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Abstract—Temporal datasets are a product of many scientific
disciplines and analyzing the events that they describe may help
provide valuable insight into their respective research subjects
and help move towards solutions to existing problems. Time-
series analysis is still an open problem which prompts new
solutions, particularly the discovery of patterns across complex
temporal networks. Visualization has proven to be a valuable
tool in the analysis of such datasets, with the emergence of
new models such as Time Curves, which distorts timelines
to position time points based on their similarity, creating
visualizations that highlight behavior patterns. In this paper,
we further explore time-series functionally and aesthetically
by revising the dynamic Time Curves models in CroP, a
visualization tool with coordinated multiple views. Firstly, we
propose the additional of new visual elements and interactive
functions, coordinated with a network visualization to help
discover and understand temporal patterns across complex
datasets. Secondly, we visually explore time-series through
Time Paths, a parameter-based force-directed layout that can
dynamically transform the original model to either highlight
small data variations or reduce visual noise in favor of overall
patterns.

Keywords-Data visualization, Time series analysis, Interac-
tive systems

I. INTRODUCTION

The analysis of temporal data has long been a topic of

interest in the field of data analysis, as multiple disciplines

must contend with the study of subjects which contain

a temporal component, such as the evolution of physical

organisms or the observation of processes affecting single

entities or complex networks [1], [2]. Visualization can be

a powerful tool in data analysis, providing users with the

means to navigate, brush and filter information through sim-

ple representations, or even provide new ways to visualize

the data that highlight patterns and significant moments [3],

[4]. Through this, it may be possible to obtain a deeper

understanding of the source of the observed behaviors, as

well as gain the ability to predict future events in the data.

In this paper, we propose new visual and interactive

approaches to explore and analyze time-series based on the

Time Curves layout [5], where timelines are bent using

multi-dimensional scaling to position time points relatively

to their similarity. These functionalities were implemented

into CroP, an interactive data visualization tool capable

of representing network and time-series datasets through

multiple coordinated views [6].

Our first contribution is a revision of CroP’s Time Curve

model, providing users with additional tools to dig-down

and analyze temporal behaviors and patterns. Specifically,

we present a lens-based approach that allows users to brush

across groups of time points displaying general time patterns

in order to identify the and analyze the data points at their

source. This analysis is assisted through the addition of

glyphs, which are able to represent instances of complex

datasets at each time point, and through coordination with

other views.

As our second contribution, we introduce Time Paths, a

force-directed layout that smoothens timelines according to

variable parameters, creating visualizations that can either

be more or less sensitive to variations in the data. While

increasing the level of smoothing further increases data

abstraction, this can be used to not only reduce visual clutter

and promote the representation of overall behaviors, but also

highlight significant events or outliers. Additionally, Time

Paths allow for additional control over the visual proprieties

of edges, which we explore by animating the flow of time.

II. RELATED WORK

A. Time Representation

Timelines have been used to describe sequences of events

across many disciplines for centuries, having had multi-

ple types of representations to help portray and analyze

time-series within various contexts [7]. M. Brehmer et al.

surveyed existing timeline visualizations in the context of

storytelling, in the sense of using these as a means to portray

information coherently and in such a way that it engages the

viewer [8], where linear representations were found to be the

most common, mapping the evolution of values across one

axis representing the flow of time.

While timelines can easily encode a small number of

variables through shape, size and color, this may not be

feasible in accurately representing complex systems chang-

ing over time, such as large networks where each time

point represents a different state for each data point. While

animation can be employed as a natural way to convey

changes over time, where each state of the entire system can
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be represented in successive frames, it is limited by human

perception capabilities, as people are more likely to only fo-

cus on significant changes [9]. Alternatively, complex glyphs

or small multiples can be used to show a representation of

the state of the data for each time point [10], while three-

dimensional graphs can map thousands of time steps [11].

However, showing every state simultaneously may signifi-

cantly increase the complexity of the visualization and the

excess of information could overwhelm viewers.

B. Time Curves

To manage visual complexity, visualizations may seek to

reduce the size of the information space, condensing visu-

alizations, or even aggregating groups into singular visual

elements. This often entails a loss of information in favor

of reducing visual noise and highlighting general patterns.

Bach et al. presented Time Curves [5], a visualization

model which utilizes multidimensional scaling to position

time points in low-dimensional space in such a way that

their relative distance reflects the similarity between their

attributes. This is achieved by calculating the similarity

between time points using data-specific metrics and then

applying a force-directed layout on the timeline to attract

time points based on their similarity, resulting in a bent

timeline whose shape reflects the behaviors of the data,

such as significant events, cyclical patterns, regressions and

outliers.

Elzen et al. [12] presented a similar concept which further

showed how this layout is able to represent the overall

behaviors of complex systems over time. In their work, the

properties of a network at each point in time are abstracted

into a point on a two-dimensional plane to build a Time

Curve, which will then portray the structural changes in the

network over time. Through the Time Curve it is possible to

identify the periods in which the network remained with a

specific structure, the moments when this structure changed,

the intensity of these changes, and when the network re-

turned to similar, previous structures.

C. Interactive Visualizations

Visualization tools can employ interactive functions that

provide users with the ability to navigate and filter the

data, giving them control over the amount of information

displayed on screen. Regarding navigation, visualization

tools can employ a details-on-demand approach by allowing

users control over the timeline to switch between time points

and visualize additional information through supporting vi-

sualizations [13], [14]. Switching between levels of detail

can also be achieved through semantic zooming, where the

amount of information displayed regarding each time point

increases as the user zooms in on a section of the time-

line [15]. Alternatively, analyzing different levels of detail

simultaneously has also been explored. VAST [16] is web-

based application that analyzes spatiotemporal datasets by

providing a high-level overview of the underlying structure

of the data at each level of detail, allowing users to identify

patterns across multiple levels of detail.

Filtering or highlighting information can be achieved

through queries. These can be performed indirectly through

user interface elements, such as search bars to find specific

values and sliders that set threshold values to filter less

relevant data, or directly through brushing, where data is

selected by interacting with its graphical representations. For

instance, TimeSearcher [17] and MaTSE [18] allow users to

select sections of time series data visualizations in order to

find temporal patterns that are similar to the one within the

selected area. Additionally, lens-based approaches can be

used as both a semantic zooming tool and as area brushes,

as they are controlled by users and can change the elements

and information located within their radius [19].

III. FRAMEWORK

The methods presented in this paper were integrated into

CroP [6], a visualization tool which employs a multiple

coordinated views layout to visualize user-provided datasets

at different levels of detail. It provides multiple visualization

models, including relational networks, tabular visualizations,

linear graphs, and an implementation of time curves. These

are contained within panels that users can move and resize to

tailor the work environment to different problems (Figure 1).

While CroP was designed for the analysis of biological

datasets, it is also able to process generic relational and

temporal datasets. Loaded networks can be integrated with

time-series data and then visualized in the network panel

(Figure 1.b), which allows users to explore how they change

over time through an interactive timeline slider. Time-series

data can also be clustered to create groups of nodes that

present similar temporal patterns. This is achieved through a

hierarchical clustering algorithm [20], which allows users to

set and dynamically switch between the number of clusters.

Data can either be clustered by values at each time point,

by the variation of these values between time points, or

by behaviors, a simplistic approach which simply looks

at whether values are increasing, decreasing, and when

these tendencies change. The most appropriate approach

will depend on the data and the type of relationships being

studied. These properties are portrayed using color, mapping

increasing values and variation from black to blue. When

color is used to represent behaviors, shades of blue represent

increasing values, with the strongest blue representing value

peaks, and dark tones represent value decreases, with black

showing valleys.

In this paper, our focus is on the Time Curve panel

(Figure 1.c), which allows users to discover the relationship

between time points through a visualization model based

on the layout presented by Bach et al. [5]. The following

sections describe our revisions to the model and the imple-
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Figure 1. Screenshot of CroP, representing a dataset through its multiple views: a data table (a) listing every data point, a network panel (b) showing
the data clustered into five groups, and a Time Curve panel (c), where the timeline has been bent to show groups of time points. One of these groups is
being brushed with the mouse lens (d), creating a pie chart that reveals the data clusters that present the most similar behaviors during the three selected
temporal instances, and also highlighting the corresponding clusters in the network visualization.

mented functionalities for visualizing and exploring time-

series.

IV. TIME CURVE PANEL

When temporal data is loaded into CroP, each time point

is converted into a node and displayed sequentially as a

timeline in the Time Curve panel, represented either as

a straight horizontal line or as a spiral, the latter being

used when the length of the former surpasses the width

of the window due to a large quantity of time points. The

default color scheme represents temporal progression from

the initial time point to the last using a gradient from black

to orange. Alternatively, the color can also portray similarity,

where nodes that are spatially closer will also be closer

chromatically. In regard to navigation, the mouse can be

used to pan, zoom and select time points. Furthermore, on

the bottom of the panel there is a slider that can switch

between time points while highlighting them in the top

visualization. Moving the slider will hide every edge except

those between the time points that the slider crossed. This

results in an animated transition that portrays the sequence

of time without the need for additional visual elements.

A. Bending Time

After the initial layout is loaded, the timeline can be dis-

torted through a force-directed layout comprised of springs

between every time node. The formula used to calculate the

force applied to each spring is based on Hooke’s law [21]

and each spring’s ideal stretching length is determined using

a similarity matrix, which was updated in regard to the

previous implementation. The calculation of the similarity

between two time points is now determined using mean

of the difference between their values and the difference

between their variation. We define variation as the difference

between the current value and that of the previous and next

time points. As such, the position of time points is based

not only on their current values, but also depends on how

they vary between each time step.

As a baseline, this model was tested using datasets con-

taining single time-series that depicted consistent behaviors.

For these experiments, we chose a time-series of 500 time

points depicting a sine wave and altered it to depict various

transformations over time. The resulting visualizations are

shown in Figure 2.

The visualization of the basic sine wave dataset resulted

in an oval consisting of overlapping loops, whose shape

represents the shifts in variation over time, while the number

of loops matches the number of cycles in the dataset (Fig-

ure 2.a). Regarding the transformations applied, changing the

minimum and maximum values changed the shape’s height,

which matches the changes to the amplitude of each cycle

(Figure 2.b). This was followed by an overall consistent
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increase to the values, which resulted in a matching gradual

position shift for the ovals representing each cycle (Fig-

ure 2.c). Finally, increasing frequency resulted in stronger

value variations. These were represented with increases to

the width of the cycle’s loops, making the larger variations

also more visually noticeable (Figure 2.d).

The model also continues to be able to handle multiple

time-series, where for each time point we calculate the

average similarity with every other data point. For instance,

CroP and Time Curves were presented in a previous paper

to represent a gene expression time-series RNA-Seq dataset

which described the fluctuations of expression across a

network of proteins in reaction to the HIV-1 infection over a

period of 24 hours [6]. Bending the timeline revealed cycli-

cal patterns, where the same groups of proteins presented

similar increases or decreases at different points in time.

As we tested the same dataset on the current model, we

were able to visualize the same groups displaying the same

temporal patterns, as shown in Figure 1.

B. Analyzing Temporal Patterns

A limitation of the Time Curves layout is that while

they can show the existence of general behavior patterns,

they provide no means to further understand their nature

without additional methods. As such, we are interested in

updating the model to not only portray the fluctuations that

originate existing patterns, but also provide the means to

dig-down and discern which data points are responsible for

these behaviors.

Our first challenge was to provide graphical representa-

tions of the dataset at each time point, to better understand

the similarities and differences between the instances posi-

tioned by Time Curves without having to rely on additional

views. Scalability is a consistent issue when dealing with

large datasets, as it may not be possible to properly portray

hundreds of thousands of data points at each temporal

instance through a simple glyph. To this end, we instead

chose to portray data clusters, as each one can represent a

consistent group of data points possessing similar temporal

profiles. As such, whenever the current dataset is clustered,

the visualization in the Time Curve panel is updated by

replacing the time nodes with pie chart glyphs (Figure 1.c).

Each slice represents one cluster, where the width of its arc

represents the number of nodes in the cluster and its color

corresponds to the average properties of every node in the

group at its corresponding time point. The width and order

of the slices is consistent across every glyph to facilitate their

comparison. This provides users with some perspective over

the amount of different temporal profiles within the dataset

and how their fluctuations relate with each other over time.

To further explore the relationships between each cluster

over time, we also introduced a lens-based approach that

provides an on-demand visualization to compare each time

step within a section of the screen. Right-clicking over the

Figure 2. Time curve visualizations of four datasets, with their correspond-
ing line charts below each one. The first dataset describes a sine wave (a)
and then three gradual transformations: an increase of its amplitude (b), an
overall increase of values (c), and an increase of its frequency (d).

Time Curve panel will create a circular area that follows the

mouse, allowing users to brush over multiple time nodes

simultaneously, which creates a pie chart visualization next

to the lens (Figure 1.d). This pie chart represents the average

of the time points selected, representing the same clusters

and maintaining the width and order of those used as glyphs,

where the colors of each slice now represents the average

of those selected. More importantly, the radius of each slice

is now variable, mapped to the similarity of each cluster

between the selected time points. The similarity between the

clusters is determined by calculating the standard deviation

between their properties. As such, slices with a wide radius

represent clusters whose behaviors are consistent across the

selected time points, indicating that the data points in those

clusters may be responsible for the initial patterns portrayed

by the time curves.

These selections are coordinated with the network panel,

where the transparency of each cluster is mapped to their
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similarity between the selected time points, making it easier

to identify significant clusters and isolate them through

filtering (Figure 1.b). Additionally, the scroll wheel can be

used to increase or decrease the size of the lens, and by

holding a key on the keyboard, nodes will remain selected

even when no longer within the lens, allowing users to

quickly brush through multiple distinct areas of the Time

Curve in order to compare specific time points between

them.

When analyzing the previously described HIV-1 dataset

through these new tools, it was possible to quickly identify

the groups of nodes that were presenting similar behaviors

at the same points in time. For instance, when using the lens

on the group of time points representing 4, 10 and 16 hours,

we can see from both the pie chart and the network that most

nodes present the same behaviors at these three instances, as

shown in Figure 1. In particular, we can discern a group of

nodes whose expression peaks at these time points, and three

other clusters that show nodes presenting either valleys of

expression or decreasing value tendencies. Furthermore, we

can also easily identify the one small cluster of nodes which

has no part in this particular pattern which of expression. The

new methods make the identification of these nodes and their

behaviors quicker, allowing users to select and isolate them

so they can be studied further.

V. TIME PATHS

Time Paths is a layout that smoothens an existing Time

Curve visualization by redrawing it with a brush controlled

by parameter-based attraction forces. This layout was created

visually explore Time Curves, giving users the option to

dynamically transform the original visualization to either

reduce visual noise in favor of portraying overall behavior

patterns, or emphasize variations in the data through abstrac-

tion.

A. Force-Directed Drawing

The brush that draws the Time Path consists of a moving

point which is first placed at the initial time point on the

original Time Curve, and it is then pulled towards the

following time point using a spring, calculated once again

using Hooke’s law and a fixed attraction strength. As the

brush is subjected to this attraction force, intermediate points

are left behind which map the brush’s route. After a set

number of intermediate points have been placed, the brush

is then pulled towards the next time point, in sequential

order. However, the new spring does not immediately replace

the previous one, as momentum is applied. In this instance,

we define momentum as a percentage value that determines

how quickly the attraction force to the previous time point

dissipates and the attraction force to the next point takes

its place. The brush continues moving across time points

sequentially until the final one, creating a new curve through

the intermediate points left in its path.

Through this, every edge becomes defined by a set of

points which provides us with increased control over their

visual representation, as color and size can be changed for

each segment. This allowed us to not only add gradual

transitions between the color and size of two time nodes, but

also introduce new elements, such as drawing arrows across

edges to convey direction. Additionally, we also added the

option to view the arrow particles moving across the edges in

their respective directions. The speed of the particles adapts

to the properties of each edge, increasing when edges are far

apart, thus conveying the intensity of the changes between

time points through movement.

B. Parameterization

We can define two main variables that control the brush’s

trajectory: the number of intermediate points, and momen-

tum. These are parameters that can be changed through

sliders in order to dynamically create new visualizations

with different levels of sensitivity to the original Time

Curves. Decreasing the momentum will result in the brush

converging towards the next time point faster, while in-

creasing it will cause forces to dissipate slowly and create

wider loops. Meanwhile, the number of intermediate points

between each time point controls the detail of each curve

and their transitions.

The calculation of a Time Path only needs to be performed

once for each set of parameters, as all of the intermediate

points are saved along with their properties. Additionally,

overlapping intermediate points will be removed in order to

clean the resulting artifact and hasten its drawing speed.

C. Experimentation

To test the Time Paths layout, we chose two single time-

series gathered from real events. These datasets were chosen

because they describe two cyclical behaviors with different

trends and minor variations throughout, allowing us to not

only test how the different parameters affect the resulting

visualization, but also demonstrate the ability of the model

to smoothen existing curves and reduce visual clutter, while

highlighting overall patterns and trends.

The first dataset describes ”Wolfer’s Sunspot Numbers”, a

yearly measurement of sunspots, small dark areas caused by

concentrations of the magnetic field flux on the sun’s surface,

from 1770 to 1869 [22]. This time-series contains 100

time points and presents cycles with similar minimums but

varying peak values, resulting from periodic value increases

of different intensities.

The second dataset depicts ”Monthly Milk Production”,

measuring pounds per cow from January 1962 to December

1975 [23]. The dataset contains 168 time points and is

characterized by a yearly production cycle with minor jumps

in variation and a consistent increasing trend until the final

five years, which present a stabilization in production.
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Figure 3. Visualizations of the ”Wolfer’s Sunspot Numbers” time-series, depicted as a line chart (1.), a Time Curve (2.), and then Time Paths created
using different parameters (3.) where the level of smoothening is increased (from a) to d)).

Figure 4. Visualizations of the ”Monthly Milk Production” time-series, depicted as a line chart (1.), a Time Curve (2.), and then Time Paths created using
different parameters (3.) where the level of smoothening is increased (from a) to d)).

In both cases, the Time Curve depicted each cycle with

circular patterns whose sizes and positions matched the

respective variations and trends observable in the dataset,

which is consistent with previous results (Figure 2). The

Time Path layout was then applied with four different sets

of parameters, increasing the level of smoothening with each

one. The results are depicted in Figures 3 & 4.

The first set of parameters (a) is the default, resulting in

a general smoothening of the time curve, but maintaining

sensitivity to smaller variations. More notably in Figure 3.a,

short variation spikes are drawn as loops, illustrating and

highlighting these instances. The following two parameter

sets feature an increased level of abstraction, caused first by

a reduction in the number of intermediate points (b), which

reduces the path’s detail, and then an additional increase in

momentum, which results in a slower change in trajectory

for the brush between time points. The third set in both

tests appears to have removed almost all visual clutter,

representing only the overall cycles through loops. Finally,

the last parameter set significantly increases momentum,

resulting in exaggerated depictions of their behaviors, in par-

ticular those featuring significant changes, such as the largest

value increases in the final five cycles of sunspots dataset

(Figure 3.d). In general, Time Paths were able to smoothen

the original visualizations, reducing visual perturbances in

favor of depicting the main cyclical behaviors, particularly

in the Sunspot dataset.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented new methods to further

discover and interpret the behavior patterns represented by

the Time Curves layout. We revised our implementation

of this layout in an existing visualization framework and

then demonstrated its ability to represent different types
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of temporal behaviors. The first methods seek to promote

the analysis of time patterns found across large volumes of

data points. Namely, we added glyph representations that

allow viewers to discern differences between the data at

different time points without the need for additional views.

Furthermore, we implemented a lens-based area brush that

can show which nodes present the most similar behaviors

between any group of time points. These methods helped

quickly discover the groups of proteins responsible for

cyclical patterns from the HIV-1 infection which had been

previously explored.

While these methods serve to analyze temporal patterns

by digging-down, we also explore temporal patterns visually

through Time Paths, a parameter-based layout that dynam-

ically transforms Time Curve visualizations to represent

the original behaviors with different levels of detail or

abstraction. Through the experiments performed, the model

showed to be able to not only represent different types of

behaviors over time, but also smoothen layouts to reduce

visual clutter and highlight overall trends. Additionally, Time

Paths gives additional control over the representation of

edges, which allowed for the creation of animated visual

elements that convey direction and variation more easily.

These elements combined with interaction, such as brushing

the timeline, may allow users to more easily understand

sequences of events and pinpoint important moments.

Regarding future work, the Time Paths layout presents

some limitations with very large time-series and should

be visually explored further, particularly in regard to edge

representation and overlap. While the application was able

to handle the representation of complex datasets with thou-

sands of time points with minor drops in performance,

it was not possible to completely eliminate visual noise.

In this regard, we intend to integrate techniques such as

node aggregation and edge-bundling to further promote the

portrayal of general behaviors and patterns. Additionally, we

should consider a more focused range of ideal parameters,

as well as autonomously suggest initial parameters for each

dataset based on their properties. Automation should also

be considered in temporal cluster analysis to reduce the

need for brushing, such as detecting temporal patterns and

highlighting nodes and clusters based on their impact in

these patterns.
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