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ABSTRACT

Generative adversarial networks (GANs) achieved relevant
advances in the field of generative algorithms, presenting
high-quality results mainly in the context of images. How-
ever, GANs are hard to train, and several aspects of the
model should be previously designed by hand to ensure train-
ing success. In this context, evolutionary algorithms such
as COEGAN were proposed to solve the challenges in GAN
training. Nevertheless, the lack of diversity and premature
optimization can be found in some of these solutions. We
propose in this paper the application of a quality-diversity
algorithm in the evolution of GANs. The solution is based
on the Novelty Search with Local Competition (NSLC) algo-
rithm, adapting the concepts used in COEGAN to this new
proposal. We compare our proposal with the original CO-
EGAN model and with an alternative version using a global
competition approach. The experimental results evidenced
that our proposal increases the diversity of the discovered so-
lutions and leverage the performance of the models found by
the algorithm. Furthermore, the global competition approach
was able to consistently find better models for GANs.
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1 INTRODUCTION

Generative Adversarial Networks (GANs) [9] are an adversar-
ial model that gained a lot of relevance in recent years, mainly
by the success in generative tasks. Even though GANs can be
applied in several contexts such as image, video, sound, and
text, the GAN model is popular for the impressive results
concerning the quality of created samples in the context of
images. The GAN model consists of two neural networks: one
generator and one discriminator, trained in an adversarial
way. A successful GAN training produces strong generative
and discriminative components.

Despite the compelling results, the training of GANs is chal-
lenging and is frequently affected by the presence of problems
such as the vanishing gradient and the mode collapse [3, 7].
Improvements over the original model were introduced to
handle these issues, but they are still a problem [2, 10, 24].
Alternatives loss functions such as in WGAN [2], LSGAN [17],
and SN-GAN [19] were proposed to improve the model. Be-
sides, architectural guides and strategies were developed to
minimize these issues [12, 22].

Another strategy to improve the training of GANs is the
application of evolutionary algorithms. In this context, recent
solutions were designed to improve the training process and
the quality of the outcome [1, 4, 5, 8, 27, 28]. These proposals
incorporate mechanisms such as neuroevolution, coevolution,
and spatial coevolution, making use of evolutionary pressure
to achieve efficient models.

Coevolutionary Generative Adversarial Networks (CO-
EGAN) [4, 5] is a solution inspired on NEAT [25] and Deep-
NEAT [18] that applies a coevolution model to evolve GANs.
Experimental results show that the model provides a more
reliable GAN training when compared to regular GANs in
equivalent scenarios. However, the lack of diversity evidenced
in the experimental evaluation affects the quality of the re-
sults, leaving space for improvement of the algorithm that
drives the evolutionary process. Thus, we study in this work
a mechanism of novelty to be applied in COEGAN in order
to improve the exploration of solutions. Quality Diversity
(QD) algorithms are a class of solutions that can be used to
enhance the population and produce a diversity of efficient
individuals [21]. At the best of our knowledge, no proposed
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solutions combining evolutionary algorithms and GANs use
novelty search or QD mechanisms in their approaches.

In this paper, we propose a new model combining concepts
used on COEGAN and a quality diversity algorithm for guid-
ing the evolution of GANs. Therefore, instead of strategies
such as the speciation based on NEAT to support evolution,
we propose the use of Novelty Search with Local Competition
(NSLC) [14], a quality diversity algorithm that uses mecha-
nisms of novelty in the search for efficient solutions. We aim
to improve the exploration of the search space and achieve
better models for generators and discriminators.

To validate our proposal, experiments were conducted
using the MNIST [13] and CelebA [15] datasets. We compare
the results between the original COEGAN approach and two
variations of our proposal: COEGAN with NSLC and with an
alternative using a global competition strategy. The results
evidenced that the exploration of solutions was improved
with the QD algorithm, leading to the discovery of more
efficient models for GANs. Besides, the global competition
version achieved the best results concerning the quality of
samples created by generators.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces concepts related to GANs, also describing
the works associated with evolutionary algorithms; Section 3
presents our approach to use a quality diversity algorithm
in the evolution of GANs; Section 4 displays the experimen-
tal results of this approach; finally, Section 5 presents our
conclusions.

2 BACKGROUND AND RELATED
WORKS

Generative Adversarial Networks (GANs) represent an adver-
sarial model composed of two neural networks: a generator
and a discriminator. The discriminator receives a dataset as
input and has to distinguish between samples of this dataset
and fake samples. The generator is responsible for produc-
ing synthetic data in order to fool the discriminator. As the
training progresses, both the generator and the discrimina-
tor improve their tasks, resulting in strong generative and
discriminative components at the end of a successful training.

The regular GAN training uses backpropagation and gradi-
ent descent in both neural networks. Thus, the loss function
of the discriminator is defined as follows:

𝐽(𝐷)(𝐷,𝐺) = −E𝑥∼𝑝𝑑𝑎𝑡𝑎 [log𝐷(𝑥)]−E𝑧∼𝑝𝑧 [log(1−𝐷(𝐺(𝑧)))].
(1)

For the generator, the non-saturating version of the loss
function is defined by:

𝐽(𝐺)(𝐺) = −E𝑧∼𝑝𝑧 [log(𝐷(𝐺(𝑧)))]. (2)

In Eq. (1), 𝑝𝑑𝑎𝑡𝑎 represents the dataset used as input to
the discriminator. In Eq. (1) and Eq. (2), 𝑧 is the latent space
used as input to the generator, 𝑝𝑧 is the latent distribution,
𝐺 is the generator, and 𝐷 represents the discriminator.

GANs are hard to train and a trial-and-error approach
is frequently used to get consistent results. The equilibrium

of forces between the discriminator and the generator is fre-
quently the cause of problems in training. In the vanishing
gradient problem, the discriminator or generator is so power-
ful that it becomes almost perfect in its task, leading to the
stagnation of training progress. The mode collapse occurs
when the generator captures only a small fraction of the input
distribution, limiting the diversity of produced samples.

In GANs, the Fréchet Inception Distance (FID) [11] is
often used to evaluate the performance of the generators.
The FID metric uses the Inception Net [26] (trained on
ImageNet [23]) to transform images into a feature space,
which is interpreted as a continuous multivariate Gaussian.
This process is applied to samples from the input dataset
and synthetic samples created by the generator. The mean
and covariance of the two resulting Gaussians are estimated
and the Fréchet distance between them is given by:

𝐹𝐼𝐷(𝑥, 𝑔) = ||𝜇𝑥 −𝜇𝑔||22 +𝑇𝑟(𝛴𝑥 +𝛴𝑔 − 2(𝛴𝑥𝛴𝑔)
1/2), (3)

with 𝜇𝑥, 𝛴𝑥, 𝜇𝑔, and 𝛴𝑔 representing the mean and covari-
ance estimated for the input dataset 𝑥 and fake samples 𝑔,
respectively. This metric is capable of quantifying the quality
and diversity of the generative model.

The use of evolutionary algorithms to train and evolve
GANs was recently proposed [1, 4, 5, 8, 27, 28]. The solu-
tions present a diverse set of strategies to not only overcome
common GAN problems but also to provide better quality
on the produced samples.

E-GAN [28] evolve GANs using a variation operator that
switches the loss function of the generator through gener-
ations. In this case, a single-fixed discriminator is used as
the adversarial for the population of generators, with the
former using a fixed architecture and loss function, and the
latter varying only the loss function. The architectures of the
generator and the discriminator are based on DCGAN [22].
In [8], Pareto set approximation was used in a neuroevolution
algorithm to evolve GANs. In this case, the architectures
of the networks are dynamic and change according to the
variation operators. Lipizzaner [1] uses spatial coevolution to
train GANs. However, the networks of the discriminator and
generator are fixed and only the internal parameters (e.g.,
weights) change through evolution. A further improvement
over Lipizzaner, called Mustangs [27], applies the E-GAN
dynamic loss function to the algorithm while keeping the
same spatial coevolution strategy of Lipizzaner.

COEGAN [4, 5] was inspired by NEAT [25] and Deep-
NEAT [18] to design an evolutionary algorithm for GANs,
using mechanisms such as speciation to protect innovation
during the evolution. In COEGAN, the fitness used for gener-
ators is based on the FID score (Eq. (3)). The use of FID was
designed to put selection pressure in generators and guide
the evolution of the population in producing better sam-
ples. For discriminators, fitness is based on the loss function
represented by Eq. (1).

Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]
is a well-known solution in the class of Multi-Objective Evo-
lutionary Algorithms (MOEAs) that uses an elitist method
to implement a Pareto-based search approach. In NSGA-II,
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an algorithm to sort solutions and determine nondominated
fronts is used on the generation of the next populations. Be-
sides, a crowding-distance computation is used as a second
criterion to prioritize solutions in less explored spaces. This
algorithm also uses an archive to keep the previously explored
solutions and improve diversity. Individuals are usually in-
serted into the archive using a probabilistic approach.

Quality Diversity (QD) algorithms are a family of evolu-
tionary algorithms aiming to find a diversity of viable solu-
tions for the target problem [21]. Novelty Search with Local
Competition (NSLC) [14] uses a Pareto-based MOEA, such
as NSGA-II, to promote the quality and diversity of solutions.
NSLC uses as objectives the quality and novelty of individuals
according to a local neighborhood. Therefore, when combined
with NSGA-II, NSLC does not use the crowding-distance
mechanism because the novelty criterion already produces
the desired diversity.

MAP-Elites [20] is another solution in the class of QD
algorithms. In MAP-Elites, an archive of phenotypes is kept
in order to explore the diversity of high-performing solutions.
Thus, at each step, an item of the archive is chosen to pro-
duce the offspring. Then, the performance is calculated and
the newly generated individual is placed into the archive in
the position determined by the feature space, replacing older
individuals in case of better performance. The MAP-Elites
algorithm was also considered to be the subject of this re-
search but the cost to explore and maintain an archive of
high-dimensional neural networks was considered too high.

3 METHODS

We describe in this section our proposal to use a Quality
Diversity (QD) algorithm to evolve GANs. This new model
is based on the original COEGAN proposal [4, 5], adapted to
be guided by a different evolutionary algorithm. Thus, first
we introduce the fundamentals of the COEGAN model. Then,
we describe our approach to applying the QD algorithm with
COEGAN.

3.1 COEGAN

In COEGAN, the genome consists of an array of genes that
are directly mapped into sequential layers of a neural net-
work, forming the phenotype of individuals. This approach
was inspired by NEAT [25] and its extension DeepNEAT [18].
The genes describe either a linear, convolution or transpose
convolution layer (also known as deconvolution layer), de-
pending on the type of individuals. Generators allow linear
and transpose convolution layers, and discriminators allow
linear and convolution layers. In addition, each gene holds
internal parameters specific to the type of layer. Parame-
ters such as the activation function, the number of output
features, and the number of output channels are subject to
variation operators.

The variation operators are based on mutation, with the
possibilities to add, remove or change genes. The addition
operator inserts a new gene into the genome. This new layer
is randomly drawn from a set of possible layers: linear and

convolution for discriminators; linear and transpose convolu-
tion for generators. The removal operation randomly chooses
an existing gene and excludes it from the genome. The change
operation modifies the internal attributes such as the activa-
tion function of an existing layer. In this case, the activation
function is randomly chosen from the set: ReLU, LeakyReLU,
ELU, Sigmoid, and Tanh. For dense and convolution layers,
the number of output features and channels can also be mu-
tated, respectively. The mutation of these attributes follows
a uniform distribution, delimited by a predefined range.

In COEGAN, the weights of parents are transferred to the
children whenever it is possible [4, 5]. This mechanism of
transference ensures that the information achieved on training
in previous generations is kept during the whole evolution
process. Therefore, not only the final models achieved by
COEGAN are important but also the entire process used in
the discovery of them.

Competitive coevolution was used to model the COEGAN
algorithm, creating two independent subpopulations of gener-
ators and discriminators. Thus, the evaluation phase matches
generators and discriminators for training and evaluation.
The all vs. all approach is used to pair each generator with
each discriminator in the regular GAN training algorithm.

A fitness sharing strategy is used to protect the species
and promote innovation. Therefore, each subpopulation of
generators and discriminators is divided into species. The
speciation mechanism was inspired by NEAT and aims to
promote innovation in the population, ensuring that recently
modified individuals will be trained for enough generations to
be comparable to older individuals with respect to the fitness
value. A similarity function comparing pairs of genomes is
used to group individuals into species.

At the evaluation phase, the fitness used for discriminators
is based on the loss function of the discriminator in the
original GAN model, represented by Eq. (1). For generators,
the fitness is the FID score, represented by Eq. (3).

3.2 Quality Diversity in COEGAN

In this work, we propose a new evolutionary algorithm to
guide the COEGAN training. Therefore, we replace the
NEAT-based evolutionary algorithm used in COEGAN with
an approach based on Novelty Search with Local Compe-
tition (NSLC) [14]. As originally proposed in [14], we use
Nondominated Sorting Genetic Algorithm II (NSGA-II) [6]
as the Multi-Objective Evolutionary Algorithm (MOEA) for
NSLC.

We kept some aspects used in COEGAN regarding the
genotype representation. Thus, in our proposal, the genome
and variation operators are the same originally used in CO-
EGAN, described in Section 3.1. The competitive coevolution
model is also the same used in COEGAN. Following we de-
scribe the differences and new aspects of the model proposed
in this work.

We designed the pairing between individuals at the eval-
uation phase according to the all vs. all coevolution model
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used in COEGAN. However, as NSGA-II uses an elitist ap-
proach to select individuals to form the next generation,
both the current population and the derived offspring should
be evaluated. For this, we match generators from the cur-
rent population with discriminators from the offspring, and
discriminators from the current population with generators
from the offspring population. This ensures the progress of
all individuals through generations, making it possible to
properly select them when targeting for quality and diversity.
The main drawback here is that now the double amount of
individuals should be evaluated, increasing the execution cost
of the algorithm. However, it is important to note that we
keep the same number of training steps for each individual
when compared to the original COEGAN approach.

Tournament is applied to select individuals for reproduc-
tion. As proposed by the NSGA-II algorithm, a dominance
operator is used to determine the result of the tournament
between a set of individuals. In this research, we use the
constrained version of the operator, ensuring that the popu-
lation does not deviate too much from the objective defined
by the fitness function. Thus, we use not only the concept of
dominance but also the feasibility of solutions.

NSGA-II designs the dominance operator using the rank-
ing of solutions determined by the nondominated sorting
algorithm, aiming to obtain solutions in the Pareto-optimal
front. The feasibility concept ensures that, when comparing
two solutions 𝑠𝑖 and 𝑠𝑗 , the fitness function meets the con-
straint 𝑓(𝑠𝑗) < 2𝑓(𝑠𝑖), otherwise 𝑠𝑗 is considered unfeasible.
In summary, the solution 𝑠𝑖 constrained-dominates a solution
𝑠𝑗 when 𝑠𝑖 is feasible and 𝑠𝑗 is not, or both solutions are
feasible and 𝑠𝑖 dominates 𝑠𝑗 . Note that one of the solutions
will always be feasible, i.e., the case that both solutions are
unfeasible is not possible.

The definition of the neighborhood is paramount to the
NSLC algorithm, being used in both the quality and diversity
criteria. In order to determine the neighbors of each indi-
vidual, we use the distance between the architectures of the
neural networks of individuals, which is directly defined by
the similarity between genomes. This distance is the same
used originally in COEGAN to group individuals into species.
Two individuals are considered equal if they have the same
genome, i.e., the same sequence of genes, disregarding other
characteristics like age or the number of samples currently
used in the training. It is important to note that the neighbor-
hood calculation considers not only the current population
but also the archive of previous solutions. This archive is filled
following a probabilistic approach, i.e., at each generation
individuals are inserted into the archive with a predefined
probability.

In NSLC, 𝑛 nearest neighbors of an individual are selected
to calculate the innovation and the competition objectives.
Innovation is defined by the average distance between the
individual and the neighborhood. The competition objec-
tive is defined by the number of neighbors the individual
outperforms with respect to the fitness value. In our pro-
posal, the fitness is the same used in COEGAN: Eq. (1) for
discriminators and Eq. (2) for generators.

The innovation criteria make it possible to better explore
the available architectures characterized by the genotype
representation. When combined with the strategy used to
calculate the competition score, different niches can be effi-
ciently explored to leverage the search space. Compared to
the original COEGAN approach, we expect to improve the
diversity of solutions and eventually find better results con-
cerning the FID score. In COEGAN, the number of species
is fixed and previously defined, being a limitation over the
capacity of innovation for individuals that need to survive
through generations to show consistent performances. In CO-
EGAN guided by NSLC, the exploration of the search space is
improved by the novelty criterion, using the quality definition
to guide the population through the objective of obtaining
better solutions.

4 EXPERIMENTS

To validate our proposal, we present an experimental analysis
of the application of Quality Diversity in the evolution of
GANs 1. Therefore, we conduct experiments using MNIST in
order to evidence the performance of the algorithm proposed
in this work compared with the original COEGAN model.
We also design experiments with an alternative version of
the solution which uses a global competition mechanism, i.e.,
the neighborhood is not limited by a constant 𝑛 and uses all
individuals available. We call this version of the algorithm
Novelty Search with Global Competition (NSGC), inspired by
the global competition approach experimented in [14]. There-
fore, we refer to the original COEGAN proposal, COEGAN
trained with the NSLC algorithm and trained with NSGC
as COEGAN, COEGAN+NSLC, and COEGAN+NSGC, re-
spectively.

The FID score was used to measure the quality of the
produced samples. Besides, the strategy proposed in [29] was
applied to present the visual distribution of image samples,
using t-SNE [16] to embed samples into a two-dimensional
space. Further experiments with the CelebA dataset were
made to compare our method with a non-evolutionary GAN
approach in a more complex dataset.

4.1 Experimental Setup

Table 1 lists the parameters used in our experiments. These
parameters were selected based on preliminary experiments
and the experiments presented in [4, 5]. The number of
generations used in all experiments is 50. Each population of
generators and discriminators contains 10 individuals. We use
a probability of 30%, 10% and 10% for the add, remove and
change mutations, respectively. The genome of generators
and discriminators was limited to four genes, representing
a network of four layers in the maximum allowed setup.
This setup is sufficient to discover efficient solutions for the
experiments with the MNIST dataset.

For the original COEGAN, we use 3 species in each popu-
lation of generators and discriminators. For COEGAN with
NSLC, the number of neighbors 𝑛 is limited to 3 and the

1Code available at https://github.com/vfcosta/qd-coegan.
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Table 1: Experimental parameters.

Evolutionary Parameters Value

Number of generations 50
Population size (generators) 10

Population size (discriminators) 10
Add Layer rate 30%

Remove Layer rate 10%
Change Layer rate 10%

Output channels range [32, 256]
Tournament 𝑘𝑡 2
FID samples 1024
Genome Limit 4

Species 3
Neighborhood size 𝑛 3
Archive probability 10%
GAN Parameters Value

Batch size 64
Batches per generation 50

Optimizer Adam
Learning rate 0.001

probability to insert individuals into the archive is 10%. The
global version of the QD algorithm does not limit the neigh-
borhood, using all individuals when calculating the novelty
and competition values.

Figures in this section display plots with curves represent-
ing the average of the results from 15 independent executions,
with a confidence interval of 95%.

4.2 Results

We present in this section the results of the experimental
analysis, comparing the solutions using the QD algorithm
with the previously proposed COEGAN model. First, we
present the results using the MNIST dataset. Then, we pro-
vide a further analysis with CelebA, a more complex dataset,
comparing our proposal with a regular GAN approach.
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Figure 1: Best FID Score on the MNIST dataset.

Figure 1 shows the FID score of the best individuals for
each generation when training with the MNIST dataset. We

Table 2: Average FID score of best generators after
training with the MNIST dataset.

Algorithm FID Score

COEGAN 36.8± 18.6
COEGAN+NSLC 35.2± 12.5
COEGAN+NSGC 24.3± 3.3

can see that the COEGAN+NSLC solution outperforms the
original COEGAN model by a small margin until half gener-
ations but has equivalent performance at the end. This effect
is mostly due to the increased exploration capability given by
the QD algorithm, which produces a more diverse population
but causes less focused evolution of more fitted individuals.
Besides, COEGAN+NSGC, the global competition variation,
has better performance than COEGAN+NSLC and the orig-
inal COEGAN approach. The results obtained by comparing
the global and local competition versions of the algorithm are
similar to results presented in [6], where the global version
also achieved better fitness than NSLC.

COEGAN COEGAN+NSLC COEGAN+NSGC

20

30

40

50

60

70

80

Figure 2: Boxplot of the FID score on MNIST
dataset showing the performance of best generators
computed for each independent run.

We can see in Figure 2 and Table 2 that COEGAN+NSGC
consistently achieved better results than the other solutions.
COEGAN provides more unstable results when compared
to the global approach, presenting a higher standard devia-
tion in FID values when trained with the experimental setup
described in Table 1. This effect is also present in the ex-
periments with COEGAN+NSLC, indicating that the high
diversity produced by our experimental setup affects the re-
sults with respect to the FID score. Therefore, we conclude
that the diversity provided by COEGAN+NSGC is sufficient
to achieve better results in our approach to train GANs.

To support our analysis, we statistically test the signifi-
cance of our findings. We assume that the results do not follow
a normal distribution, as the normality test (Shapiro-Wilk,
𝛼 = 0.05) rejected this hypothesis for COEGAN and CO-
EGAN+NSLC (𝑝 < 0.001). Then, we used a non-parametric
test (Mann-Whitney U, 𝛼 = 0.05) to perform a pairwise
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comparison between the solutions evaluated in this work.
We found that the improvement of COEGAN+NSGC over
COEGAN is statistically significant (𝑝 = 0.008). Moreover,
the performance improvement of COEGAN+NSGC over CO-
EGAN+NSLC is also statistically significant (𝑝 = 0.0001).
We found no statistical difference between COEGAN and
COEGAN+NSLC (𝑝 = 0.17). Further experiments should be
performed to assess the influence of the experimental setup
in these results.
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Figure 3: Average FID Score on the MNIST dataset.

We also show in Figure 3 the FID scores of all individuals
in the population of generators when training with MNIST.
This result evidences that COEGAN+NSLC has a better
exploration of the search space, increasing the diversity and
leading to the discovery of not only good individuals but
also less efficient solutions. The local competition approach
used in NSLC has a stronger effect on the protection of
innovation, as the competition calculation uses the fitness
values from similar individuals, i.e., it uses the 𝑛 closest
neighbors concerning the architectural similarity. The effect
of this is the discovery of niches that are not efficient in terms
of fitness. In the scenario of global competition, individuals
have to outperform a broader range of solutions in order to
survive through generations, leading to the convergence of
better models.

Figures 4 and 5 display the average number of samples used
in the training process for all discriminators and generators in
the population, respectively. In these charts, we confirm the
effect of the novelty strategy applied in our solution, which is
more evident in Figure 4. These results evidence that newer
individuals were more frequently selected through genera-
tions in the solutions based on the QD algorithm, resulting
in fewer training samples directly seen by them (new individ-
uals can have new genes introduced by variation operators).
As expected, we also show that novelty is more present in
the local competition solution when compared to the global
competition version.

Figures 6 and 7 provide additional support for this analy-
sis, showing the number of samples used in training of the
best individuals in the population of discriminators and gen-
erators, respectively. The curves follow a similar behavior
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Figure 4: Average number of samples used to train
all discriminators with MNIST.
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Figure 5: Average number of samples used to train
all generators with MNIST.
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Figure 6: Average number of samples used to train
best discriminators with MNIST.

of Figures 4 and 5, evidencing that best individuals at each
generation also present more innovation in the solutions using
COEGAN+NSLC.

A difference in the novelty effect is evident when comparing
Figure 4 to Figure 5 and Figure 6 to Figure 7. The effect of
innovation is more evident for discriminators (Figures 4 and
6) than in the results with generators (Figures 5 and 7). We
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Figure 7: Average number of samples used to train
best generators with MNIST.

attribute this difference to the choice of fitness functions. As
concluded in [4], the FID score used in generators is a more
reliable metric than the loss function used in discriminators.
This affects the quality criterion used in the NSGA-II opti-
mization method, making the selection of better individuals
more assertive. However, further experiments are required to
confirm this effect on innovation in the populations.

To better study the quality and diversity achieved by our
model, we present in Figure 8 the distribution of samples
produced by the best generator at different steps of the
training process in one execution using the COEGAN+NSGC
approach. Samples are placed in a 40× 40 grid, positioned
according to t-SNE 2. For this, 1600 samples from each case
were used in the t-SNE training and a discretization function
is applied to place these samples into the two-dimensional
space. This method results in some overlapping samples,
which indicates the level of diversity obtained by a model, i.e.,
fewer overlapping samples is evidence of better representation
of the latent space.

Figure 8(a) represents the distribution of the MNIST
dataset, i.e., the variety of samples used in training. We
can see in Figure 8(b) that, at the initial stage, the samples
are noisy and do not resemble images from MNIST, creating
a high number of overlapping samples. In generation 10, rep-
resented by Figure 8(c), the distribution of samples is more
close to the presented in Figure 8(a), although we can still
see some lack of quality and under-representation of some
digits. Figure 8(d) shows samples produced after the whole
evolutionary process. These samples have better quality and
preserve diversity, resulting in 1077 overlapping samples, even
lower than the 1121 overlapping samples presenting in the
MNIST dataset.

To assess the efficiency of our solution in complex datasets,
we used COEGAN+NSGC, the best performing version of the
proposed algorithm, to conduct experiments with CelebA [15].
For the sake of simplicity, we reduced the type of layers only
to convolution and transpose convolution layers when adding

2An expanded version of these images using a 120×120 grid is available
at https://github.com/vfcosta/qd-coegan.

(a) MNIST dataset

1121 overlapped samples

(b) Generation 1

1436 overlapped samples

(c) Generation 10

1189 overlapped samples

(d) Generation 50

1077 overlapped samples

Figure 8: Distribution of samples using t-SNE with
the MNIST Dataset. We show samples (a) from the
input dataset, the best generator at the (b) first gen-
eration, (c) after ten generations, and (d) at the end
of training. We fed t-SNE with 1600 samples from
each scenario and used the results for positioning
them into a two-dimensional space. The number of
overlapped samples is displayed for each case.
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Figure 9: Best FID Score on the CelebA dataset.

a new gene, excluding the linear layer from the set of possibili-
ties. Besides, the activation functions were restricted to ReLU
and Leaky ReLU in the mutation operators. The populations
of generators and discriminators contain 5 individuals each.
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The images from the CelebA dataset were rescaled to 64×64.
To handle images of bigger sizes, we increased the genome
limit to 5 and the number of batches per generation to 200.
The remainder of the parameters is the same presented in
Table 1.

We compare the results of our approach with a regular
GAN that uses an architecture based on DCGAN [22]. In the
DCGAN-based experiments, the architecture of the genera-
tor and the discriminator is composed of four layers. Previ-
ous experiments with neural networks using five layers were
conducted but the results were more unstable, making the
four-layers version more suitable for comparison with CO-
EGAN+NSGC. It is important to note that we ensure the
DCGAN approach is trained with the same number of sam-
ples of an individual in COEGAN+NSGC. Therefore, we
define one training epoch as the training of DCGAN with
1000 batches. For COEGAN+NSGC, one training epoch is
equivalent to one generation of the evolutionary algorithm.
As we use the all vs. all pairing approach, each individual is
also trained with 1000 batches per generation (5 individuals
times 200 batches).

Figure 9 presents the progression of the best FID score
when training with CelebA. We can see a smooth progres-
sion of the FID in the COEGAN+NSGC approach, lead-
ing to a final result consistently better when compared to
the DCGAN-based solution. In DCGAN, FID varies during
the training epoch, demonstrating spikes during the process
mostly due to the occurrence of common stability issues on
the GAN training, such as the mode collapse problem [3].
This is evidence that our approach provides more stability on
GAN training when compared to regular GANs with similar
architectures.

Figure 10 shows samples created by both approaches
when trained with the CelebA dataset. Figure 10(a) dis-
plays samples created by the DCGAN approach after the
final epoch when issues were observed in training. This is an
example of the resulting effect of a spike that occurred in
the DCGAN training. In Figure 10(b) we can see samples
produced after training with COEGAN+NSGC. Although
spikes are not present, the quality of samples produced by
COEGAN+NSGC is not perfect, being worse than state-
of-the-art GANs trained with CelebA [29]. Further exper-
iments should be executed to assess the capability of CO-
EGAN+NSGC to achieve better results concerning the FID
score in larger experimental setups.

5 CONCLUSIONS

In this paper, we have investigated the application of a quality
diversity algorithm to train and evolve Generative Adversarial
Networks (GANs). GANs are capable of producing strong
generative models, but the training procedure is hard and
stability issues frequently affect the results. Furthermore,
the hand-design of efficient models is a time-consuming task,
worsen by the inconstancy of the GAN training.

Evolutionary algorithms were recently proposed to im-
prove the training of GANs and to provide the discovery of

(a) DCGAN (b) COEGAN+NSGC

Figure 10: Samples created by (a) DCGAN after
collapsing in final training epoch and by (b) CO-
EGAN+NSGC after training.

efficient generative models. COEGAN uses coevolution with
an evolutionary algorithm inspired by NEAT to train GANs.
However, the lack of diversity and premature optimization
leave room for improvement of the solution.

We propose in this paper the extension of COEGAN to use
a Quality Diversity (QD) algorithm in order to improve the
exploration of the search space. Therefore, we design a new
evolutionary algorithm that combines COEGAN with the
approach used in the Novelty Search with Local Competition
(NSLC) algorithm.

The experimental results show that the use of QD to guide
the evolution of GANs improved the diversity in the popula-
tion, leading to the discovery of better models. Furthermore,
experiments with a version of the algorithm using global
competition evidence that we can consistently outperform
the previous results of COEGAN in the MNIST dataset. Ex-
periments with the CelebA dataset indicate that our proposal
provides a more stable training when compared to a regular
GAN based on the DCGAN architecture, avoiding problems
such as mode collapse and vanishing gradient.

As further works, we pretend to explore our quality diver-
sity approach and extend the experimental setup to increase
the capability to discover better models when training in
complex datasets. Besides, new architectural components
recently proposed for GANs can be incorporated into the
model to enhance the population of individuals represented
by our solution.
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