
64

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S Building Typefaces

as Programs:
A node-based approach
for modular type design

Tiago Martins
CISUC, University of Coimbra
Portugal

Sérgio Rebelo
CISUC, University of Coimbra
Portugal

João Bicker
CISUC, University of Coimbra
Portugal

Penousal Machado
CISUC, University of Coimbra
PortugaL

THEMATIC AREAs	
Type Design; Typography and Graphic
Design; Typography and Multimedia
Design

Keywords	
Generative design; modular typeface;
prototyping design tool; type
design; visual programming language

	 Designing a modular typeface typically involves the creation of
geometric relationships between shapes that are repeated in the same
letterform and/or among different letterforms. One can see these
relationships as workflows that follow a logic of input, processing, and
output of shapes. Therefore, designing a typeface involves a step-by-step
set of operations, or instructions, that enables the designer to create a
typeface in an algorithmic way.

This paper presents a system that allows one to design modular
typefaces. The system allows the user to design a typeface by formalising
a “recipe” that transforms a set of input shapes into glyphs throughout a
node-based approach. The user can input a set of shapes that through a
set of geometric operations are transformed and recombined. There are
three types of operation nodes: move, rotate, and scale. The
relationships between nodes are established by links that connect them.
The output of one node is passed as an input to another creating a flow of
shapes from node to node. This way, any modification in a node is
immediately propagated to the following nodes and consequently to the
final glyphs. To analyse the possibilities and limitations of this approach,
we tested the proposed system with fifteen graphic designers. The
outcomes and feedback made by the users unveil the value and relevance
of the system and point out future directions for this work.

65

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
SDesenho Algorítmico

de Tipos de Letra:
Abordagem baseada
em nós para o
desenvolvimento
de tipos de letra
modulares

Tiago Martins
CISUC, Universidade de Coimbra
Portugal

Sérgio Rebelo
CISUC, Universidade de Coimbra
Portugal

João Bicker
CISUC, Universidade de Coimbra
Portugal

Penousal Machado
CISUC, Universidade de Coimbra
Portugal

ÁREA CIENTÍFICA	
Design de Tipos; Tipografia
e Design Gráfico; Tipografia
e Design Multimédia.

PALAVRAS-CHAVE	
desenho de tipos de letra, desenho
generativo, ferramenta de desenho,
linguagem de programação visual,
tipo de letra modular

	 Desenhar um tipo de letra modular tipicamente implica definir um
conjunto de relações geométricas entre as formas que são repetidas
dentro de um glifo e/ou ao longo de todo os glifos de um tipo de letra.
Podemos olhar para estes relacionamentos como um conjunto de fluxos
de trabalho que seguem uma lógica de entrada, processamento e saída.
Portanto, desenhar um tipo de letra envolve um conjunto de operações,
ou instruções, passo a passo que permitem o designer criar tipos de letra
de uma forma algorítmica.

Este artigo apresenta um sistema que permite desenhar tipos de letra
modulares. O sistema permite que o utilizador desenhe um tipo de letra
através da formalização de uma «receita» que transforma um conjunto
de formas de entrada em glifos através de uma abordagem baseada em
nós. O utilizador pode inserir um conjunto de formas que através de um
conjunto de operações geométricas são transformadas e recombinadas.
O sistema permite três tipos de nós de operações: mover, rodar e
redimensionar. As relações entre os nós são estabelecidas pelas ligações
entre eles. O resultando de um nó é passada como entrada para outro nó
criando assim um fluxo de formas de nó para nó. Desta forma, qualquer
mudança em um nó é imediatamente propagada para os nós seguintes e
consequentemente para os glifos finais. Para analisar as possibilidades e
as limitações desta abordagem, nós testamos o sistema proposto com
quinze designers gráficos. Os resultados e os comentários dos
utilizadores revelam o valor e a relevância do sistema e apontam as
futuras directrizes para o este projecto.

66

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S Introduction

Letterforms are part of the history of visual communication since the
invention of writing five thousand years ago (Carter, Meggs and Day, 2011).
Until the 15th century, books were only accessible to the wealthier classes of
society. The bookmaking process was slow and expensive. A simple
two-hundred-page book required months of labour and its value was similar
to the value of a farm or a vineyard (Meggs and Purvis, 2011). However, with
the introduction of the typographic printing process in the West, by Johannes
Gutenberg, in the mid-15th century, books became cheaper and print-
houses spread rapidly across Europe. Nevertheless, a similar shift occurred
with the technological revolution (Flake, 1994; Meggs and Purvis, 2011). Until
then, designers’ typograpy choices have been restricted by expensive
foundries and typesetters. Although the earlier type design systems (e.g. the
Ikarus) was costly and inaccessible, with the democratisation of the personal
computer emerged computer-aided font design software (e.g.
Fontographer) that enabled designers to easily develop digital types and to
sell them in web-based foundries such as Emigre Fonts or Adobe Systems
(Meggs and Purvis, 2011). Consequently, we entered in one of the most
creative times in the history of typography, wherein classical concepts were
revived and some of the most disruptive and experimental type designs were
developed, either in its shape or in its technology (Blokland, van and J. van
Rossum, 1990; Miller and Lupton, 2006).

The design of modular typefaces benefited greatly from this revolution.
This type of typefaces is defined by the repetition of a set of basic shapes,
i.e. modules (Bringhurst, 2004; Lupton, 2014). Accordingly, it makes
easiest anyone to design glyphs (Willen and Strals, 2009).

The concept of modularity was always inherent to typography.
Traditional typography is composed using modular movable types and
digital typefaces are, often, developed based on a modular grid (Lupton
and Phillips, 2015; Meggs and Purvis, 2011). Nevertheless, the first modular
systems only appear in the early decades of the 20th century. Typefaces
such as the Patrona Grotesk (V. Kánsky ́, 1928), the Fregio Mecano
(unknown author, c. 1920), the SuperTipo Veloz (Joan Torichut, 1942) or
the experiments developed by modernist artists such as Theo Van
Doesburg or Josef Albers were notable at the time (Cunha, Bicker and
Machado, 2013; Meggs and Purvis, 2011).

Nowadays, modular design is a very popular and common way of
designing. Generally, during this process, designers establish a set of
geometric relationships between the elements. These relationships can be
defined as workflows or step-by-step actions that generate a result.
Perhaps, without knowing it, designers are working somehow
algorithmically and programmatically, following a logic of input, process,
and output.

In this work, we propose an interactive computational system for the
creation of modular typefaces. The proposed system follows a
programmatic approach because our main goal is to enable the user to
build a typeface by creating a program, or a recipe, rather than designing its
static shape. This design approach is inspired by the concept of
embryogenesis, the process by which form grows in nature (Bentley and
Kumar, 1999; Kumar and Bentley, 2003), in the sense that the designer
creates a typeface by encoding its design process into a system of rules,
or a program.

67

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
SThe proposed system provides a design paradigm based on: (i) shape

grammars (Stiny and Gips, 1971), wherein the input is a set of geometric
shapes, the translation process is defined by sequences of geometric
operations, and the output is a set of letterforms; and (ii) visual
programming, which allows the user to assemble programs graphically
in a node-based drag-and-drop fashion rather than writing code. The
result is a design process in which the designer models the design of a
typeface by creating a network of geometric operations, including
translation, rotation, and scaling. These operations are organised
hierarchically and are intended to transform and combine a set of input
shapes in order to construct glyphs for a typeface. The output from one
node, i.e. the shapes, is passed as input to another node, creating a flow of
shapes from node to node. This node-based approach enables an
interactive creation and manipulation of form and this way it develops a
modular typeface in a dynamic manner.

This work was initiated in 2014 by the first author as an academic
work in a course of his doctoral program. Back then, a proof of concept
was developed. However, it was never assessed and disseminated
properly. That proof of concept remained as a work in progress,
presenting functional limitations and technical issues. Nevertheless,
back then, the system already allowed the user to build typefaces.

The remainder of this paper is organised as follows: Section 2
summarises related work focusing on computational approaches that
employ hierarchical methods to create typefaces; Section 3 overviews
the proposed system; Section 4 describes how the system was tested
and analyses the experimental results; finally, Section 5 presents
conclusions and directions for future work.

Related Work
The development of type design systems that use a set of basis shapes
(i.e. modules) to design letterforms, and consequently typefaces, still is a
poorly unexplored field. Since the early times of digital type design,
computer-aided typeface design systems create letterforms though the
definition of the anatomical parts of the glyphs (e.g. stems, serifs, spines
or terminals). These parts were then transformed using parametric
approaches (e.g. ITSYLF (Mergler and Vargo, 1968), CSD (Coueignoux,
1975) or Metafont (Knuth, 1982)). However, back then, these systems
enabled only a limited range of modification, were difficult to use, and/or
did not enable the edition of outcomes directly. Consequently, designers
preferred visual direct manipulation font design tools in prejudice of
these programmable/parametric systems (Morris, 1989; Shamir and
Rappoport, 1998).

Although not working directly with shape modules, Schneider’s
DaType (Schneider, 1998a) presents an interesting case in of exploration
of the modular features in type design. This system explores a
hierarchical composition approach using object-oriented concepts, such
as instantiation, inheritance and overloading (Schneider, 1998b). It
enables the reuse of “stroke elements” that share “style attributes,”
maintaining the consistency between all letterforms in a typeface.

Shamir and Rappoport (Shamir and Rappoport, 1998) proposed a
feature-based approach to type design. Their system uses glyphs parts

68

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S and sets global constraints to design letterforms. It enables users to

change the appearance of a glyph part and modify all the similar parts,
in the project, preserving the coherency and the harmony.

Hu and Hersch (Hu, 1998; Hu and Hersch, 2001) developed a
component-based font description for synthesising typographic glyphs’
shapes. In their system, a glyph is described by its structural elements
(i.e. stems, bars, serifs, etc.) and by the implementation of these elements
either typeface-category-dependent (e.g. the junction types) or the
global font-dependent metrics (e.g. the location of reference lines, the
width of stems, etc.). This approach allows a parametric change of the
shapes and, consequently, the change of all similar parts in the typeface.

Antoni Kaniowski (Kaniowski, 2011) experimented the possibility of
creating a typeface using dynamically defined modules. His Modular
typographic generator divides the glyphs into modules (that can be
dynamically defined) and designs a typeface.

Bastard, developed by Tobias Tschese, is an application (Tschese,
2008) that generates new typefaces through the combination of glyph
parts producing of different glyphs. The glyphs parts inserted in the
system during the development.

Yoshida et al. (Yoshida, Nakagawa and Köppen, 2010) developed the
Personal Adapted LETTEr (PALLETE), a system capable of detecting
similar glyph parts in a typeface and design new letterform reusing these
parts. Furthermore, the system creates new typefaces (modifying these
glyph parts) throughout an interactive evolutionary computation approach.

Phan et al. (Phan, Fu and Chan, 2015) developed a framework that
from a set of letters, inputted by the user, produces complete typefaces.
The system decomposes the inputted information into a sustainable
representation and, from here, it extracts and synthesis the typeface’s
“style” to infer/predict the glyphs’ composition rules. Using this style
information, the system is able to generate new glyphs. The style
consistency of these glyphs is evaluated by the similarities between the
glyph parts. In this way, the “style” given by the user is preserved. Beyond
that, the authors designed an interface that allows designers to create
interactively a typeface from scratch.

Martins et al. are developing Evotype (Martins et al., 2015, 2016,
2018), a system for type design that employs evolutionary computation
and machine learning techniques to automatically generate glyphs. In
one of the project’s iterations (Martins et al., 2016) the system explores
the idea of assembling a set of basic visual shapes like modules to create
glyphs. The modules are given to the system as input, by the user, through
a vector file. The system employs a Genetic Algorithm to generate the
letterforms evaluating the merit of each shape calculating the similarity
between the result and a well-designed glyph and/or using a
Convolutional Neural Network to character recognition.

Cunha et al. (Cunha, Bicker and Machado, 2013; Cunha et al., 2016)
also explored the modularity of letterforms in TypeAdviser. This system
allows the creation of a typeface from a user input vector shapes and an
initial definition of glyph parts in shapes. The anatomic relationships
between characters are used by the system to generate the missing
characters of the typeface.

In this system, the anatomic relationships between characters are
used in order to generate the missing characters of the typeface. Besides

69

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
Sthat, when the user makes changes in any glyph, all the glyphs with the

corresponding part are affected.
Stefan Ellmer created The Pyte Foundry (Stefan, 2016) that released

(during 1 year) one typeface every week. Each typeface was available for
free download only during a week and it is a new design or a novel
interpretation of an existing design. This only was possible because he
developed a component-based system where the same shapes are
flipped, rotated, scaled and nested with other shapes to faster create
novel letterforms. In several releases, Johannes Lang helped him with
code-based transformations (Griesshammer, 2017).

Each of these systems presents an interesting case of the exploration
of the modular and hierarchical characteristics in the type design
projects. Nevertheless, Evotype (Martins et al., 2016) is the only one that
permits the user to define, a priori, the basis modular shapes. (On the
tools developed for The Pyte Foundry (Stefan, 2016), a similar method
appears to be employed; however, we did not find enough information to
clarify the production method of these tools.) In most of cases, the
systems recognise the modular parts of a glyph by automatic methods of
features extraction (e.g. (Phan, Fu and Chan, 2015) or (Yoshida,
Nakagawa and Köppen, 2010)). Moreover, some systems request the
user to define these glyph parts when the design process starts
(e.g. (Cunha et al., 2016)). In other systems, this information is already
defined (e.g. (Kaniowski, 2011) or (Tschese, 2008)).

In all these projects, the user cannot define the workflow and how the
modules are employed to create the typeface. Several examples use
interactive evolutionary computation to conduct the system to the user
preferences (e.g. (Yoshida, Nakagawa and Köppen, 2010)) or use
parametric approaches (e.g. (Hu and Hersch, 2001) or (Kaniowski, 2011)).
However, the system has already defined (or have its autonomous way to
define) the way that the modules should be arranged to generate a
typeface. Furthermore, most of the systems are not concerned with the
interface and user experience. Even though, these systems may be
powerful tools to type design, especially during the earliest and
exploratory stages of project.

Approach
The design process consists of the creation of flows of shapes
throughout a network of nodes. Each node has one in port and one out
port that are intended to receive and pass shapes from/to other nodes.
A flow of shapes from node A to node B is established by creating a link
from the out port of A to the in port of B. This flow copies the output
shapes of node A to node B. The system prevents the user to link nodes in
a way that originates cycles, or loops, in the flow of shapes. For instance,
the user is not able to connect node A to node B when B is already
connected to A.

There are five types of nodes: three transformation nodes (move,
rotate, and scale) and two shape nodes (input and output).
Transformation nodes offer three geometric operations that act on the
shapes that they receive. Input nodes are intended to contain shapes
inserted by the user that will be the building blocks of the typeface.
Output nodes are intended to contain compositions of shapes that are

70

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S collected from other nodes. When the user exports the font to fi le, the

system considers each output node as one fi nal glyph. In a typical
scenario, a fl ow of shapes begins with an input node, goes through a
series of transformation nodes, and ends with an output node.

Each transformation node has its set of parameters. A move node has
two parameters: units to move horizontally and units to move vertically.
A rotation node has three parameters: rotation angle, x-coordinate of the
rotation anchor, and y-coordinate of the rotation anchor. A scale node
has four parameters: horizontal scaling, vertical scaling, x-coordinate of
the scaling anchor, and y-coordinate of the scaling anchor.

The graphical interface of the system has two main areas: (i) the area
of the network of nodes, on the left, where the user sets the nodes and
their links in a drag-and-drop fashion, and (ii) a panel with diff erent
options, on the right. The user can create a new project, load an existing
project from fi le, and save the current project to fi le. The user can export
the font to OTF or a specimen of it to a vector fi le, which can be used in
any other design software for further refi nement. Figure 1 shows a
screenshot of the system. A demo video can be seen at cdv.dei.uc.
pt/2018/9et/building-typefaces.mov.

Figure 1 – Screenshot of the system. A demo video can be seen at
cdv.dei.uc.pt/2018/9et/building-typefaces.mov

The diff erent types of nodes are visually distinguished with colours:
warm colours for shape nodes and cool colours for transformation
nodes. Each node shows a preview of its content, i.e. shapes that are
passed to the next nodes in the fl ow. When the user selects a node, the
entire fl ow of shapes to it and from it is highlighted. This way, the user
can easily visualise the fl ow of shapes throughout the nodes. Also, the
positioning of each node is constrained by a hidden rectangular grid to
better organise them and simplify the links between them.

The coordinates of the vertexes that defi ne the shapes are
constrained by a rectangular grid. The user can confi gure this grid,
namely the number of columns and lines, when a new project is created
or at any other moment when no shapes exist. The rationale behind this
is the fact that a change made in the grid could result in the misplacement

71

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
Sor distortion of existing shapes. A representation of this grid is presented

at the bottom of the right panel and it can be used for two purposes
depending on the type of the node that is selected. When the user selects
an input node, the grid can be used to edit the shapes contained in it.
When the user selects a non-input node, the grid is used to preview the
transformed shapes.

When an input node is selected, the grid can be used to draw and
remove shapes, and to edit the stroke thickness of a shape. The user
draws a new shape by defining the sequence of vertexes that define it.
A vertex is added by clicking over or close to one point of the grid. If the
last vertex coincides with the first one, the shape is considered closed
and therefore it will be drawn with fill. To select an existing shape, the
user clicks on it. With a shape selected, the user has two options: (i) edit
the value of its stroke thickness or (ii) remove it by pressing the
backspace key on the keyboard.

When a non-input node is selected, the shapes contained in it are
shown on the grid. In the case of transformation nodes, we added two
features to the grid to help the user understanding the impact of their
geometric operations on the shapes that pass through them. First, when
a transformation node is selected, the shapes that enter in them, i.e.
before being transformed, are shown on the grid, in background with
opacity. Second, when a transformation node that employs an anchor
point (rotation or scale node) is selected, the coordinates of the anchor
point are represented in the grid with one vertical and one horizontal
white line.

Testing
This section overviews the testing of the proposed system. We used a
classical task-based usability test method (Rubin and Chisnell, 2016)
with some adjustments made according to the nature and goal of this
project. First, we explain how the system was tested. Then, we present
and analyse the experimental results, and discuss opportunities created
with the system.

Setup
We conducted these tests with the goal of gathering data to identify the
opportunities and limitations of the proposed system. We consider that
this system is useful for graphic designers, who often use modular
typefaces in the design of visual identities or titling. Therefore, we
considered graphic designers as our representative group of users and
asked fifteen graphic designers to test the system.

The testing sessions started with an introduction to the system and its
context. Afterwards, we conducted a brief demonstration of the system
functionalities explaining what each node does.

Users were asked to perform nine tasks using the system (see Table 1).
In the first four tasks (T1 to T4), users experimented with the different
nodes. In the three following tasks (T5 to T7), users created glyphs for the
letters ‘B’, ‘C’, and ‘E’. In the next task (T8), users created glyphs for the
remaining uppercase letters. In the last task (T9), using the same
network of nodes created in T8, users created another typeface by only
modifying the input shapes.

72

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S We supervised the tests in order to assist the users, measure the

duration time of each task, and take some notes related to the usability of
the system (e.g. difficulties, comments or compliments). In the end, a
short discussion session occurred, where the opportunities, advantages,
disadvantages, and user comments are discussed and reported.

Table 1 – Table presenting the task plan for the testing sessions. In this table,
we present the tasks performed by the user (from T1 to T9), the description

of each task and the result of a successful completion of each task.

Task Description of the task
Description of a successful

completion of the task

T1 Create shape
Create an input node with a shape
designed using the system.

Implementation of an input node

T2 Move shape
Implement a move node to move
a shape.

Implementation of a move node

T3 Rotate shape
Implement a rotate node to rotate
a shape.

Implementation of a rotate node

T4 Scale shape
Implement a scale node to scale
a shape.

Implementation of a scale node

T5 Design ‘B’ glyph
Connect one or more
transformation nodes to design
a ‘B’ glyph.

Implementation of an output node
similar to a ‘B’ glyph

T6 Design ‘C’ glyph
Create and/or reuse the necessary
nodes to design
a ‘C’ glyph.

Implementation of an output node
similar to a ‘C’ glyph

T7 Design ‘E’ glyph
Create and/or reuse the necessary
nodes to design
an ‘E’ glyph.

Implementation of an output node
similar to an ‘E’ glyph

T8 Create typeface
Create and/or reuse the necessary
nodes to design
an uppercase typeface.

Implementation of 26 output nodes
with the content similar to the
uppercase glyphs of the Roman
alphabet

T9 Redefine module
Perform one or more alterations in
one or more input nodes.

Change shapes of one or more input
nodes

Results
Table 2 shows a selection of the typefaces created during the tests. More
experimental results can be visualised in the video at cdv.dei.uc.
pt/2018/9et/building-typefaces.mov.

Table 2 – Typical typefaces created in task 8 (left) and task 9 (right). Each horizontal pair
of typefaces was created by the same user, share the same network of nodes, but use

different input shapes. One can visualise more experimental results in the video at
cdv.dei.uc.pt/2018/9et/building-typefaces.mov

User Typeface created in task 8 Typeface created in task 9

1

2

3

4

5

73

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
SLooking at the experimental results, one can observe that (i) the

glyphs are legible, i.e. easy to be recognised; and (ii) there is visual
diversity among typefaces created by different users.

Based on the observation of the drawing process during the tests,
we observe that the users defined one or two modules to develop the
requested first tasks (see Table 1). These modules are, after, used to
develop other glyphs, until the user is not capable to create a specific
glyph. Therefore, the user creates new modules. However, each
designer works in a different way, some designers start to design
sequentially by the first characters of the alphabet, others by the last
characters and another designed without rules.

Most of the users were able to envision the glyphs employed with
their knowledge on typography anatomy. They subdivide a letter into
smaller and simpler parts (i.e. input shapes) and configure these
blocks to build the typeface. Regarding the input shapes drawn by the
users, we can observe several levels of complexity, as we can see in the
developed typefaces (see Table 3 and 4).

Analysing the networks of nodes created by different users (see
Table 4), it is visible different levels of complexity in terms of network
topology. At the same time, it is also noticed some similarities. This
aspect is aligned with the different typography styles which we can
identify over the time and in the nowadays typographic scenario.

During the second part of the tests, based on the observations of
the drawing process, users were able to play with the shapes in input
nodes to create variations of the typographies initial developed. Table
2 shows typical fonts created by five users. where each pair of fonts
have the same structure (network of nodes) but are built with different
sets of shapes. This proves that the system is a dynamic environment
that provides the user, without effort, automatically propagate a
change to the entire typeface in a coherent manner. In other words,
any change in an inputted glyph part is reflected in all letters that use
this part. In this sense, the user is able to change the visual style of the
font while maintaining its structure.

The other way around, i.e. changing the structure while
maintaining the style, is also possible. The user just has to change the
network of the nodes without changing the shapes of the input nodes.
This approach facilitates the generation of variations based on an
initial font.

Table 3 – Two sets of shapes used to build two fonts by user 1. The set of shapes on
the left builds the font A and set of shapes on the right builds the font B (see Table 2).

74

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S Table 4 – Screenshots of two networks of nodes created by different users.

The network on the left generates the typeface A by user 1. and the network
on the right generates the typeface B by user 4 (see Table 2).

Based on comments given by users we identify the demand for two
type of nodes: a node to group a set of shapes and the mirror
transformation node. Furthermore, several users highlighted that the
system should allow altering the shapes’ construction points after
constructed. Nevertheless, most users did not have much diffi culty in using
the fl ow system and employing the node-based geometric transformation
to create a typeface considering the diffi culties derives from technical
issues, resulting from the system still yet be in a beta version.

Discussion
Although the presented system consists of a prototype, we consider that
it demonstrates great creative potential and enhances the type design
process by (i) supporting visual interactive manipulation of type designs
at various representational levels, and (ii) supporting generation and
exploration of potential alternative letterforms for the same character.

Contemporary computational tools for type design off er great
support for detailed design tasks, providing visual editors that allow the
creation and manipulation of letterforms in a precise manner. However,
we consider that these tools provide limited support to explore
alternative letterforms and poor capabilities to make global adjustments
in the whole typeface. A local adjustment in a specifi c glyph must be
manually executed in the other ones. With the presented system,
designers can interactively manipulate design data and develop a
typeface in a hierarchical manner. This approach creates many design
opportunities. For instance, it is possible to change a glyph element and
propagate the eff ect to all glyphs that use that same element.
Accordingly, it is easy to modify the input shapes, and consequently the
style of the typeface, while preserving the coherence among the resulting
glyphs. Also, after creating a typeface with the system, one is able to
create a typeface family that has a continuous range of weights by simply
changing, e.g., the stroke thickness of the input shapes.

Some users who tested the system mentioned on multiple occasions
the educational potential it provides. The visual development
environment provided by the system may help design students to study
the anatomy of typefaces and their design process.

75

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
SConclusion and Future Work

In this paper, we have described and tested a node-based system to build
modular typefaces. The proposed system is developed to replicate the
traditional process of creating a modular typeface, where designers
employ a set of geometric operations to transform and combine a set of
initial shapes in order to design glyphs that form a typeface. The system
allows the user to perform sequences of geometrical transformations
(scale, rotate and move) in an initial set of shapes. These sequences of
transformations are set by flows of nodes, i.e. nodes connected by links.
The output of one node is passed as input to another creating a flow of
shapes from node to node. This way, the user is able to create glyphs that
can be manipulated in an interactive and dynamic manner.

Although the presented system remains a work in progress,
presenting some functional limitations and technical issues, it is already
able to create typefaces. In order to demonstrate this, we tested the
system with a group of fifteen graphic designers. These tests enabled the
assessment of the approach employed in the system, as well as the
identification of limitations and opportunities that will be considered in
future work.

In future work, we will focus on different paths and possibilities. For
instance, we intend to experiment with the proposed system in other
design tasks, where the reuse of graphic modules is essential, e.g. the
design of signs.

For instance, we intend to enable users to import their own vector
shapes as input shapes in order to expand the visual possibilities of the
typefaces created with the system. It would also be interesting to provide
the user with a library of typefaces created by other users. This way,
users could use any typeface (created with the system) and adapt it to
their own concepts and requirements. This environment of typefaces
created by different people could benefit from a web version of the
system, which would allow anyone to use the system easily.

We are also should implement methods to allow the user to tag each
node with metadata (e.g. title or keywords). This data would not only
enable users to search and filter nodes during the design process but also
provide a valuable layer of information that could be used to generate
knowledge related to each type design process (e.g. meaning of each
node, anatomy of each glyph, and how glyphs relate to each other).

In future iterations of the system, we expect to integrate it with an
evolutionary algorithm to: (i) evolve the input shapes while using a
pre-designed network of nodes; (ii) evolve the network topology while
using a set of pre-designed input shapes; and/or (iii) evolve the input
shapes and the network topology, simultaneously. The evolutionary
process could be (i) semi-automatic, with evaluation provided by the
user, or (ii) automatic, with evaluation calculated using, e.g. a machine
learning mechanism such as a classifier of characters. We believe this
research path may enhance the explorative capabilities of the proposed
system, enabling the automatic generation of novel and unforeseen
letterforms with little effort.

 

76

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S Acknowledgments

The first and second authors are funded by Fundação para a Ciência e
Tecnologia (FCT), Portugal, under the grants SFRH/BD/105506/2014
and SFRH/BD/132728/2017, respectively. We would also like to express
our gratitude to the graphic designers who tested with great enthusiasm
the system developed in this work.

References

BENTLEY, Peter; KUMAR, Sanjeev - Three Ways to Grow Designs: A Comparison
of Embryogenies for an Evolutionary Design Problem. In Proceedings of the
1st Annual Conference on Genetic and Evolutionary Computation - Volume 1
GECCO’99. . San Francisco, CA, USA : Morgan Kaufmann Publishers Inc., 1999

BLOKLAND, Erik VAN; ROSSUM, Just VAN - Is Best Really Better. Emigre. 18 (1990).

BRINGHURST, Robert - The elements of typographic style. 3.0 ed. Vanouver,
Canada : Hartley & Marks, Publishers, 2004. ISBN 9780881792065.

CARTER, Rob; MEGGS, Philip B.; DAY, Ben - Typographic design: Form and
communication. Hoboken, New Jersey, United States : John Wiley & Sons,
2011

COUEIGNOUX, Philippe Jean-Marie - Generation of roman printed fonts.
Massachusetts Institute of Technology, 1975

CUNHA, João; BICKER, João; MACHADO, Penousal - Dissertation on anatomical
relations among characters of a typeface (Dissertação sobre relações
anatómicas entre caracteres de um tipo de letra). University of Coimbra, 2013

CUNHA, João M. et al. - TypeAdviser: A type design aiding-tool. In Ceur
Workshop Proceedings

FLAKE, Günther - Font Production in past and present. Em Font Technology.
Springer, 1994. p. 59–76.

GRIESSHAMMER, Frank - The Pyte Foundry [Online], atual. 2017. [Retrieve in 1
August. 2018]. Available in WWW:<URL:https://typographica.org/typeface-
reviews/the-pyte-foundry/>.

HU, Changyuan - Synthesis of parametrisable fonts by shape components.
EPFL, 1998

HU, Changyuan; HERSCH, Roger D. - Parameterizable fonts based on shape
components. IEEE Comput. Graph. Appl. 21:3 (2001) 70–85.

KANIOWSKI, Antoni - Modular Typographic Generator [online]. 2011. [Retrieve
in 1 August 2018]. Available in WWW:<URL:https://www.behance.net/
gallery/1824431/Modular-Typographic-Generator>.

KNUTH, Donald E. - The concept of a meta-font. Visible language. 16:1 (1982) 3–27.

77

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
SKUMAR, Sanjeev; BENTLEY, Peter J. - Computational embryology: past, present

and future. In Advances in evolutionary computing. Springer, 2003. p. 461–477.

LUPTON, Ellen - Thinking with Type: A Critical Guide for Designers, Writers,
Editors, & Students. 2nd. ed. New Princeton Architectural Press, 2014

LUPTON, Ellen; PHILLIPS, Jennifer Cole - Graphic Design: The New Basics:
Revised and Expanded. 2nd. ed. Princeton Architectural Press, 2015

MARTINS, Tiago et al. - Evotype: Evolutionary Type Design. In JOHNSON, COLIN;
CARBALLAL, ADRIÁN; CORREIA, JOÃO (Eds.) - Evolutionary and Biologically
Inspired Music, Sound, Art and Design – 4th International Conference,
EvoMUSART 2015, Copenhagen, Denmark, April 8-10, 2015,
ProceedingsLecture Notes in Computer Science. [Online]. Springer, 2015
Available in WWW:<URL:http://dx.doi.org/10.1007/978-3-319-16498-4_13>.

MARTINS, Tiago et al. - Evotype: From Shapes to Glyphs. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016GECCO ’16. . New York,
NY, USA : ACM, 2016. ISBN 978-1-4503-4206-3

MARTINS, Tiago et al. - Evotype: Towards the Evolution of Type Stencils. In
LIAPIS, ANTONIOS et al. (Eds.) - Computational Intelligence in Music, Sound, Art
and Design. Cham : Springer International Publishing, 2018

MEGGS, Philip B.; PURVIS, Alston W. - Meggs’ history of graphic design. 5th. ed.
John Wiley & Sons, 2011

MERGLER, H. W.; VARGO, P. M. - One approach to computer assisted letter
design. Visible Language. 2:4 (1968) 299–322.

MILLER, J. Abbott; LUPTON, E. - Design/Writing/Research: Writing on Graphic
Design. London, UK : Phaidon Press, 2006

MORRIS, Robert A. - Rendering digital type: a historical and economic view of
technology. The Computer Journal. 32:6 (1989) 524–532.

PHAN, Quoc Huy; FU, Hongbo; CHAN, Antoni B. - FlexyFont: Learning
Transferring Rules for Flexible Typeface Synthesis. Computer Graphics
Forum. 34:7 (2015) 245–256.

RUBIN, Jeffrey; CHISNELL, Dana - Handbook of usability testing: how to plan,
design and conduct effective tests. Hoboken, NJ, USA : John Wiley & Sons,
2016

SCHNEIDER, Uwe - DaType: a stroke-based typeface design system.
Computers and Graphics. 22:4 (1998a) 515–526.

SCHNEIDER, Uwe - An object-oriented model for the hierarchical
composition of letterforms in computer-aided typeface design. In
Electronic Publishing, Artistic Imaging, and Digital Typography. Springer,
1998b. p. 109–125.

78

P
A

P
E

R
S

 /
 C

O
M

U
N

IC
A

Ç
Õ

E
S SHAMIR, Ariel; RAPPOPORT, Ari - Feature-based design of fonts using

constraints. In Electronic Publishing, Artistic Imaging, and Digital Typography.
Springer, 1998. p. 93–108.

STEFAN, Ellmer - The Pyte Foundry | About [Online], atual. 2016. [Retrieve in 1
August 2018]. Available in WWW:<URL:http://www.thepytefoundry.net/about.
html>.

STINY, George; GIPS, James - Shape grammars and the generative
specification of painting and sculpture. In IFIP Congress (2)

TSCHESE, Tobias - Bastard : Gestalten mit Code. 2008).

WILLEN, Bruce; STRALS, Nolen - Lettering & Type: Creating Letters and
Designing Typefaces. Princeton Architectural Press, 2009

YOSHIDA, Kaori; NAKAGAWA, Yuta; KÖPPEN, Mario - Interactive genetic
algorithm for font generation system. In World Automation Congress (WAC),
2010

