily
identified in single time-series, gene expression time-series
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FIGURE 22. Network (left) and time curve (right) representations of the
HIV-1 virus gene expression time-series dataset. Data has been clustered
into 6 groups through the bisecting k-means clustering algorithm, and the
4H, 10H and 16H time points are selected with the mouse lens.

datasets contain thousands of data points with individual
and varied expression profiles. To this end, we approach the
analysis of these datasets through a combination of the imple-
mented visualization and data analysis approaches, not only
with the objective of identifying hidden temporal patterns, but
also to better understand their origin and characteristics.

The first gene expression time-series dataset that we visu-
alized shows human proteins reacting to the HIV-1 infec-
tion. This dataset was obtained from Mohammadi et al. [72],
which measured gene expression every 2 hours for 24 hours
after transfection with HIV-1 in Sup-T1 cell line. Expression
was profiled using SAGE-Seq and normalization was done
using DESeq [73]. The network dataset is comprised of a
human PPI networkwith 7589 proteins, after being filtered by
CroP to exclude proteins that do not contain time-series data.
The dataset was initially clustered by tendency into 6 groups
through bisecting k-means, and its time curve visualization
revealed cyclical patterns consisting of the same groups of
proteins behaving similarly at non-sequential points in time
(Figure 22). Each of these clusters consists of proteins that
at first glance are not related, but in fact may be considered
as co-expressed. We are able to discern at least two cycles
through three distinct groups of non-sequential time points,
where at least half of the dataset presented very similar
behaviors (as maximum similarity has been set at 60%).
By brushing these groups of time points with the mouse lens,
it is possibly to identify the clusters of proteins exhibiting the
same behaviors at these points. In Figure 22, we show the
lens being used on the group of time points representing 4,
10 and 16 hours, revealing that there is a significant percent-
age of proteins in each cluster that present similar behaviors
across the three time points. Furthermore, one dark red cluster
presents full similarity, meaning that every one of its proteins
presents a peak of expression at these points in time, while
most others appear to show either increasing tendencies or
valleys of values.

To further analyze these behaviors, we clustered the dataset
using DBSCAN, which resulted in about half the proteins
getting filtered as noise, but creating clusters with more con-
sistent behaviors (Figure 23). When comparing the previous
group of time points with themouse lens again, we can clearly

FIGURE 23. Visualizations of the HIV-1 virus gene expression time-series
dataset clustered using the DBSCAN algorithm, as shown in the network
panel (left). The cluster with a grey background represents genes
classified as noise and it is not represented in the time curve’s glyphs
(right). Each visualization reflects the behaviors across each group of time
points selected with the mouse lens (1, 2 & 3).

identify that the resulting clusters have full similarity across
all time points, where 5 are exhibiting peaks of expression
and the remaining show valleys of values (Figure 23.1). The
other two groups of time points were also examined using
this method, revealing many of the same clusters to also
present consistent behaviors, although more varied between
them (Figure 23.2,3). In particular, we can discern 2 clusters
with minimum similarity between the 8 and 14 hour time
points (Figure 23.3). Through such exploration, these types
of clusters can be identified, selected and either isolated to be
studied further or filtered out of the dataset.

C. MALARIA VIRUS
We analyzed a time-series of the gene expression for the
intraerythrocytic developmental cycle of Plasmodium Fal-
ciparum, the agent responsible for human malaria, whose
dataset contains 5080 genes with expression values measured
every hour over a 48-hour period. The time curve visual-
ization of this dataset shows a general continuous behav-
ior throughout, where each time node remains close to the
one that follows without loops or overlapping, as shown
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FIGURE 24. Time curve visualization of the Plasmodium Falciparum dataset with supporting timeline graph below it (left), along with
close-ups of an analysis of two sets of time points (right): TP1 and TP48, which show overall similarities (a.), and TP13 and TP14, which
present two clusters with a higher degree of differences (b.).

in Figure 24.a. Additionally, the time curve has a near
90% maximum similarity, meaning that the genes across
the entire dataset present very similar behaviors overall.
These characteristics match an existing study of this agent
by Bozdech et al. [74] that refers to the behavior of the genes
as a cascade of continuous expression that lacks sharp tran-
sitions. Furthermore, the dataset appears to return to a state
similar to that of its initial time point, indicating a cycle. This
is shown in Figure 24.b, where the mouse lens is used to com-
pare between the first and last time points (TP1 and TP48),
revealing that a large percentage of the dataset presents the
same behaviors at those times.

However, while expression values do not appear to shift
drastically, through both the time curve and the supporting
timeline graph, we can identify periods of stable variation
and moments of larger shifts in the data. By using the lens,
we can analyze one of these shifts to identify the responsible
data points. For instance, by comparing TP13 and TP14
(Figure 24.b), we can identify that the two clusters of nodes
with higher values (dark colors) were responsible for that
spike in the time curve, as they contain the data points with
the least consistent values between the two selected time
points. Furthermore, through the glyph colors, it is possible
to observe that this was the result of a relatively significant
increase in values between these time points.

D. YEAST CELL CYCLE
We visualized gene expression data measured in Saccha-
romyces cerevisiae cell cultures, a species of yeast, which
have been synchronized at different points of the cell
cycle through a temperature-sensitive mutation (CDC15) that
arrests cells late in mitosis. The dataset contains 4816 cells
with expression values measured every 5 minutes for 2 hours.
The dataset was first clustered into 7 groups using the hierar-
chical clustering algorithm, while the time curve visualization
was created by positioning time points by tendency, using a
maximum similarity of 50% (Figure 25). To better highlight

FIGURE 25. Network (left) and time curve (right) visualizations of the
Saccharomyces cerevisiae dataset, where the data alternates between
two states throughout most of its time-series (a. & b.). The time points
corresponding to these two states are selected by the mouse lens,
highlighting the network’s data points that present similar behaviors in
each state.

both extremes of values, we have chosen the ‘‘RdYlBu’’ color
palette, while time is mapped across the ‘‘BrBG’’ palette. The
resulting time curve shows that most of dataset is initially
comprised values increasing or decreasing with little correla-
tion, changing between unique states during the first four time
points. However, this followed by a behavior that is repeated
throughout the remaining time points: the dataset alternates
between two states where two clusters alternate oppositely
between peaks and valleys of expression. Towards the end
of this consistent behavior, it is possible to discern one time
point that is located relatively farther from the top group. This
may indicate the occurrence of an event that resulted in a
break of the cycle.

Additionally, we clustered the dataset using the DBSCAN
algorithm. While a significant portion of the dataset was
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FIGURE 26. Screenshot of CroP visualizing the Saccharomyces cerevisiae dataset. The clusters created by the DBSCAN
algorithm are represented in the network panel and listed in the data table panel. The time curve panel shows the data
alternating between two states, one being selected with the mouse lens to highlight consistent peaks and valleys of values
across several clusters.

FIGURE 27. Lung cancer dataset represented through a time curve visualization (1.), a network clustered by the OPTICS algorithm (2.), and
a network sorted using t-SNE (3.). While OPTICS discovered a large diversity of temporal patterns, the t-SNE layout divided most cells into
two groups.

classified as noise, likely due to a high amount of variation
in temporal patterns, the algorithm was capable of grouping
the primary genes responsible for the previously discussed
behaviors. This can be observed in Figure 26, where using
the mouse lens to select the bottom group of nine time nodes
shows that 4 out of the 6 clusters consist almost entirely of
nodes with the same behaviors. Furthermore, the inconsis-
tencies within the remaining two clusters appear to be caused
by genes that stop behaving consistently towards the end of
the timeline, which was also noted previously.

E. LUNG CANCER
To demonstrate CroP’s ability to process larger datasets,
we represented a dataset that explores human gene expres-
sion responses to glucocorticoids [75]. This dataset contains
119y208 cells of the human lung adenocarcinoma exposed
the synthetic glucocorticoid dexamethasone, and describes

their changes in gene expression every 2 hours for 6 time
points. The time curve revealed a simple circular pattern
with significant similarities between the data at the 3 hour
and 9 hour time points (Figure 27.1). To better compare the
dataset between these time points, we clustered the data using
the OPTICS clustering algorithm (Figure 27.2), as it was one
of the fastest available algorithms for a dataset with these
characteristics. Due to the size of the dataset, the amount
of distinct temporal patterns resulted in the creation of a
high number of clusters. However, from these we are able
to discern some particularly large clusters, one characterized
by having minimal values throughout the dataset, while the
remainder showed significantly high values at the 3 hour and
9 hour time points.

To further analyze these potential patterns, the data
was spatially sorted using the t-SNE layout (Figure 27.3).
Although the layout does not create cluster objects, it was
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capable of effectively sorting the points into visually dis-
tinct groups: two large groups in the center, surrounded by
some small groups and a ‘‘cloud’’ of scattered points on the
right. In comparison to the clusters created with OPTICS,
the t-SNE layout more clearly divided the data points that
contain consistently low values into the left group and those
with significantly high values into the right group, while
also separating data points with temporal patterns that do not
fit any particular group. We were able to conclude that the
large group of data points with high values was primarily
responsible for the pattern observed in time curve: a large
increase that led to peaks of values at the 3 hour and 9 hour
time points, followed by a slow decrease. While there is a
limited amount of time points, this may describe a potential
cyclical pattern of expression that would continue happening
across this group of points.

F. CORONAVIRUS DISEASE
In addition to the previous temporal datasets, we also visu-
alized a multivariate dataset detailing the effects of the
COVID-19 pandemic on the population of the state of Cali-
fornia in the United States of America. This data was obtained
from the California Health and Human Services Open Data
Portal [76] and describes the number of tests, cases and
deaths across every county in California between February
of 2020 and January of 2022. In order to better compare data
between counties, we divided the total number of tests, cases
and deaths by the population as to obtain these values per
capita. Due to the vast differences in values between these
variables, it may be cumbersome to identify the relative sig-
nificance of each variable across the whole dataset. As such,
we utilize normalized variables to represent the intensity of
each value in relation to every other county, as shown in
Figure 28. For instance, the bars for total tests, positive tests
and cases in Lassen are completely filled, indicating that
this county had the highest number of these per capita in
comparison to all other counties, but this does not mean that
each bar represents the same value (which is written above
each bar).

As with previous datasets, we clustered the data into a
small number of groups in order to quickly identify any
patterns in the distribution of values (Figure 29). The four net-
work clusters, obtained through bisecting k-means, presented
distinct profiles where middle cluster appears to contain all
the counties with the highest values per capita across the
dataset. Additionally, each variable is depicted as a node in
the multivariate view, which have been positioned by the
t-SNE layout. The two variables with the most similar
distribution of values are ‘‘Positive Tests’’ and ‘‘Cases’’
(Figure 29.1), which is expected as a positive test would be
an indication of the COVID-19 infection, unless it was a
false positive. There is also a correlation between ‘‘Cases’’
and ‘‘Deaths’’ (Figure 29.2), although it is more inconsistent,
possibly due to the variation in factors related to the ability
of each county to handle the pandemic. Finally, the largest
difference in distribution appears to be between ‘‘Total Tests’’

FIGURE 28. Bar charts depicting the normalized values of total tests,
positive tests, cases and deaths per capita registered during the COVID-19
pandemic for several counties in state of California.

and ‘‘Deaths’’. The glyphs in the multivariate view show that
the number of total tests per capital is relatively lower than
their other variables, which the exception of the counties in
the right-most cluster, where this trend appears to be inverted.
In order to better understand this, we can look at the graphs in
Figure 28 where we see that ‘‘Total Tests’’ and ‘‘Death’’ are
often inversely proportional across these counties. It is pos-
sible that such a correlation could be attributed to prevention
measures, as a higher number of tests per capita would lead to
infections being detected and treated earlier, lowering death
rates (and vice versa). However, such conclusions would also
have taken into consideration additional factors throughout
the counties such as hospital availability, number of people
with health insurance, and other preconditions that may have
affected these values.

G. DISCUSSION
Throughout the preformed experiments, we were able to
visualize and explore various types of datasets, starting with
low-dimensional datasets that were used to test basic rep-
resentation features, up to high-dimensional datasets which
exhibited diverse behaviors across thousands of data points.

Due to the inherent complexity in creating comprehensible
abstract visualizations, the initial experiments focused on the
time curve visualization as its ability to represent various
behaviors results from the distortion of a timeline. Through
simple datasets, we were able to more easily compare the cre-
ated time curve visualizations with the original time-series,
allowing us to match its visuals with any observed behaviors,
such as periods of stagnation and moments with intense
shifts of values, as well as regressions and cycles. Moreover,
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FIGURE 29. Data visualizations of the COVID-19 pandemic dataset,
where each county is represented as a node in the network (left) that has
been clustered by its variables, which are represented as nodes in the
multivariate view (right). Using the mouse lens, several variables are
being compared across all counties: the number of positive tests and
cases (1.); positive tests, cases and deaths (2.); total tests and deaths (3.).

in seeking to answer how visual abstractions can be used to
manage visual complexity, we developed the time paths lay-
out to reduce visual noise in favor of representing prominent
behaviors, but this comes at the cost of data fidelity. This was
reflected in the preformed experiments, where manipulating
the layout’s parameters showed that increasing the level of
smoothing highlighted overall tendencies by removing not
only smaller variations, but also some outliers which could
have marked significant events in these datasets. Addition-
ally, high parameters resulted in exaggerated deformations of
simple behaviors, reinforcing the need for balance between
accuracy and abstraction when seeking to achieve readability.
However, such exaggerations could be considered for artistic
representations of datasets.

In addition to the visualization models, CroP’s function-
alities support the exploration of more complex datasets to
facilitate their analysis and discovery of patterns of infor-
mation. As shown throughout the performed experiments,
the different types of clustering allowed for varying degrees
of precision in the creation of groups of data points con-
taining similar patterns. While the hierarchical and k-means
clustering require fewer parameters, they were able to reveal
the diversity in patterns across multiple datasets and pro-
vide a better understanding of the patterns revealed by the

time curve visualizations. Additionally, the DBCSAN and
OPTICS clustering algorithms were able to define more uni-
form groups while isolating independent patterns as noise.
The composition of clusters can be explored through the
data table and network panels by using juxtaposed views and
coordinated brushing, while the time curve and multivariate
view panels uses these clusters in glyphs to represent the state
of the dataset at different instances so they can be compared.
The mouse lens then allows for further exploration into the
patterns revealed by the layouts of these panels, facilitating
the identification of groups of nodes that are responsible
for unique behaviors and relationships. For instance, while a
general cyclical tendency was identified in the HIV-1 dataset
it was only through the time lens that we identified the nodes
that followed this behavior, despite the existence of multiple
groupswith different temporal profiles that followed the same
cyclical pattern. Similar analysis was performed for other
behaviors, such as the large shifts of values and regressions
identified in the Malaria Virus and Yeast Cell Cycle datasets,
whose responsible cells were highlighted by the differences
represented in the data lens.

VI. VALIDATION
For the design and development of the visualization tool,
we adopted Ben Fry’s methodology [77], which consists of
several steps that establish a path from the collection of raw
data to its representation and interaction with users. This
is a flexible methodology where various steps can be iter-
ated through successive refinements and validation through
user evaluation, as to progressively improve user interaction,
visual encoding and data analysis.

Due to the inherent complexity of the abstract visual-
izations created by time curves model, some preliminary
tests were performed early in the development to determine
the viability and effectiveness of the model in the context
of analyzing temporal patterns and discovering significant
moments. With the development of a functional prototype,
a round of interface tests was performed with a small group
of users with a low level of experience with visualization
tools, as to detect any immediate usability problems.With the
progressive improvement of the tool’s visuals and interaction,
amore comprehensive round of tests was then performedwith
a wider and more varied group of users. In these tests, users
were asked to not only use CroP to complete a series of tasks,
but also evaluate the visualizationmodels and provide general
feedback. In this section, we will describe the performed
surveys and tests, as well as discuss the results and obtained
feedback.

A. PRELIMINARY MODEL SURVEY
As the time curve depicts temporal behaviors through the
abstraction of a timeline, one predominant concern was the
comprehensibility of the model by different types of users,
in particular those minimal knowledge of data visualiza-
tions. To this end, an early survey was performed to test
how users from different fields would fare in decoding time
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curve visualizations and in identifying significant moments
or periods, in addition to an inquiry for personal feedback.
This study was conducted in person with university students
from various fields of study: out of the 25 participants, 8 had
an Information Visualization background, 4 had a Compu-
tational Creativity background, 6 had a Computer Science
background, and 7 had a Biomedical Science background.

The survey presented users with a series of time curve
visualizations with increasing complexity, each with a set of
questions related to the represented behaviors. Participants
were first shown the time curve of the sine wave dataset
(shown in Figure 17.a) as it represents a simple and con-
sistent cycle, and were asked to associate the visualization
with a behavior from a list of multiple choices. In this ques-
tion, all of the participants were able to identify that the
predominant behavior being represented was cyclical. This
was followed by three time curves of the sine wave dataset
representing gradual shifts in values and intensity (shown in
Figure 17.b,c,d), where participants had to choose from a set
of four distinct time-series and choose the one that was best
represented by the time curve. Out of these four options, 48%
of the participants correctly matched the increasing shift in
variation, 86% correctly matched the consistent increase of
values, and 68% were able to match the dataset representing
increasing intensity.

The survey then presented time curve visualizations
from the ‘‘Monthly Milk Production’’ (Figure 19) and the
‘‘Wolfer’s Sunspot Numbers’’ datasets (Figure 18), asking
participants to identify trends, cycle periodicity, and specific
events or behaviors. Over 90% of participants were able
to correctly identify both increasing trends and periods of
stabilization, as well as moments with significant changes,
but only 54% were capable of identifying a specific outlier in
the sunspot time curve. For each of the previous two datasets,
the survey presented a set of six time path transformations
of each time curve, each with increasing smoothness (similar
to the time paths presented in Figures 18,19). Participants
were then asked to choose the one that they thought best
conveyed the original dataset, the one they preferred visually,
and their overall choice. We were able to observe that partici-
pants generally preferred rounder curves with less variation
details, as long as the visualization was still able convey
the overall behaviors of the original dataset. For instance,
while participants visually preferred time curves with ele-
vated smoothing, the Sunspot dataset visualizations with high
smoothing parameters (Figure 18.d) were overall unpopular
due to not representing minor variations that were considered
significant.

Finally, participants were asked to rate the presented visu-
alizations from 1 (very poor) to 5 (very good), first based on
their ability to describe information or highlight behaviors,
and then based their ability to draw interest or to be visually
appealing. The average score given to the model’s ability
to represent behaviors was 4.1 out of 5, accompanied by
feedback that the model should be useful tool in data analysis
after the learning curve is surpassed. However, the absence

of interaction in these tests did highlight some limitations on
the static models, such as overlapping lines causing visual
noise. Regarding the aesthetic presentation of the visualiza-
tions, participants gave an average score of 3.9 out of 5,
commenting that theywere generallymore visually appealing
than linear visualization models, but that their application is
very context-sensitive.

B. INITIAL INTERFACE TESTS
The initial interface tests were conceived with the purpose of
detecting overall usability problems and to better understand
how users with minimal knowledge of data visualization
would perform in solving their assigned tasks. Due to the
limited availability of participants that would fit within our
expected target audience, the tests were performed with a
group comprised of 9 college students from a Biochemistry
degree who had a low level of experience with visualization
tools. User tests were performed in person, using datasets
from our previous experiments: a human PPI network paired
with the gene expression time-series dataset depicting the
HIV-1 infection (depicted in Figure 1). We chose these
datasets due to the large number of proteins but small number
of time points, giving users a large dataset to explore with a
low temporal complexity, including its time curve visualiza-
tion which simply portrays two loops.

Participants were initially asked to navigate the tool and
import the PPI network file (T1), followed by the gene
expression time-series file, while filtering out data that was
not present in both datasets when prompted (T2). The first
tasks that involved the visualization panels focused on the
data table panel, as it primarily contains tables and linear
visualizations, tasking participants with the discovery and
selection of the protein with the highest average expression
values (T3) and then opening its time-series profile (T4). This
was followed by prompting users to apply clustering (T5) and
then select the cluster of nodes containing the protein from
the previous task. Finally, participants were asked to apply a
layout in the time curve panel (T6) and observe the result-
ing visualization. Task completion times are represented in
Figure 30.
During T1 and T2, 3 of the 9 participants selected the

wrong type of loading in one of the two initial tasks. At this
stage of testing, the prototype utilized a single dropdown for
loading datasets from which users could choose between all
the supported types of data which may have contributed to
these user errors, and this was taken into consideration when
updating the user interface. While there were no significant
difficulties in solving T3 and T4, two participants took a sig-
nificant amount of time in exploring the tool and its different
panels. In T5 and T6, all of the participants were able to use
the menus to apply clustering and apply layouts on the time
curve, and the interaction with the latter model allowed for
the detection of specific usability problems when using the
timeline slider to pinpoint specific time points. We identified
this issue as deriving from a lack of visual feedback, as the
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FIGURE 30. Box plot of the time taken (in seconds) by all participants to
complete each of the interface tasks of the initial tests.

hovered nodes in the timeline slider were not highlighted in
the time curve.

After completing the final interface task, participants were
asked to associate the time curve to a temporal behavior
from these options: Stagnant, Erratic, Cyclical, No pattern,
or Other. To further understand the level of confidence in the
user’s previous answer, we asked them how clearly they were
able to perceive the previous pattern, if any, on a scale from 1
(Confusing) to 7 (Clear). 7 out of the 9 participants were
able to identify the pattern of the time curve as representing
multiple cycles, rating the clarity of the representation with
an average score of 5.6 out of 7. The remaining two users did
not think the visualization represented neither continuous nor
cyclical behaviors.

Finally, participants were asked to select how much they
agreed with several affirmations from a 1 (Strongly Disagree)
to 5 (Strongly Agree) scale, namely if they thought CroP was
easy to use or unnecessarily complex, if they needed more
time to learn how to use it, and if they could see themselves
using it in the future. The average distribution of the given
scores is represented in Figure 31, where participants gener-
ally agreed that CroP was accessible with 3.9, generally dis-
agreed that the tool was complex with 1.6, generally agreed
that they required more time to use CroP properly with 3.9,

and finally generally agreed that they could see themselves
using this tool in the future with 4.1.

C. EXTENDED INTERFACE TESTS
Following the feedback obtained from the previous tests,
we refined the interface and extended the tests to include
additional interface tasks and further model testing. These
tests were conducted with 26 college students, where 16 were
from the field of computational biology and 11 from infor-
mation science, with varying degrees of data visualization
knowledge and experience. Each user was initially introduced
to CroP through a video that presented an overview of its
functionalities, with minimal details, as well as a description
of the data and how it is represented. The test consisted of
16 tasks divided into 5 categories (T1 through T5), followed
by a set of five feedback questions, and ending with 10 ques-
tions regarding the visualization models, which are divided
into 3 categories.

For these tests we once again used the gene expression
time-series dataset of HIV-1 infection, not only so that these
tests could be potentially compared to those done previously,
but also due to the characteristics of this dataset continuing
to be favorable for user testing. Similarly to the previous
tests, participants began by loading the two datasets into the
tool. However, upon the data being loaded into the visual-
ization panels, users were encouraged to navigate the tool
freely to reduce the potential fear of interacting with a new
system. Participants were then directed to the data table panel
and asked to search for the protein with the highest degree
value (T2.1) and explore its proprieties to identify its highest
expression value (T2.2), then select the three proteins with
the highest degree values (T2.3) and filter that group off the
dataset (T2.4), and finally, to encourage the use of group
selection tools, they were asked to select a group of 16 points
and then simply deselect them (T2.6). The next set of tasks
involved a simple data analysis task directed at identifying a
particular subset of the data. First, participants were tasked
with clustering the dataset into five groups (T3.1) to then
identify and select the cluster of proteins with the lowest
expression values at 16 hours (T3.2). Afterwards, they were
asked to simply deselect the cluster (T3.3).

FIGURE 31. Score total given by participants for each of the affirmations in the feedback section of the initial interface
tests.
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FIGURE 32. Box plot of the time taken by participants with a biological
background to complete each of the interface tasks of the initial tests.
Groups of tasks that are similar with those of the initial tests,
in Figures 30, have matching colors.

In order to test the tools for analyzing temporal data, partic-
ipants were first tasked with changing the ‘‘Data Mapping’’
to tendency (T4.1) and then apply the ‘‘Forces’’ layout in
the time curve panel (T4.2). Given the initial complexity
of the time curves model for new users, we encouraged
participants explore the time curve panel during this time,
including changing the color scheme or the sliders that con-
trol the parameters of the layout. Then they were tasked
with observing the time curve to identifying time points with
similar tendency shifts (T4.3) and time point that mark the
largest variations in expression values (T4.4). The latter task
could also be solved by looking at the timeline graph, which
would highlight the time points where significant value shifts
had occurred. The final task focused on the user interface,
where participants were asked to create a new ‘‘Data Table’’
panel, then organize the workspace by moving and resizing
panels (T5). As CroP allows panels to be moved and resized
within a fixed grid, this task was meant to not only gauge
the difficulties of managing the workspace, but also detect
potential issues with CroP’s automatic panel adjustments,
such as overlap detection and resolution. In general, the only
observed issues being the location of the option to create new
panels and the initial learning curve of managing the panels,
although either of these issues were minor or rare.

Task completion time is represented for those with a
biological background in Figure 32, and those without in
Figure 33. Overall, participants with a bioinformatics back-
ground took an average of 24% longer to resolve tasks than
those with a visualization background, when excluding out-
liers. However, performing tests with this diverse group of
users helped us detect and correct not only prominent usabil-
ity problems, but also consider new actions. For instance,
when interacting with a minimized section in the options
sidebar, many of the users first tried to click the title of a
section to open it before using the plus button. As this would
allow users to more easily access or hide sections of the
interface due to having a wider clickable area, we changed
titles to also toggle sections open.

FIGURE 33. Box plot of the time taken by participants without a
biological background to complete each of the interface tasks of the
initial tests. Groups of tasks that are similar with those of the initial tests,
in Figures 30, have matching colors.

Participants were then asked to select how much they
agreed with four affirmations from a 1 (Strongly Disagree)
to 5 (Strongly Agree) scale, which related how easily they
used CroP, whether the data visualizations were easy to inter-
pret, whether they needed more time to learn how to use the
tool, and if they could see themselves using the tool to analyze
relational or temporal data. The distribution of answers is
depicted in Figure 34. Participants were also provided with
an open-ended question where they could write down any dif-
ficulties they felt when using the tool. In general, participants
thought the tool was easy to use with an average score of 4.4,
while the ease of interpreting the data representations got an
average score of 3.8. These difficulties in interpreting some of
the visualization models was also notable when participants
were asked if they needed more time to learn how to use
the tool, which got an average of 3.0. Based the obtained
feedback, CroP was considered to be generally intuitive and
easy to pick up despite the learning curve, having received
positive interest in regards to potential future use with an
average score of 4.4.

D. EXTENDED MODEL SURVEY
The model survey was performed immediately after the inter-
face tests with the same participants, and served to not only
continue our previous study on the efficacy of the time curves
model, but also to obtain feedback on our new visualization
models, namely the cluster glyphs. Regardless of their perfor-
mance within the interface tests, participants were provided
a quick introduction to the dataset, clustering, and time curve
layout with an example. The first set of questions presented
three time curves (Figure 35), each one accompanied with
multiple options for behaviors where participants were asked
to choose those that applied to each visualization. The first
time curve represented the HIV-1 infection dataset and over
88% of the participants were able to associate the circu-
lar pattern to a cyclical tendency, and about 73% correctly
interpreted these variations as being strong. However, 50%
also discerned small variations between time points, but this
may have been due to the close proximity of non-sequential
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FIGURE 34. Score total given by participants for each of the affirmations in the feedback section of the extended tests.

FIGURE 35. Three time curves shown to the participants of the third round of user testing, where they were asked to choose the behaviors
that were represented in each visualization.

time points, according to feedback. The second time curve
consisted of a single time-series without cycles but with
inconsistent variations. About 23% of the participants inter-
preted these shifts in variation as a cycle, likely due to the
time curve going up and down over time, and only 53% of
the participants discerned the existence of both moments of
strong and low variations of values. Finally, the third time
curve depicted the malaria virus dataset which represents a
single cycle with low expression variations. While 96% of
participants were able to identify the small shifts in variation,
only about 35% interpreted the overall shape of the time curve
as representing a cycle. The distribution of these answers is
displayed in Figure 36.

In order to obtain feedback on our cluster glyphs, we then
presented participants with a network visualization being
represented by three different glyphs (Figure 37). The first
glyph is miniature representation of a clustered network,
reducing each cluster into a circle whose size and color
represents the average proprieties of that cluster. The second
glyph abstracts the clustered network into a circular graph
by converting each cluster into a slice, where its color rep-
resents the average values, its size represents the size of
the cluster, and its relative position reflects the position the
cluster in the network. The third glyph consists of a bar chart,

FIGURE 36. Total behaviors perceived by all participants for each of the
time curves in the model questions of the extended tests; the most
prominent behaviors that are exhibited by each of the curves are marked
below their respective bar.

where each bar represents a cluster in color and size, while
its order reflects the horizontal position of clusters on the
network. After being presented with the glyphs, participants
were shown each one in a larger size and asked to rate the
comprehensibility of the glyph, from 1 (Strongly Disagree)
to 5 (Strongly Agree), first on reading value distribution
and then whether they required more time to understand the
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FIGURE 37. Three glyph representations of a network (1: miniature, 2: circular, 3: bars) at two different time points (top and bottom) used in the model
tests performed during the third round of user testing.

glyph. Then, the glyphs were presented in a smaller size,
which better portrayed how the glyphs are viewed on a time
curve, and participants were asked to rate their readability,
first on their legibility at a small size, and then on how
easy multiple glyphs could be compared. When presented
with each of the large glyphs, participants were provided an
explanation ofwhat each visual variable represented, and then
they were shown statements regarding that glyph’s compre-
hensibility. For the small glyphs, the statements reflected their
legibility and how well they could be compared to each other.
For each statement, participants could choose whether they
agreed or disagreed using a scale from 1 (Strongly Disagree)
to 5 (Strongly Agree) and the totals for the scores given are
displayed in Figure 38.While results showed that themajority
of participants agreed that theminiature networkwas themost
intuitive glyph of those presented, the remaining scores did
not show a clear preference, regardless of whether the glyph
was presented in a small or large size. We can, however,
note that the range of scores was higher for the evaluations
of the bar graph glyph in comparison to the circular graph
glyph.

Additionally, the test concluded with another open-ended
question, inquiring participants on any particular difficul-
ties, their preferred glyphs, and any additional feedback.
Here, 54% of the participants expressed a preference for
the miniature network as a large glyph, followed by 23%
preferring the circular graph glyph, while the remaining
either preferred the bar chart or had no preference. Regarding
the glyphs in smaller size, the support for all three glyphs
was once again balanced, although the bar chart was over-
all the least favorite among the participants that provided
feedback.

FIGURE 38. Sum of score values given by all participants for each of the
attributes of each of the three glyphs (G1: miniature, G2: circular, G3:
bars).

E. DISCUSSION
While in the experimentation chapter we were able to test
the ability of CroP as a tool for representing and analyzing
different types of data, it is only through user validation
that we can evaluate its usability and the comprehensibility
of the created visualizations. Our conclusions regarding the
interpretation of the time curves visualizations were gen-
erally consistent throughout all the tests, where we must
acknowledge the existence of a learning curve that is inherent
to a model that creates abstracted data visualizations. For
instance, in the preliminary survey, nearly half the partici-
pants misinterpreted the first time curve despite having cor-
rectly identified the cyclical behavior previously. However,
over 80% of participants were able to identify the behavior
that followed it, and most participants correctly answered all
of the questions through the use of time curves, with half of
these problems being answered correctly by over 90% of the
participants.

In the final model tests, some participants also misinter-
preted weak variations in the first time curve (Figure 35.1)
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and the existence of cycles in the second time curve
(Figure 35.2), which may have been a result of trying to
compare these visualizations to common linear graphs. Addi-
tionally, only a quarter of the participants identified a cycle
in the third time curve (Figure 35.3), although a contributing
factor may have been that the circle was not closed. However,
despite these difficulties, even participants with little experi-
ence with data visualization were able to discern prominent
behaviors, significant events and trends. As these visualiza-
tions were created from datasets containing thousands of
data points, these results show that it is possible for CroP to
create visualizations that comprehensibly represent complex
datasets and promote the discovery of meaningful patterns.
Regarding the cluster glyphs, we were able to take the fol-
lowing conclusions: while the miniature network was the
easiest to comprehend for participants, it appeared to be more
difficult to comprehend at a smaller size unless the graphical
elements were enhanced; regarding the other glyphs, the bar
chart glyphwas considered to be easier to follow and compare
due to its order of elements, while other participants preferred
the circular chart glyph due to its simplicity and circular shape
that matches the original nodes, unlike the former.

In what regards to testing CroP’s usability, the interface
tests that were performed contributed towards understanding
how coordinated multiple views facilitate the exploration
of multivariate datasets and whether visualization and data
analysis approaches promote the discovery of meaningful
relationships and patterns. As the initial interface tests were
performed by a small group of participants with low experi-
ence with visualization tools and data analysis, there existed
exceptional difficulties with concepts such as clustering.
However, despite their inexperience, most users were able to
navigate the tool and perform the indicated tasks, including
loading data, brushing nodes, applying filters and analyzing
data from their visual elements. These tasks were adjusted
and expanded in the extended tests, further testing the ability
of users to use CroP to analyze data, now with participants
from various fields of study. While those with low experi-
ence with visualization tools had on average the longest task
completion times, all of them were eventually able to solve
all of the data analysis tasks involving the data panel and
only 4 out of the 26 participants presented any significant
difficulties with the tasks involving network clustering and
the time curves. This showed how different types of users
were able to utilize the available tools to identify elements
or groups with specific proprieties, as well as analyze of
one dataset across multiple visualization panels to discover
different types of relationships.

Lastly, we can overview the results of the validation tests in
relation to the considerations needed to be taken to accommo-
date users with varying levels of experience into CroP. Many
of the preemptive measures that were taken with regard to
usability were based on the fluid interaction principles, with
particular regard to error prevention: failing to load a dataset
will return an appropriate error message and list of the lines
containing errors when appropriate; buttons and sliders are

clearly labeled, and uncommon features are accompanied a
help icon that describes the functionality; actions performed
on either the visualization models or the user interface give
immediate visual feedback. However, it was through valida-
tion with a wide variety of individuals that we were able to
obtain new insight into the development of CroP and resolve
issues that were not initially anticipated. This includes a
revision of not only interface elements, but also interaction
to be more intuitive, such as the addition of common key-
board shortcuts and data table selections. Additional visual
feedback was added to certain hovered elements, including
the addition of contextual information on the brushed data.
Moreover, the addition of varied color palettes options was in
response to feedback relative to some readability issues and
concerns with accessibility to potential colorblind users.

VII. CONCLUSION
Interactive visualization can be a powerful tool in data
analysis, providing the means to represent high-dimensional
datasets comprehensibly and an environment to explore these
datasets, discover new meaningful information and extract
new knowledge. In this paper, we focused on the represen-
tation and analysis of temporal and relational data, in partic-
ular those from biological fields of study as they are often
characterized as complex, due to their volume and high-
dimensionality. It is in this context that we presented CroP,
a new visualization tool that utilizes a coordinated multiple
views framework to provide a modular environment where
visualization panels can be placed and resized within a grid,
building a workspace that best suits the dataset being ana-
lyzed. These panels can be used to visualize relational, tem-
poral and multivariate datasets at different levels of detail,
providing users with several types of layouts and tools to
sort data points and variables in order to discover patterns of
relationships.

Regarding the visualization of time-series in particular,
we presented our implementation of the time curves lay-
out and demonstrated its ability to represent different types
of behaviors in time-series datasets. We complemented this
model with Time Paths, a parameter-based layout that dynam-
ically transforms time curve visualizations to represent tem-
poral behaviors with varying levels of sensitivity to shifts in
the data. By increasing the level of smoothing, the layout can
not only reduce visual clutter but also promote the represen-
tation of predominant behaviors. Additionally, we can more
easily control the visual proprieties of edges, which allows for
smoother transitions between time points that more clearly
represent the flow of time, including the creation of ani-
mated edges. The tool also features supporting visualization
elements aimed at facilitating the identification of specific
moments and behaviors in the timeline, particularly when
dealing with complex time curve visualizations. Specifically,
we implemented glyphs that represent the dataset at each
stage, a lens-based area brush that can be used to search across
groups of nodes and highlight those with similar proprieties,
and the timeline graph, which supports the exploration of
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complex time curve visualizations while providing a simple
visualization of the general shifts of data.

These functions and visualization models were demon-
strated through the representation and analysis of multiple
datasets with various levels of complexity. As discussed,
the network and data table panels were able to present the
datasets with different levels of detail, while providing the
means to create groups of data points with similar propri-
eties and explore the composition of these groups. In this
respect, the implemented layouts and clustering algorithms
helped in understanding the structure of each dataset, high-
lighting the diversity of patterns of variables while isolat-
ing potential noise. Moreover, the models developed for the
time curve panel were capable of representing different types
of behaviors over time, across both single time-series and
large datasets, highlighting periods of stagnation and cycles,
as well as events that mark significant shifts of values. Using
the glyphs, mouse lens and timeline graphs, we were able
to dig-down into these patterns and identify nature of their
respective behaviors and the nodes at their origin.

CroP and its visualization models were also subjected to
multiple tests with a wide range of participants from dif-
ferent fields of study, involving the navigation of the tool,
exploring a dataset and performing several tasks of varying
complexity. As expected, participants with less experience
with visualization tools presented longer times in completing
tasks, particularly with those involving the identification of
patterns in clusters and the time curve visualization. How-
ever, despite their limitations, most participants were able to
complete most tasks without issues, showing the ability to
navigate the tool’s multiple views, identify data points and
behaviors, as well as managing the workspace. In general, the
tests showed that a majority of users were able to use CroP,
regardless of their background and in spite of the amount of
time spent with the tool, with feedback being overall posi-
tive in regards to the tool’s usability and models. Moreover,
feedback was employed in the tool’s iterative development
and we were able to solve most of the detected issues, includ-
ing that of visualization tests served which was used in the
development of glyphs, visual feedback and addition of color
palettes.
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