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ABSTRACT 

In the last decade, Deep Learning (DL) algorithms have been 
increasing its popularity in several fields such as computer vision, 
speech recognition, natural language processing and many others. 
DL models, however, are not limited to scientific domains as they 
have recently been applied to content generation in diverse art 
forms - both in the generation of novel contents and as co-creative 
tools. Artificial music generation is one of the fields where DL 
architectures have been applied. They have been mostly used to 
create new compositions exhibiting promising results when 
compared to human compositions. Despite this, the majority of 
these artificial pieces lack some expression when compared to 
music compositions performed by humans. In this document, we 
propose a system capable of artificially generating expressive 
music compositions. Our main goal is to improve the quality of 
the musical compositions generated by the artificial system by 
exploring perceptually relevant musical elements such as note 
velocity and duration. To assess this hypothesis, we perform user 
tests. Results suggest that expressive elements such as duration 
and velocity are key aspects in a music composition expression, 
making the ones who include these preferable to non-expressive 
ones.  
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1  Introduction 
The efficiency of machine learning algorithms is remarkable when 
considering its applications. From content filtering to 
recommendations these algorithms have proved their adaptability 
and effectiveness when applied to user-based services [14]. 
Besides commercially oriented applications, these artificial 
learning methods showed promising results in different areas, 
especially in content recognition (such as faces or objects) and text 
transcription from speech. All this is possible using DL - a branch 
of ML - which allows computational models composed by multiple 
processing layers to learn representations of data with several 
abstraction levels [14]. Over the past recent years, we have been 
witnessing the re-emergence of DL algorithms due to 
technological advances but also because of the current amount of 
data that is available to the average user, which did not exist 
before [8]. These recent advances have shown that the plasticity 
of DL algorithms are not limited to simple classification problems. 
In fact, a new field related to artificial arts [8] holds the application 
of these techniques to content generation such as image 
(generating paintings or style transfer), texto 
(composing poems, for example) and music. Regarding the latter, 
different approaches have been studied to assess the ability of 
ANN to learn musical structures and generate music composition. 
Yet, only a few have taken into consideration music aspects 
besides note sequences.  
 
Human and computer performances can be compared through 
files containing musical elements. For instance, a live human 
performance can be recorded and converted to a MIDI file, in 
which are encoded notes, durations and velocities (i.e. intensities). 
When opening the file in a software like GarageBand or 
MuseScore, we can hear the piece exactly as it was performed. 
This is where the computer performances meet human ones. As 
such, our computational model is capable of learning how to 
generate expressive sequences (i.e. duration and velocity) that are 
then converted into a readable file. Although we are aware that 
many other musical expressive elements may exist, we decided to 
work with these two for the purpose of this experiment. 
 
Studies performed by Filippo Carnovalini and Antonio Rodà 
pointed out the importance of expressiveness in a musical 
composition [10]. The authors argue: "the aspect of expressive 
performance is often overlooked by researchers in algorithmic 
composition", meaning that in most cases, this type of algorithms 
only learn how to generate the pitch and the quantized duration 
of notes, regardless of the dynamics [10]. Additionally, research 
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on music psychology has suggested that expression and dynamics 
in a piece are important aspects of music that avoid a music 
composition from sounding 'mechanical' when performed by a 
computer [9]. 

 
Designing an ANN to produce extremely good melodies has been 
proved to be a difficult task itself, as it is hardly comparable to 
human compositions. Google Brain's Team Project Magenta 
developed what might be one of the few models in which 
expressive factors have been taken into consideration [1] [4]. 
Although most of the Project Magenta's models are open source, 
it would be beneficial to have total control over the architecture 
and model itself, especially when handling expressive elements as 
it was important to assess the influence, they might have on music 
compositions. For such, we conceived a model not only capable of 
generating pleasant melodies but also capable of applying 
expressive variations to the notes.  
 
In this article, we detail a model based on Recurrent Neural 
Networks (RNN) - particularly Long Short-Term Memory (LSTM) 
- that generates a series of artificial expressive compositions. The 
generated compositions are tested along with human 
performances in order to study the influence that expressiveness 
has on musical compositions. 
Our contribution to the field comprehends a framework to 
improve a music piece by applying expressive elements on top of 
the melody.  With this, we'll be able to better understand not only 
their importance but also how they might be used to improve a 
musical composition. Additionally, our model can be seen as an 
auxiliary tool to creatively aid human in expressive music 
composing.  

2  Background 
In this section, we briefly address topics regarding research on 
artificial music generation. 
 

2.1 Music Elements 
The main component of a music composition is the sequence of 
notes that make the piece. Notes vary according to their pitch. The 
pitch of a note is how loud it sounds (i.e. regarding its frequency). 
There are seven notes represented by letters: A, B, C, D, E, F and 
G (la, si, do, re, mi, fa and sol in Romance languages), naming all 
the natural notes within one octave (including Sharps and Flats) 
[20]. A sequence of notes results in a melody. A melody can be 
either monodic - or monophony - (only one note is played at the 
same time) or polyphonic (more than one note can be played at 
the same time) [8]. Among the expressive elements in study we 
have duration and velocity. Duration specifies the amount of time 
a certain note must be heard (i.e. last) [20] whereas velocity relates 
to the note intensity (i.e. how hard the note was/must be played). 
In the present work, we explore notes' pitch besides notes' 
duration and velocity.  
Although these elements are described or written on a musical 
sheet, factors like duration and velocity are subject to variations 
concerning the performer himself: one must not rely on the fact 
that a performer plays a note according to the specified duration 
in a perfect manner (i.e. with no delay). The same idea applies to 

velocity, where different performers naturally apply different 
intensities throughout a certain piece. 
Keeping this information in mind, it is interesting to observe that 
some factors affecting how a musical composition is perceived are 
actually not part of the composition itself (at least the written part 
of it), but rather subject to various interpretations of the 
performer. 

2.2 LSTM 
RNNs (a class of ANN) are dynamic systems - meaning that their 
internal state changes over time on the course of multiple 
iterations. This dependency on previous states introduces a notion 
of time to the model making it capable of handling sequences with 
greater accuracy [16]. In practical terms, the network processes 
an input sequence (one element at a time), keeping in its hidden 
units a 'state vector' containing information about the history of 
all the past elements of that same sequence [14]. This ability to 
memorize events is a key factor when applying RNNs to tasks 
such as predicting the next word in a sequence [14] [17]. Although 
this seems an almost perfect scenario to handle sequences and 
state dependencies, RNNs had been found to be difficult to learn 
to store information on long-term [14] [16]. The main problem 
causing this harness is the nominated vanishing or exploding 
gradient problem [16] [5]. 
 
One way to overcome this is by augmenting the network 
including in it a state of explicit memory [14]. Originally proposed 
by Hochreiter and Schmidhube in 1997 ([6] and [13]) LSTM 
networks solve this specific problem [14]. LSTMs are a special 
kind of RNNs capable of learning long-term dependencies, 
explicitly designed to avoid this issue [19]. This is possible as these 
artificial networks use a special hidden unit (a memory cell) that 
works as an accumulator. In specific, this means that it copies its 
own real-valued state and accumulates the external signal but also 
that it learns to decide when to erase (or forget) the content of that 
memory [14]. The effectiveness of LSTMs on handling sequences 
when compared to usual RNNs was one of the main reasons that 
led us to follow this architecture as an initial approach, as music 
composition is highly correlated with sequences.  In the following 
section we discuss some related work on artificial music 
generation using LSTM-based approaches. 

2.3 Related Work 
Regarding content generation, some research and experiments 
presented multiple architectures when addressing artificial music 
compositions problems [8]. We focus on LSTM-based models to 
generate musical compositions due to the good performance of 
LSTM when dealing with long sequence predictions. In 2008, 
Douglas Eck et al. [12] introduced a “music-specific sequence 
learner" using an LSTM architecture. As explained by the authors, 
this specific type of architecture was chosen based on the need of 
dealing with long-term sequences once "LSTM's architecture is 
designed to allow errors to flow backwards in time without 
degradation" - a consequence of the absence of the already 
mentioned vanishing gradient problem. The network was trained 
using a MIDI dataset in order to generate music. The results were 
reported as positive in the sense that the model could learn 
musical structures and long-timescale dependencies in a time 
series. As this research was conducted mainly to get a better 
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understanding of how LSTM units would perform in this field, this 
specific model does not concern performed music [12]. 
A few years later, Aran Nayebi et. al (2015) compared the 
performance of LSTM and Gated Recurrent Units (GRU) - an 
architecture similar to LSTM - regarding musical generation [18]. 
With this specific experiment, the authors aimed to produce 
compositions that sounded unique and musically coherent and 
also analyze through comparison the performance of both 
architectures. In addition, this test was conducted using raw audio 
waveforms as an input (i.e. training data). As the authors reflect, 
the pieces generated by the LSTM architecture "were significantly 
more musically plausible than those of the GRU". 
 
Another experiment strengthens the LSTM's capability of 
learning sequences of musical events - this time with training data 
represented as text [11]. On their research paper "Text-based 
LSTM networks for Automatic Music Composition", Keunwoo 
Choi et. al (2016) present a model consisting of a text-based LSTM 
designed to learn relational patterns in text documents 
representing chord progressions and drum tracks - considering 
the scope of our work, we have analyzed the chord progression 
results. An interesting point of this experiment is the assumption 
taken by the authors, who assume that “there is no constraint on 
the form of the text representation of music” in order to observe if 
the network is able to learn musical patterns and structures based 
on such a "weak assumption" [11]. As a global view of the gathered 
results, the authors conclude that both architectures provided 
well-structured results, detailing that the networks learned "the 
local structures of chords and bars after a sufficient number of 
iterations". 
 
In 2017 Feynman Liang et. al. presented the "BachBot", an end-to-
end automatic composition system designed not only to compose 
but also to complete musical compositions in the style of Johann 
Bach (chorales) using LSTM. To test BachBot's generated pieces 
success in a measurable way the authors developed a publicly 
accessible musical discrimination test provided online. The results 
gathered after the tests phase showed that the participants 
distinguished BachBot creations from Bach ones only 51% of the 
times, which the authors consider being a suggestion that 
"BachBot successfully composes and completes music that cannot be 
distinguished from Bach significantly above the chance level" [15]. 
As we mentioned before, Google Brains' Project Magenta [1] has 
also used RNNs to generate musical compositions. Performance 
RNN model is also based on a LSTM architecture designed to 
generate music with expressive timing and dynamics [4]. As 
detailed by the authors, this model was thought considering the 
essential role dynamics and expressiveness play in music [4]. The 
Performance RNN was trained with MIDI files of live piano 
recordings, having a vocabulary consisting of some MIDI events 
(such as duration and velocity). The results are presented as 
excerpts around 30 seconds each and described by the authors as 
lacking overall coherence but still "quite expressive". This type of 
network and model are - to our knowledge - the closest to our 
intentions in the sense that it takes into consideration the 
expressive factor of a musical composition. 
 
 
 

3  Model 
In this section, we detail the architecture used to build our model, 
as well as all its functional process and generated results. 
Although the previously mentioned Magenta's models are open 
source, we had the need to create our own model. This allowed us 
to have total control over the implemented architectures and to 
perform different settings as the model improved. In this section, 
we detail the model implementation. Figure 1 illustrates an 
overview of the model. 

3.1 Architecture 
The model is composed of three independent LSTM-based 
networks, each one assigned to train sequential relationships 
between specific elements - Notes Network, Velocities Network 
and Durations Network. Each network holds the same structure: 
three LSTM layers with 100 neurons each, three Dropout layers 
[7] set to 0.3 and two Dense (fully connected) layers - the first with 
256 neurons and the last one with the number of the existent 
vocabulary, using 'softmax' as the activation function and a 
categorical cross-entropy loss function. The sequence below 
illustrates the layer-architecture used. 
 
Input à LSTM à Dropout à LSTM à Dropout à LSTM à 
Dense à Dropout à Dense à Output 
 
Regardingthe training sessions, we have found Adam optimizer to 
provide better learning performances when compared to Root 
Mean Square Propagation (RMSProp) and Stochastic Gradient 
Descent (SGD), particularly when training Velocities Network 
and Durations Network. 

3.2 Process 
The model receives MIDI files as an input. These files are then 
parsed using Music21 library [3], resulting in three different 
musical elements vectors (notes, velocities and durations). Each 
network is trained regarding its own assigned element to learn its 
relational patterns. After such, each network generates its own 
vector that is combined with the others to generate the artificial 
composed piece (i.e.  a vector with all notes and respective 
velocities and durations). This final vector is then converted to a 
MIDI file resulting in the final audible piece.   
 
The decision of building a model comindependennetworks was 
taken based on time limitations and computational constraints. 
We can illustrate this by looking at the information given to the 
model as training data. Each note extracted from a MIDI file has 
several attributes, among which we find velocity and duration. 
This means that before separating the data into three different 
vectors, a note is, in fact, a block (or an object) with both 
expressive elements appended. With that, for instance, a 'G' note 
with a duration of 1.0 (equivalent to a quarter note) is seen as 
different from a 'G' note with a duration of an eighth note. This 
would hinder the learning process, making it harder to find 
sequential patterns among notes, velocities our durations. If we 
were to keep a single network to learn from these 'full' blocks we 
would then need a significantly more powerful network, a much 
large dataset and consequently more training time. We have 
decided to address this issue by creating three independent 
networks, each in charge of learning from each set of elements. 
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The representation methodology is the same for each vector 
element. We encoded each element by addressing an integer to 
each unique value, forming a new vector of integers representing 
the sequences. The latter is then converted into a binary class 
matrix to match the network's parameters.  

 

 
The Notes Network was trained using a dataset composed of 36 
Johann Bach MIDI files (a total of 60382 notes). Once that 
Velocities Network and Durations Network were both in charge 
of learning expressive elements, we used a dataset composed of 
various MIDI files recorded from live performances - also of Bach 
compositions - provided by Yamaha International E-Piano 
Competition [2]. We selected the number of live performances 
files to contain a close number of elements (having 62611). The 
choice of using a dataset performed by humans was based on two 
major points: First, although note durations are written and 
specified on a musical sheet, we can not rely on the fact that a 
performer is capable of following those exact timings with no 
delay or latency - which, in fact, could be easily done by a 
computer and therefore deviating from a human 'feel'. Secondly, 
most MIDI files used in Notes Network had a default velocity 
value assigned to each note, where live performances files had 
registered every single intensity throughout all compositions. 
Overall, the full model took about 2 months of training until all 
networks showed significant improvements. (1 month for Notes 
Network and two weeks for Velocities and Durations Networks) - 
due to computational constraints, the training sessions were 
performed separately.  

3.3 Artificial Expressive Music Generation 
In order to evaluate the model's capability to produce expressive 
music, several compositions were generated. 
We began by listening to 30 artificially generated pieces and then 
identified the consonant melodies of the compositions that we 

considered to have an interesting sequence of notes or variations. 
Afterwards, we selected the ones resembling expressiveness, that 
is the ones we considered being the most expressive. The decisions 
made on expressiveness were based on the full compositions, that 
is, we did not focus on a particular expressive element at this stage 
(durations or velocities) but rather at the impact that both could 

have on the music composition (and performance). This selection 
process resulted in a final set of 8 musical compositions (i.e. 
potential compositions to be used in User-Testing). We analyzed 
some of these pieces regarding their expressive patterns in 
comparison to non-expressive ones. Figure 2 and Figure 3 
illustrate the graphical representations of expressive elements 
behaviour in a generated composition by the model and in a MIDI 
file with velocity and duration set to a default value. 

 

 

                    Figure 1: Overview of the model 

Figure 2: Velocity variation throughout the piece 
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The expressive graphs depict interesting variance when 
confronted with the monotonous non-expressive ones. We 
observe that the expressive velocity graph shows different 
intensity moments in the piece just as a narrative: it gets softer 
after the first notes and ends in a 'striking' way. On the durations 
graph, we observe more abrupt changes making the graph look 
denser, with occasional longer notes. 
Regarding note sequences, most of the compositions are not fully 
variant as some repetitive patterns may emerge during a small 
period of time, yet most of the melodies heard among the selected 
generations were considered pleasant, with some interesting 
expressive moments which we consider to be improving the 
dynamics of the pieces.  
In order to get a better understanding of the actual impact that the 
introduction of expressive elements has on the pieces, we 
conducted user-testing sessions to address this issue, as we discuss 
in the next section. 
Some of the generated expressive compositions can be heard by 
clicking the following link: 
https://soundcloud.com/dlemg/sets/deep-learning-for-dynamic/s-
cx3Y9. 

4  User-Testing 
In this section, we describe the setup and procedures of the 
conducted user-tests. Participants were asked to rate excerpts 
according to their preference. We must state that we did not set 
any kind of threshold to define the success / level of expression of 
the output sample. 
Instead, we decided to analyze the results based on their global 
tendencies and use those values as indicators of suggesting proof. 
Essentially, we have used these tests to examine how the 
generated compositions would be rated when compared to pieces 

composed and performed by humans. In addition, these terms of 
comparison let us understand if there is any sign of influence by 
the studied expressive elements - whether in human compositions 
or artificially generated. 

3.1 Setup 

To design the user-test scheme, it was important to narrow down 
the main purposes of this phase. Below we list the points to be 
addressed: 

• Compare artificial compositions with human compositions; 

• Study which expressive element has more influence on 
human/artificial compositions; 

• Study how much full expressiveness influences 
human/artificial compositions; 

• Test if artificial expressiveness can be perceived in the same 
way human expressiveness does in human compositions. 

Having defined these terms, we designed two different sets: one 
consisting of the expressive generated compositions and the other 
composed of live Bach performances. The first set was built with 
the compositions studied in the last section. As for the second one, 
we opted to use live performances of Bach pieces - extracted from 
the same database used before (International E-Piano Competition 
[2]). As we intended to test several parameters, we decided to use 
only excerpts of the chosen compositions. Considering the 
extension of the user-tests designed, maintaining the original 
length of all compositions would mean an extensive test once 
some of the gathered live performances could last for 2 or more 
minutes - as for the generated ones. Thus, we believe, it could 
possibly hinder the analytical process as it would require quite 
long user-test sessions - which might be tiresome - and a great 
amount of concentration as it is easier to remember an excerpt 
than a two-minute piece for comparison purposes. Each of the 
selected compositions we extracted an excerpt with at least 15 
seconds and no longer than 30 - naturally depending on the 
composition itself. To ensure impartiality, the artificial excerpts 
used in the tests were analyzed by an algorithm that compared the 
note sequences with training set ones. This algorithm was 
designed to find similarities between the given sequences. None 
of the excerpts used in the tests showed relevant similarities to the 
dataset - the most similar one had only a sequence of ten notes 
that was found on the dataset (equivalent to a second).   

To attend all the aforementioned points, we divided the test into 
ten different parameters (or sections). These parameters were 
developed based on the different combinations of cases to 
evaluate. First, we pointed out all three elements of the music 
composition under examination: Notes, Velocities and Durations. 
Next, several parameters combinations were determined to 
include all the aspects to study. Figure 4 illustrates the parameters 
relational table. 

Figure 3: Duration variation throughout the piece 
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These parameters were defined assigning the letter H (Human) 
and C (Computer) to identify the origin of the element - that is 
whether the melody of the excerpt (i.e. notes) was composed by 
humans - in this case, Bach - or artificially generated by our model 
- computer. The same logic is applied to both expressive elements, 
assigning an H to identify human live performances and C for 
artificial expressiveness. Apart from the letters defining computer 
(C) or human (H) compositions/performances, a capital letter O 
was introduced to represent the 'absence' of a certain expressive 
element regarding the parameters.  To completely or partially 
exclude expressiveness from the excerpts we essentially have 
cancelled any variance within note velocities and/or durations. 
This was achieved by simply calculating the average value of each 
expressive element considering the full piece to which excerpt 
belongs, assigning that value to all elements (as a default value). 

To ease the reading process and analysis, we list below each 
parameter acronym and relative meaning (note that by 'human 
composition' we mean Bach composition): 

• HOO - Human composition, no expressiveness. 

• COO - Computer-generated composition, no 
expressiveness. 

• HCO - Human composition, computer-generated velocities 
and no durations (mean). 

• HHO - Human composition, live performance velocities and 
no durations (mean). 

• CCO - Computer-generated composition and velocities, no 
durations (mean). 

• HHH - Human composition, live performance (no 
modifications). 

• CCC - Computer-generated composition and 
expressiveness. 

• HOC - Human composition, no velocities (mean) and 
computer-generated durations. 

• HOH - Human composition, no velocities (mean) and live 
performance durations. 

• COC - Computer-generated composition, no velocities 
(mean) and computer-generated durations. 

The following link provides examples of expressive and non-
expressive excerpts (https://soundcloud.com/dlemg/sets/user-test-
excerpts-examples/s-n2U3R ). 

4.2 Participants Demographics 

In this subsection, we provide some demographics concerning the 
participants that performed this user-testing phase. For the 
present study, we conducted 30 user-testing sessions (i.e. 30 
participants). The selection of participants held no strict rule apart 
from the music education level - we were willing to test our goals 
with a sample in which the majority of the participants had no 
musical education. This was based on the fact that a person with 
a background in music theory and practice might be more 
'sensible' regarding expressiveness detection. From all 30 
participants, 60% were male and 40% were female of ages between 
16 and 51 years old - resulting in the average age of 25. Regarding 
former musical education, we separated different degrees into 
four main levels for classification purposes: Low (less than one 
year of formal music education), Medium (from one to three 
years), High (three years or more) or None. In this categorization, 
we did not count mandatory music lessons (i.e. school lessons) as 
a formal musical education. Of all the 30 participants three had a 
Low level of musical education, two participants had a Medium 
level and only one had more than three years of formal musical 
education. This means that 80% of the participants had no musical 
education of any kind. Despite the musical background or musical 
education level, all of the participants were asked to rate the 
excerpts according to their tastes and opinions only, with no 
technical terms being mentioned.  

4.3 Procedures 

The tests were designed in the form of a questionnaire. Each 
questionnaire was composed of 20 excerpts (two per parameter) 
with the purpose of ranking them. By having two excerpts per 
parameter instead of only one we intended to obtain a clearer 
indication of the participants' ratings. We believe that this 
approach would increase the reliability of the ratings. Each 
question (i.e. excerpt) was rated within a range of 1 (“I don't think 
this is a good excerpt in any way”) to 5 (”I really think this is a good 
excerpt”) according to each participant's judgment. The 
questionnaire was programmed in order to introduce some 
randomness to it, meaning that each time a new questionnaire 
was generated the excerpts were randomly chosen - also avoiding 
the presence of the same file twice in the same test. Each question 
was numbered only, meaning that the participants did not have 
any kind of information on the excerpt beside the question 
number. As we considered important that all tests were performed 
under the same circumstances, we have chosen to conduct them 
personally instead of making an online-form. Although an online-
form would possibly ease the process - and eventually gather 
more participants - we considered that assuring the same 
conditions in each session was more valuable than the number of 
participants. With this, the user-tests were conducted under a 

Figure 4: Parameters relational table 
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controlled environment, meaning this that in each session a group 
member was present. Also, all participants were given the same 
environmental conditions and devices. This meant assuring that 
the tests were conducted in a quiet atmosphere and that through 
all tests the exact same sound device was used (portable speaker). 
Each test session had no time limit, meaning that each participant 
had no time restriction to perform the tests - also to listen to the 
excerpts the desired amount of times and in no particular order. 
Each user-test lasted for about 13 minutes (average estimation). 
No context regarding the aim of the tests was given to the 
participants. The participants were only asked to evaluate each 
excerpt according to what they considered being a good or a bad 
piece and to not to take into account the beginnings and the ends 
of the excerpt as they were part of a greater composition and some 
extracted from middle sections.  

At the beginning of each session, the participants were asked to 
sign a consent form in which we assure their anonymity in order 
to use the collected data. 

4.4 Results 

To analyse the performed user tests, each set of answers was 
combined to evaluate the score of each parameter. Each excerpt 
could be rated from 1 to 5 and once there were two excerpts per 
parameter, the maximum score would be 10 in each questionnaire 
- resulting in a final maximum score of 300 considering all 
questionnaires. For clearance purposes, the final scores were 
converted to percentages. Figure 5 presents the ratings of all the 
parameters, ranked from the highest score to the lowest one. 

The table (Figure 5) shows that the human excerpts with no 
expressiveness (HOO) got a total score of 51,66%. By introducing 
velocities (HHO), we observe an increase of 12,34%. In the case of 
durations (HOH), when these assume some variation the score 
increases by 23,34% - suggesting that durations have more impact 
on the composition, at least on these excerpts. When combining 
both expressive elements, the full expressive excerpts (HHH) 
assume an increase of 27,67\% when compared to the non-
expressive parameter, reaching a score of 79,33%. 

In general, we observed that the participants did favour the 
excerpts containing partial or full expressiveness. Concerning the 
excerpts generated by our model, Figure 5 shows that the non-
expressive artificial compositions (COO) gathered a total score of 
63,33%. When velocity expression is added (CCO), it provides an 
increase of 7%. Looking at the third parameter (COC), we observe 
that in this case the introduction of different durations caused an 
increase of 5,67%. It is curious to observe that in these artificially 
generated compositions the intensity seems to have more 
influence than note duration variation - although by a small 
difference - the opposite of what was observed on the last 
histogram. 

Comparing the final parameter (CCC) to the non-expressive one 
(COO), we note that full expressiveness has promoted an 
improvement of 8,67%. In general - and similarly to what we 
observed in human compositions -, this results also suggest that 
expressiveness has improved the excerpts. 

Finally, we analyze the experimental setup of combining human 
compositions with artificial expressive elements (HCO and HOC). 
Regarding velocity, we observe that the artificially generated 
sequences provided good results in comparison to the live 
performed version (HHO). However, it is important to note that 
in a previous analysis, durations have shown to be more 
influential than note intensity in human excerpts. The same is not 
verified when it comes to artificial durations applied to human 
compositions (HOC), where the participants usually preferred the 
original durations applied. 

Observing all the given scores to each parameter, there's a 
suggestion that different combinations have a determined 
influence over the excerpts - and also that adding expressive 
elements (alone or simultaneously) tend to increase the value 
concerning the participant's preferences. 

 

 

 

 

 

 

 

 

 

 

 

 

5  Discussion and Future work 

The main goal of our work was not to create a model to improve 
musical compositions, but instead to study the influence of 
expressiveness in music (human and artificial) so that the 
perception of a of an artificial music composition was closer to the 
one we get in a live human performance.  

By examining the ratings obtained on the user-testing phase we 
noticed that the gathered results did provide some good insights 
regarding our study on artificial music expressiveness. The ratings 
exhibited a tendency to increase the preference as expressive 
elements were added to a musical composition - whether these 
elements are added individually or collectively. This was verified 
not only in human performances and compositions - where the 
full expressive pieces provided an improvement of 27,67% over the 
participants' preferences - but also in the excerpts generated by 

Figure 5: All parameters ratings (ranked) 
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our model with a global increase of 8,67%. These results come to 
reinforce findings and suggest that expressiveness is an 
important aspect of a music composition as it has the capability to 
enhance the musical output at a perceptual level, allowing 
participants to distinguish the multiple expressions that music can 
take in a natural an effortless way. Comparing the artificial non-
expressive compositions with expressive ones we observe that in 
some cases - especially when the generated piece holds a sequence 
of stacking notes - expressiveness plays a major role in making an 
artificial composition to sound more natural, closer to a human 
one. 

Another key aspect in the evaluation concerns the generation of 
melodies. We consider that to properly study expressiveness the 
model must be capable of generating sufficiently good note 
sequences (i.e. good enough so it won't compromise the ratings 
due to inconsistency our severe dissonance). The validation of this 
point was done by comparing the artificial excerpts to human ones 
(i.e. Johann Bach's), where the absence of expressiveness (HOO vs 
COO) indicates that the network has learned to generate coherent 
melodies. Although the non-expressive artificial melodies got a 
higher rating when compared to non-expressive human ones, the 
same did not apply when all expressiveness was introduced. It is 
important to note that this does not necessarily mean that the 
chosen artificial melodies are better than the human ones. In fact, 
it is likely to happen due to the exact opposite: Bach pieces can be 
more complex in its structure than the compositions generated by 
our model. The human chosen excerpts contained some variations 
regarding note positions, which created some moments of silence 
between notes or passages where a lot of notes were played in a 
short amount of time. Our model was not trained to learn this note 
'allocations' (i.e. offset), meaning that in each generated 
composition the notes were positioned according to a generic 
value, making all notes equally distanced. The variation in Bach 
pieces regarding this factor may have contributed to a cruder 
sounding in non-expressive compositions than the artificial 
excerpts where all notes were metrically and equally sequenced. 

Nonetheless, there are some points that we consider important to 
address in future work. First, the quality of the full generated 
compositions is an aspect that needs improvements. As we 
presented, the pieces generated by our model hold quite 
interesting melodies and sequences, but when considering the full 
composition, we observed some lack of coherence and some 
sporadic monotony. Being a topic that has already been pointed 
out by several authors, we agree that it is probably one of the main 
issues to overcome regarding artificial music. In addition, we 
estimate that another important factor to improve these musical 
pieces is to train the network (or model) to learn how to begin and 
end a composition. The absence of this notion - as seen in our 
generated compositions - makes the composition less natural to 
our ears by suddenly ending without any kind of change of 
'announcement', which may sound more mechanical and less 
aware of the full structure - and thus far from human capacities. 
Nevertheless, it would be interesting in future work to train the 
model to learn how to position notes with some degree of variance 
and not equally distanced and test how this factor influences the 
piece. 

Another feature that could be interesting to study is the 
correlation between the networks their learning and generation 

process instead of having a model with independent networks like 
ours. This could be a good way to experiment whether artificial 
networks find compositional patterns by being dependent - for 
instance, generating durations based on the pre-generated note 
sequences. 

Regarding our conducted work, we hereby address some points as 
well. On the one hand and considering that all the architectures 
used haven't reached a clear state of stabilization, having more 
training time would possibly produce better results. Although we 
consider having good results when looking at the available 
computational resources and timeframe, having a larger dataset 
or more powerful architecture would theoretically improve the 
compositions. On the other hand, it is also important to note that 
regardless of the good gathered results as we have no proof that 
the model used is the best one to address this problem. It could be 
valuable to test our process with different models by exploring 
other architectures. Lastly, we must keep in mind the size of the 
user-testing sample. As we described, we preferred having local 
control of the procedures. An online questionnaire would 
probably increase the number of participants, but that way we 
would have no control over the environment. Having that said, it 
could be beneficial to test the different parameters on a larger 
scale. 

In sum, we believe that the present work has positively 
contributed to the field of artificial music generation by studying 
how a factor like expressiveness - that is usually despised - may 
perceptually influence music compositions, providing some good 
indicators of how much a music piece is affected by it. In addition, 
our model could also be used as a co-creative tool by exploring 
different expressive patterns applied to human compositions. 
Once all networks that compose the model are independent, it 
provides the freedom to experiment with specific elements. This 
enables the user/composer to test different expressive approaches 
in the same melodic composition and even mix expressiveness 
from baroque (as an example) music performances with note 
sequences from different genres. 

5  Conclusion 

In the last decade, different experiments and approaches have 
been presented in the field of artificial music composition. 
Although some results show promising melodies, the majority 
does not take into consideration perceptually relevant musical 
aspects such as expressive variations.  

In this paper, we presented a model capable of generating artificial 
expressive music compositions in order to study the influence of 
expressiveness on human and artificial compositions.  Based on 
recent experiments regarding artificial music generation, we built 
an LSTM-based model composed of independent networks - each 
one in charge of a different sequence of elements. We evaluated 
the generated pieces' expressiveness, conducting user-testing 
sessions where we assessed the impact of different musical 
elements on human and artificial excerpts. 

Based on the experiments conducted, our results suggest that 
aspects such as expressiveness shall be taken into consideration 
when generating artificial music that seeks an expression close to 
the human performance.  
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