
Generative Type Design: Creating Glyphs from Typographical
Skeletons

Fábio André Pereira
 CISUC, Department of

Informatics Engineering,
University of Coimbra

 Coimbra, Portugal
 fasp@student.dei.uc.pt

Tiago Martins
CISUC, Department of

Informatics Engineering,
University of Coimbra

 Coimbra, Portugal
 tiagofm@dei.uc.pt

Sérgio Rebelo
CISUC, Department of

 Informatics Engineering,
University of Coimbra

 Coimbra, Portugal
 srebelo@dei.uc.pt

João Bicker
CISUC, Department of

 Informatics Engineering,
University of Coimbra

 Coimbra, Portugal
 bicker@dei.uc.pt

Figure 1: Glyphs generated with the presented system.

ABSTRACT
It is through typography that order and form, visible and
durable, is given to written communication. Typography has
been accompanied by new technologies, which designers and
typographers have adapted. The use of these technologies in the
design process boosted the exploration of new approaches for
type design. Designers began to explore generative processes in
their design process in different types of projects, such as
dynamic visual identities or generative typography. In this work,
we present an algorithmic system capable of generating glyphs
from typographical skeletons. This system, which is online at
cdv.dei.uc.pt/2019 /letterspecies, fills a typographical skeleton
using a drawing technique, both selected by the user, and
outputs an OpenType font. With the presented system, we

explore the relation between legibility and coherence in an
innovative type design approach where the generated typefaces
can be applied in the most diverse media.

CCS CONCEPTS
• Information systems → Multimedia information systems; In-
formation systems applications; • Applied computing → Arts
and humanities.

KEYWORDS
Generative design, Type design, Typographical skeleton,
Typography

ACM Reference format:
F. Pereira, T. Martins, S. Rebelo, and J. Bicker. 2019. Generative Type
Design: Creating Glyphs from Typographical Skeletons. In Artech 2019,
9th International Conference on Digital and Interactive Arts, October 23–25,
2019, Braga, Portugal. 8 pages. https://doi.org/10.1145/3359852.3359866

1 INTRODUCTION
Typography is one of the main components of graphic design. It
is through typography that designers provide order and form,

a c d e f gg i j k l m
o p r s t u v w x y q zn

 b h

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ARTECH 2019, October 23–25, 2019, Braga, Portugal
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7250-3/19/10…$15.00
https://doi.org/10.1145/3359852.3359866

ARTECH 2019, October, 2019, Braga, Portugal Pereira et al.

visible and durable, to written communication. Typography
makes frontier, on the one hand, with writing and, on the other
hand, with graphic design. Writing is the domain of authors, in
the sense that they are the ones who formulate ideas and
transpose them into words. Making these words accessible and
attractive to the reader is the domain of graphic designers,
typographers and type designers. Type design is a process where
the designer creates typefaces based on a set of characteristics
that reflect a certain purpose [2,11].

The constant technological innovation over the last centuries
has provided means and tools with enormous potential in the
most diverse fields. Graphic design and type design are not
exceptions. These tools accelerated the design process and
facilitated the production and reproduction of typefaces as well
as opened new horizons in creative exploration [11].
Consequently, algorithmic and generative processes, previously
unsustainable and/or unthinkable in the context of graphic
design, such as dynamic visual identities or generative
typography, began to be explored. Through these processes, the
designer is able to automate tasks and introduce new variables
into the artefacts produced, such as randomness.

In this work, we present an algorithmic system capable of
generating glyphs, or letterforms, by filling typographical
skeletons using different drawing techniques. These
typographical skeletons are automatically extracted from
existing typefaces and consist of linear structures that represent
the essential shape of each glyph. We employ different drawing
techniques to fill and give shape to the typographical skeletons.
Each drawing technique implements an algorithmic drawing
process that allows us to achieve coherent glyphs with different
visual styles. With the presented system, we are able to
dynamically create glyphs with legibility, provided by the
typographical skeletons, and expressiveness, provided by the
drawing techniques (see, for example, Figure 1).

The main contributions created with this work include: (i) the
development of an algorithmic system capable of generating
glyphs that form a coherent typeface; (ii) the exploration of a
new approach and, consequently, new creative possibilities in
the field of generative type design; (iii) the proposal of a
practical tool that enhances the laborious process of creating all
the glyphs for a typeface; (iv) an investigation on how
algorithmically generated typefaces impact legibility and
readability; and (v) the generation of a series of different
typefaces that can be used in diverse design applications, such as
in the creation of logotypes, text compositions, or animated
letterings.

The present paper is structured as follows. In the first section,
introduction, we present the idea of this work and the resulting
main contributions. In the second section, related work, we
analyse a series of related works on generative processes for the
creation of typefaces. In the third section, system, we describe
the proposed system. In the fourth section, experiments, we
describe some experiments conducted to test the application of
the proposed system. In the fifth section, conclusion, we present
our main conclusions on the developed work and future work.

2 RELATED WORK
Generative design processes have been used in many
applications to explore new approaches to solving different
problems. Thus, we analyse some generative type design
approaches that informed our work in some way.

Elien is a monospace generative typeface created with a
system developed by Tatevik Aghabayann, in Processing. It uses
two-dimensional metaballs, i. e., organic-looking shapes,
containing up to five levels of circles arranged together and
creating transitions when the distance between them is reduced.
Thus, the metaballs are distributed by the skeleton of the letters,
forming connections between the circles of the same level, and
also between the circles of neighbouring letters. The size of the
circles is set randomly. This system provides a set of parameters
that influence the visual shape of the metaballs, allowing
unlimited variations: (i) spacing, which influences the distance
between letters and consequently the numbers of links between
neighbouring letters when distance is too small; (ii) density,
which influences the number of metaballs in the skeleton; (iii)
contrast, which influences the size difference between the
metaballs; and (iv) levels, which influences the number of circles
in each metaball. The generated typeface contains 39 glyphs,
including some punctuation marks [1].

Irratio is a generative typeface developed by Ingo
Reinheimer, in Processing. Based on a simple non-serif typeface,
this typeface is constructed with Bézier curves connecting
successive anchor points, i. e., the connection between the first
and third points, the second and fourth, and so on, until all the
points of the letter are connected [10].

Ntype is a web system developed by Kevin Zweerink to
explore the visualization of the 4th dimension on extrusions of
letterforms. It provides the user with parameters to control the
extrusion visualization such as axes of rotation, speed of
rotation, length of the track and the option to draw the shape,
track, or both. It uses WebGL and Three.js to render the
letterforms and opentype.js to export the extrusions as an
OpenType Font (OTF) format [15, 16].

Jéssica Parente developed a system that explores the
generation of typefaces from the combination of layers of several
typefaces. This computational system consists of separating the
different anatomical elements of the letters into layers. Then,
these layers are modified and combined to form a new structure
to which a drawing method that uses shapes such as circles,
squares, and triangles is applied to generate new typefaces [7, 8].

Phase is a system conceptualised by Elias Hanzer and
developed by Florian Zia that explores the concept of generative
typefaces using variable font technology. This system consists of
selecting a module and the subsequent real-time parametrisation
of the associated characteristics. The system has the possibility
of using sound as input, which provides numerous shapes for the
glyphs, and also allows changing the parameters to random
values. The resulting letterforms can be exported to a TrueType
Font (TTF) [4].

Metaflop is a web application for custom typeface creation
developed by Marco Müller and Alexis Reigel. It consists of

Generative Type Design: Creating Glyphs from Typographical
Skeletons

ARTECH 2019, October, 2019, Braga, Portugal

choosing one of the predefined typefaces and parametrising its
anatomical characteristics using the Metafont language. The
system gives access to a parameter scheme, as well as the glyph
preview, a grid with all glyphs, and an area where it is possible
to write text. Also, the system has the possibility to change the
values of the parameters randomly, undo actions, and return to
the initial state. The created typefaces can be exported to OTF or
Web Open Font Format (WOFF) [9].

Prototypo is a web application for creating typefaces using a
parametric font design process. It consists of choosing a typeface
model and modifying its characteristics such as x-height, letter
width, contrast, axis, and serifs. These characteristics are
modified through a set of sliders and the resulting modifications
on the glyphs are visualised in real-time. Subsequently, you can
also edit the glyphs individually to add more detail or fix
imperfections. Also, provides the ability to create various
weights and the possibility to export the typeface created [6].

The analysis of the works described above allowed us to
identify some aspects that we considered relevant and,
consequently, informed the presented work. The parametrisation
of the anatomical characteristics of letters gives the user the
freedom to experiment with the creation of typefaces and
explore their visual without knowing programming languages.
Applying changes to typefaces and visualising the result in real-
time makes the system more dynamic, appealing, and
comprehensible to users, as they are able to associate each
parameter to a specific visual aspect of the typeface.

Giving to the user the possibility to set the parameters to
random values provides a quick way to test different
combinations of parameters and this way achieve unexpected
results. Allowing the user to export the typefaces he/she created
makes the process more flexible and complete, as the user is able
to use the typeface on any design or edit it using other software
tools.

3 SYSTEM
We developed a computational system that allows the
algorithmic creation of glyphs from typographical skeletons that
are given shape using different generative drawing techniques.
We use typographical skeletons extracted from existing
typefaces to provide legibility to the generated glyphs. We then
explore different drawing techniques to fill these skeletons and
this way work the visual style of the glyphs.

The system is implemented in JavaScript and its architecture
is designed to allow scalability. This way, more typographical
skeletons and drawing techniques can be easily added later to
the system. One can experiment with the presented system
online at cdv.dei.uc.pt/2019/letterspecies. In the following
subsections, we explain: (i) what typographical skeletons are and
how they are extracted from existing typefaces; (ii) how the
drawing techniques give form to the typographical skeleton in
order to create legible glyphs; and (iii) how the output glyphs are
visualised and exported.

3.1 Typographical Skeleton
The typographical skeleton of a glyph can be seen as its main
structure. It retains essential typographical characteristics such
the relation between the anatomical elements (e. g., ascenders,
descenders, diagonals, vertical and horizontal lines) and metrics
(e. g., x-height, baseline, total height, and width). In technical
terms, a typographical skeleton consists of sequences of two-
dimensional points defining the lines that are located in the
centre of the glyph shape, hence the term skeleton.

Figure 2: Extraction of the typographical skeleton from a
glyph. From top left to bottom right: original glyph; selection
of the skeleton points; skeleton points; and circles drawn at the
skeleton points with radii given by their distance to the closest
point outside the glyph shape.

The system uses a series of pre-calculated typographical
skeletons as basis for drawing glyphs. These skeletons are
extracted from existing typefaces using an algorithmic process
based on the work by Parente et al. [7, 8]. Therefore, the Zhang-
Suen thinning algorithm (1984) [14] is employed to extract the
structural lines from a binary image by removing every point
(pixel) unnecessary to the recognition of the shape in the image.
Thus, for each glyph, a series of iterations are performed,
wherein in each iteration, the farthest pixels of the shape is
removed. When no more unnecessary pixels can be removed, the
extraction process stops, resulting in a typographical skeleton.
Through this process, we are able to achieve the x-coordinates
and y-coordinates of the skeleton points, as well as the value
corresponding to the radius of a circle associated with each
point, which allows the replication of the overall original shape
of the glyph (see Figure 2).

ARTECH 2019, October, 2019, Braga, Portugal Pereira et al.

The extracted typographical skeletons are formed of a large
number of points and the resulting curve contain lots of close
points that are insignificant for recognising the structure of the
glyph shape. Some of these points are redundant and thus
unnecessary, for example, collinear points. Other points add
noisy artefacts to the lines of the skeletons. In order to simplify
and denoise the resulting typographical skeletons, we employ
the Ramer-Douglas-Peucker algorithm (2003)[13]. This algorithm
decomposes a given curve formed of line segments into a similar
one with fewer points. Therefore, the simplified curve consists of
the most significant points that defined the original curve. The
degree of detail is controlled by a parameter, usually named
epsilon, that defines the maximum distance between the original
points and the simplified curve. By varying the epsilon value, we
are able to achieve skeletons with different levels of detail (see
Figure 3).

Figure 3: Typographical skeletons with different levels of
detail. The epsilon value increases from top left to bottom
right.

3.2 Drawing Techniques
The presented system creates glyphs by rendering the
typographical skeletons described above using different drawing
techniques. A drawing technique can be considered as a stroke
style that gives shape to the lines that build the skeletons. Each
drawing technique provides the skeletons, and thus the glyphs,
with a unique visual style. Also, each drawing technique has its
own set of parameters that allow the user to control different
aspects of the drawing algorithm that implements to fill the
skeletons. This way, the user can change these parameters to
achieve different results with the same visual style.

 In technical terms, each drawing technique consists of a
programming method that draws a glyph given the following
input arguments: (i) the data of the selected typographical
skeleton (x-coordinates, y-coordinates and radii of the skeleton
points); and (ii) the values of the parameters that control the
inherent drawing algorithm.

We implemented three drawing techniques, which we
describe below. Each one is based on a different visual concept
and employs a combination of design processes and/or geometric
shapes. As already mentioned, more drawing techniques can be
easily added to the system.

Figure 4: Demonstration of drawing technique D1.

The drawing technique D1 intends to simulate calligraphy (see
Figure 4). To do so, we chose to analyse the broad nib pen to
understand the main characteristics required to draw a
calligraphic stroke. This pen is not flexible and so it has a fixed
length. Also, the pen is usually held at an angle of 30 degrees.
Therefore, we use these two main characteristics as the input
arguments to create our programming method, along with the
points of the selected typographical skeleton. In short, this
method calculates for each point of the skeleton two extra points
based on the angle and length values. Then, these extra points
are used to form polygons. Finally, these polygons are joined
together as a unique shape. In this drawing technique, the user
can control two parameters: stroke angle and stroke length.

Figure 5: Demonstration of drawing technique D2.

The drawing technique D2 relates to digital media by creating
pixelated shapes (see Figure 5). We explore the visual concept of

Generative Type Design: Creating Glyphs from Typographical
Skeletons

ARTECH 2019, October, 2019, Braga, Portugal

pixel because it represents well digital environments. The
implementation of this drawing technique is based on D1, adding
a feature that reduces the detail of the resulting stroke to achieve
the pixelated effect. Therefore, in this drawing technique, the
user can control three parameters: stroke angle, stroke length
and pixel density.

Figure 6: Demonstration of drawing technique D3.

The drawing technique D3 consists of employs basic shapes such
as the rectangle and the triangle to achieve a geometric style (see
Figure 6). Although the selection of the shape is given to the user
as a parameter, in this variation of the style, we use the rectangle
to create glyphs. This drawing technique draws a rectangle for
every two consecutive points of the typographical skeleton.
Thus, for this style, the user can control two parameters: shape
to be used and shape width.

3.3 Output Glyphs
The system generates and renders the output glyphs in real-time.
This feature provides a fluid interaction by enabling the user to
manipulate the different parameters and instantly visualise the
output glyphs. The user can visualise the output of the system
through an editable text composed with the resulting typeface.
This fluid interaction also enables instant visual feedback on the
impact of each parameter on the design of the glyphs.
Consequently, the user quickly gains control of the system and
becomes capable of pursuing a given concept for a typeface.

 The glyphs created with the system are represented and
visualised using Scalable Vector Graphics (SVG). A typeface
formed by all these glyphs can be exported to OTF file. This is
accomplished through the opentype.js library. Working with
these two output formats enables the user, for example, to make
further refinements to the resulting glyphs/typeface. An SVG file
can be easily editable using a vector editing program and an OTF
file can be used on any computer and manipulated using a
typeface design program.

4 EXPERIMENTS
We tested the presented system with the following major goals
in mind: (i) assess the ability of each drawing technique, when
applied to different typographical skeletons, to create legible and
expressive glyphs; (ii) analyse the impact of each drawing
technique parametrisation on the glyphs; and (iii) examine the

visual diversity among the glyphs created with different
combinations of typographical skeletons and drawing
techniques.

In this work, we create glyphs for the Latin alphabet. As for
the typographical skeletons, we used two open-source typefaces
from the Google Fonts library: IBM Plex Sans and IBM Plex Serif
(see Figure 7). The first one is a sans serif typeface, while the
second is a serif typeface. To give shape to the two skeletons
extracted from these typefaces, we use the three drawing
techniques D1, D2 and D3, which were described in the previous
section. Each drawing technique is tested with two
parametrisations. In what concerns the visualisation of the
results, although the system automatically generates OTF
typefaces with most Latin glyphs, in this paper we only present a
subset of glyphs to compose the word “glyph”.

Figure 7: Original glyphs (top) and their typographical
skeletons with maximum detail (bottom) of the typefaces IBM
Plex Sans (left) and IBM Plex Serif (right).

For the two different sets of parameters tested in D1, we
explored two parameterisation values for the stroke angle. In one
parameterisation, we used an approximately vertical angle on a
typographical skeleton with a low level of detail (top glyphs in
Figure 8). In the other, we used an angle of approximately 45
degrees on a typographical skeleton with a high level of detail
(bottom glyphs in Figure 8).

Figure 8: Glyphs generated with the presented system using
the typographical skeletons of the typefaces IBM Plex Sans
(left) and IBM Plex Serif (right), rendered with the drawing
technique D1 configured with two parameterisations (top and
bottom).

glyphglyph

glyphglyph

glyphg lyp h

ARTECH 2019, October, 2019, Braga, Portugal Pereira et al.

Analysing the glyphs created with D1, we can observe that the
results are quite satisfactory in regard to our attempt to replicate
calligraphy. This is because both typefaces show identical
characteristics of the stroke to examples of calligraphy, for
example, when the direction of the stroke changes its length also
varies according to the angle. One can observe that the resulting
typefaces display a high level of legibility because we can easily
identify and recognise every letter/glyph. Perhaps this is because
the D1 has a strong visual identity, i. e., there exists a strong
coherence between the glyphs as all of them display the same
anatomical parts rendered in a similar fashion (e. g., a consistent
length at vertical directions and in curve directions display the
same variation on stroke thickness). Nevertheless, in some
glyphs (such as “l”, “p” and “h”), the stroke length becomes too
thin at vertical directions which may cause some imperfections
on the glyph.

Comparing D1 with both sets of parameters, we observed
that applying an angle closer to the 30 degrees we achieve a
better representation of calligraphy, i. e., glyphs with a more
linear stroke (bottom glyphs in Figure 8), than using a more
vertical angle i. e., glyphs with a high contrast stroke (top glyphs
in Figure 8). Also, the level of detail (epsilon value) of the
typographical skeleton has a big influence in the approximation
of the results to the calligraphy, i. e., the higher the level of
detail, better is the approximation to calligraphy. Furthermore, it
is notable at Figure 8 the visual diversity created through the
variation of the parameters of D1.

Figure 9: Glyphs generated with the presented system using
the typographical skeletons of the typefaces IBM Plex Sans
(left) and IBM Plex Serif (right), rendered with the drawing
technique D2 configured with two parameterisations (top and
bottom).

For the two different sets of parameters tested in D2, we
explored the parameterisation of two values: the stroke angle
and the stroke length. In one parameterisation, we used an angle
of approximately 135 degrees and a small stroke length (top
glyphs in Figure 9). In the other one, we used an angle of
approximately 30 degrees with a bigger stroke length (bottom
glyphs in Figure 9).

Analysing the glyphs created with D2, we can observe that
the resulted glyphs display pixelated shapes. This indicates that
our attempt to explore the visual concept of the pixel, as the key
element to develop a digital style, was successful. It is notable

the similarities between this style and the D1. This is because we
employed the principles used in D1 to build the method for D2,
removing only some detail to achieve the pixelated effect.
Consequently, we achieve a synergic relationship between the
two styles where the final typefaces are visually interesting and
appealing.

Analysing the generated glyphs, it is possible to notice their
high level of legibility, since we can easily identify and recognise
every letter/glyph. This occurs because both typefaces display
identical pixel densities allowing a satisfying coherence between
them. However, we observe that some glyphs (such as “l” and
“h”) do not seem to be generated using the same drawing
technique. Perhaps this is because two consecutive points are
vertically or horizontally aligned, and a single shape is drawn
between them. Therefore, is not possible to reduce more detail
creating the pixelated effect pretended.

Both sets of parameters offer a vast diversity of resulting
glyphs by simply modifying some values of the parameters, such
as the angle and length of the stroke. We also notice that when
the stroke is smaller is more likely to appears imperfections
and/or incoherent shapes between the glyphs (top glyphs in
Figure 9).

Figure 10: Glyphs generated with the presented system using
the typographical skeletons of the typefaces IBM Plex Sans
(left) and IBM Plex Serif (right), rendered with the drawing
technique D3 configured with two parameterisations (top and
bottom).

For the two different sets of parameters tested in D3, we
explored the shape of a rectangle. We explored this using a
shape with lower stroke width on a typographical skeleton with
a high level of detail (top glyphs in Figure 10) and a large stroke
width on a typographical skeleton with a low level of detail
(bottom glyphs in Figure 10).

Analysing the glyphs created with D3, we can observe that
the typefaces generated by this drawing technique are quite
satisfactory because demonstrate a high level of detail even
using a basic geometric shape. This is easier to observe on
parameters applied to generate the top glyphs in Figure 10,
where we use a higher level of detail (lower epsilon value) than
in the parameters used to generate the bottom glyphs in Figure
10.

Also, we can observe the resulted typefaces present a
satisfactory level of legibility due to the simple shape that the

glyphglyph
glyphglyph

Generative Type Design: Creating Glyphs from Typographical
Skeletons

ARTECH 2019, October, 2019, Braga, Portugal

glyphs acquire by repeating the same shape and width (in this
case, a rectangle) through all the typographical skeleton. This
allows a strong coherence between all the glyphs since the same
shape is rendered on the same anatomical parts of typographical
skeletons that share the same structure. Although some glyphs
appeared to have imperfections (such as the “l” on the bottom
left in Figure 10), this is because the system connects the highest
point of the typographical skeleton with the lowest point that
belongs to the anatomical part of the serif. Therefore, they are
not vertically aligned creating a diagonal line rather than a fully
vertical line.

Comparing D3 with both sets of parameters presented
previous, we perceived that the variation of the parameters
creates a shorter visual diversity between glyphs. This may be
caused by the lower influence that the shape width has on the
glyphs overall shape.

After analysing each drawing technique individually, we can
present some observations about the overall results. In what
concerns the typographical quality of the glyphs obtained, it is
notable the high transmission of anatomical parts from the
original font structure to the glyphs generated. For instance, the
glyphs that come from the serif typeface kept the serifs and the
glyphs that come from the sans serif typeface continues without
serifs. Also, the main relations between glyphs are maintained, e.
g., the ratio between the x-height, total height and ascenders and
descenders.

In what concerns the visual diversity of the glyphs created,
the results indicate that the system is able to create glyphs with
different visual styles. Figure 1 shows glyphs generated using
different drawing techniques defined by different sets of
parameters and typographical skeletons with different levels of
detail. It is noticeable the differences at the visual level as the
image displays a vast range of glyphs with distinct shapes which
consequently create typefaces with the same wide range of
diversity.

By allowing the user to adjust the parameters of the drawing
techniques and implement further ones, the system enables and
encourage graphic experimentation in type design. The user is
able to generate unusual glyphs that push the boundaries
between expressiveness and legibility.

We consider the system has the potential for application in
different kind of graphic design projects. The system may aid the
designer in the creation of bespoke typefaces that provide
designers with a method to express a concept or represent data,
therefore communicating something else than language. For
instance, by mapping the parameters of the drawing techniques
to external data, e. g., sound or temperature, we are able to
generate typefaces that dynamically adapt to different contexts
in which they are used (see, for example, the typeface LAIKA [3]
created by Michael Flückiger and Nicolas Kunz). This is also
useful in the creation of dynamic visual identities, an increasing
practice in graphic design [5]. The system has also the potential
for open-ended design projects, as it enables, for example, the
on-demand generation of unique typefaces characterised, for
example, by randomness (see, e. g., the typeface Beowolf [12]

created by Erik van Blokland and Just van Rossum). Figures 11
and 12 show possible applications of generated typefaces in the
design of posters.

Figure 11: Mock-up of a poster for a surf championship using a
typeface generated with the presented system.

Figure 12: Mock-up of a poster using different typefaces
generated with the presented system.

ARTECH 2019, October, 2019, Braga, Portugal Pereira et al.

More applications of the system can be found at
cdv.dei.uc.pt/letterspecies.

The adaptive capacity of the results obtained proves that the
main advantage of our system is to designs reactive typefaces.
This enables design typefaces that fulfill the necessities and
opportunities imposed by new media.

5 CONCLUSIONS AND FUTURE WORK
We have presented a computational system that generates
glyphs by rendering typographical skeletons using different
drawing techniques. We tested the presented system in order to
explore and analyse the possibilities it creates. We highlight the
following contributions: (i) a system capable of generating
typefaces with legible and coherent glyphs; (ii) the ability to
apply the same drawing technique to different typographical
skeletons and get coherent typefaces that can be applied in
multiple fields of graphic design; (iii) a system that expedites the
process of drawing all the glyphs needed to create a typeface, as
it creates a base typeface that can be further refined; (iv) a
system where the user has in his/her hands the possibility of
generating a custom typeface by choosing the typographical
skeleton and the drawing technique and in the subsequent
modification of the parameters inherent to the chosen drawing
technique to achieve a result that he likes; and (v) how legibility
and coherence between glyphs can be achieved when utilizing
innovative approaches to create typefaces.

 Future work will focus on: (i) develop more drawing
techniques; (ii) implement an automatic kerning process to
adjust the space between the generated glyphs and this way
achieve a more visually pleasing text composition; (iii) test the
presented system in the generation of glyphs for non-Latin
characters; (iv) further develop the system as a web-based tool in
order to make it usable by anyone; (v) test the system with users
to improve it by taking into account the feedback received; and
(vi) integrate variable font technology in the system to make it
possible to control the parameters of the drawing technique in
design software tools that support this technology.

ACKNOWLEDGEMENTS
The third author, Sérgio Rebelo, is funded by Fundação para a
Ciência e Tecnologia (FCT), Portugal, under the grant
SFRH/BD/132728/2017.

REFERENCES
[1] Tatevik Aghabayan. [n. d.]. Gestalten mit Code, FH Mainz. http://generative

typografie.de/generativetypografie/elien/ accessed on January 2019.
[2] Robert Bringhurst. 2008. Elementos do Estilo Tipográfico. COSAC NAIFY, São

Paulo, Brazil.
[3] Michael Flückiger and Nicolas Kunz. [n. d.]. LAIKA. http://www.laikafont.ch/

accessed on January 2019.
[4] Elias Hanzer. [n. d.]. Phase. https://www.eliashanzer.com/phase/ accessed on

January 2019.
[5] Tiago Martins, João Miguel Cunha, João Bicker, and Penousal Machado. 2019.

Dynamic Visual Identities: from a survey of the state-of-the-art to a model of
features and mechanisms. Visible Language 53, 2 (2019), 4–35.

[6] Yannick Mathey. 2009. Prototypo. https://www.prototypo.io/ accessed on June
2019.

[7] Jéssica Parente. 2018. Desenho Generativo de Tipos de Letra. Master’s thesis.
University of Coimbra.

[8] Jéssica Parente, Tiago Martins, and João Bicker. 2018. Generative Type Design.
In Proceedings of the Ninth Typography Meeting (9ET). Instituto Politécnico de
Tomar, Tomar, Portugal.

[9] Alexis Reigel and Marco Müller. 2012. Metaflop. https://www.meta
flop.com/about accessed on January 2019.

[10] Ingo Reinheimer. [n. d.]. Gestalten mit Code, FH Mainz.
http://generativetypografie.de/generativetypografie/irratio/ accessed on
January 2019.

[11] Gerard Unger. 2018. Theory of Type Design. nai010 publishers, Rotterdam,
Netherlands.

[12] Just van Rossum and Erik van Blokland. [n. d.]. Beowolf. https://www.font
shop.com/families/ff-beowolf accessed on January 2019.

[13] S. . Wu and M. R. G. Marquez. 2003. A non-self-intersection Douglas-Peucker
algorithm. In 16th Brazilian Symposium on Computer Graphics and Image
Processing (SIBGRAPI 2003). 60–66. https://doi.org/10.1109/SIBGRA.
2003.1240992

[14] T. Y. Zhang and C. Y. Suen. 1984. A Fast Parallel Algorithm for Thinning
Digital Patterns. Commun. ACM 27, 3 (March 1984), 236–239.
https://doi.org/10.1145/ 357994.358023

[15] Kevin Zweerink. 2015. NType. https://experiments.withgoogle.com/ntype
accessed on December 2018.

[16] Kevin Zweerink. 2015. NType. https://github.com/kevinzweerink/ntype
accessed on December 2018.

