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Abstract. Generative Adversarial Networkss (GANs) have gained pop-
ularity over the years, presenting state-of-the-art results in the genera-
tion of samples that follow the distribution of the input training dataset.
While research is being done to make GANs more reliable and able to
generate better samples, the exploration of its latent space is not given
as much attention. The latent space is unique for each model and is,
ultimately, what determines the output from the generator. Usually, a
random sample vector is taken from the latent space without regard to
which output it produces through the generator. In this paper, we move
towards an approach for the generation of latent vectors and traversing
the latent space with pre-determined criteria, using different approaches.
We focus on the generation of sets of diverse examples by searching in
the latent space using Genetic Algorithms and Map Elites. A set of ex-
periments are performed and analysed, comparing the implemented ap-
proaches with the traditional approach.

Keywords: Generative Adversarial Network, Evolutionary Computa-
tion, Latent Space Exploration.

1 Introduction

GANSs have been presenting state-of-the-art results in the generation of samples
that follow the distribution of the input training dataset [1]. In general, this
model of adversarial learning works by having a generator and a discriminator
training together and competing against each other in a min-max game. The dis-
criminator is trained with real data as well as fake data created by the generator
from latent space. The generator evolves from the feedback given by the discrim-
inator on the generated data Figure 1. Although able to produce results with
high quality, GANs are often really hard to train, requiring a lot of fine-tuning
through trial and error.

While a lot of research is being made in order to make GANs more reliable
and able to generate better samples, the exploration of its latent space does
not have as much attention. The latent space is unique for each model and
is, ultimately, what determines the output from the generator since, in simple
terms, we have g(z)=z’, being z’ the output of a latent vector z through the
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Fig. 1. Base model of a Generative Adversarial Network. G - generator; D - discrimi-
nator; z - latent vector; x - real samples; x’ - generated samples

generator g. Typically we use the trained model to draw random samples from
the latent space without any particular criteria.

In this work, we move towards the search and exploration of solutions from
the latent space according to pre-determined criteria. The overall idea is to enable
the search and generation of sets of latent vectors that accomplish a certain ob-
jective. We will start from exploring approaches that enable us to draw samples
and traverse the latent space moved by a certain objective function. We will use
Genetic Algorithms (GAs) and Multi-dimensional Archive of Phenotypic Elites
(MAP-Elites) to assist on such task. Thus, the contributions of this paper are
the following: (i) modelling of the latent space exploration as a search problem,
enabling the use Genetic Algorithms and Map Elites (ii) a generalised approach
to generate sets of images from a GAN according to with different objectives, e.g.
generate diverse sets of images; (iii) a comparison analysis of the implemented
latent space search algorithms with the conventional approach. Without lacking
generalisation, we apply the ideas of this paper to the image domain, using Deep
Convolutional Generative Adversarial Networkss (DCGANs) [2].

The remaining of the paper goes as follows: in the next Section, we cover
approaches relate to this work (Section 2). In Section 3, we describe our ap-
proaches to this search problem. We describe the experimental setup in Section
4 and analyse and discuss the results in Section 5. In Section 6 we draw overall
conclusions.

2 Related Work

GANSs are generative models that are trained through a face-off between a gen-
erator and a discriminator, mostly used to train a generator that can produce
realistic images. In order to generate an image, the generator is usually given
a random noise vector, a high dimensional vector that, in training, is randomly
sampled from a distribution, for example, a gaussian distribution, called the
prior. The high dimensional space from which images are created is called latent
space. Some work has already been made in this area, and not only with GAN,
which is the type of model that we are going to work within this work. For in-
stance, latent space exploration was performed in generative models using Kernel
Principal Component Analysis (KPCA) [3], showing navigation through image
features and novelty detection; but also in Variational Autoencoders (VAE), in,
for example, mapping genes into a lower-dimensional space in order uncover
underlying gene expression features in cases of tumour or cancer [4].
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There are different ways that we can explore generative models latent space.
White, T. shows three different arithmetical ways we can use to navigate in it
[5]. The first, interpolation, is used to disclose the path between 2 samples in the
space. Usually, a linear interpolation is used, but White suggests a new way, the
spherical linear interpolation - slerp - which takes into account its prior distri-
bution used for sampling noise. Analogy, the second approach, can be simplified
as "King — Man + Woman = Queen”, meaning that it is possible to perform op-
erations between images to form new images with generally predictable results.
Finally, Manifold Interpolated Neighbor Embedding (MINE), is an exploration
model which makes use of nearest neighbours and interpolation to construct a
manifold of the space. Also worth noting is that the authors showed that by com-
bining generative models with labelled data, attribute vectors can be computed
using simple arithmetic, like, for example, a smile vector which, by traversing
uncovers several states of smiling in an image.

As for the use of Evolutionary Computation (EC) in order to evolve images,
some works can be mentioned. For example, evolving master print templates
[6] that, like a master key, could be able to open multiple fingerprints closed
locks. In their work, Roy et al. compared four different Evolutionary Algorithms
(EA), namely Hill-Climbing, Covariance Matrix Adaptation Evolution Strat-
egy, Differential Evolution and Particle Swarm Optimization to evolve Synthetic
MasterPrints according to the metric proposed by them, the Modified Marginal
Success Rate. The samples were generated from two datasets, namely Authentec
AES3400, with latter algorithm getting the best results, and FVC 2002 DB1-
A, for which the second approach had the most success. Moreover, and with a
two-stage workflow similar to what we implemented in this paper which includes
first the unsupervised training of GANs and second the evolution of latent space,
there are two works. One that implements Interactive Evolutionary Computa-
tion [7] for image generation and the other, in the topic of video-games that uses
GANs and latent space evolution to learn and improve Mario Levels [8] using
Covariance Matrix Adaptation Evolution Strategy.

There is also a new approach to generative models which was inspired by
GANSs, the Generative Latent Optimization [9]. This approach takes away the
adversarial discriminator and replaces it with simple reconstruction losses where
the focus is to evolve the latent space to match the one learnable noise vector to
each one of the images in the training dataset.

3 The Approach

Our goal in this paper is to use approaches that can explore the latent space
and create a set of latent vectors towards an objective. In particular, we set the
objective to: find a set of images that can maximize a diversity measure. We
pursuit the objective by exploring the latent space of GAN models using EC.
Therefore, this experiment was separated into two main parts:

— Training of the GANs - develop a generative model that can produce images
which follow the distribution of a certain training input
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— Exploration of the latent space via EC - navigate the latent space of the
generative model in order to find a possible solution for our problem.

The exploration of the latent space and set of latent vectors has the potential
to promote the generation of samples according to pre-determined criteria to
solve and adapt to other problems. It could be used during the training of the
GAN, to have a few latent vectors generated that maximize the loss of the model,
instead of randomly generating all of them. It could be used to generate samples
of a particular type. Some metrics of evaluation of GANs must draw samples
from the latent space, generate the samples and test them on another model
[10]— “what if we guide that generation?” We can use this approach to spot
problems on the training of models.

Also, this problem was applied to 3 distinct sets of images in order to com-
prehend how well our approach would work for different situations:

— handwritten digits — MNIST
— clothing — Fashion — MNIST
— faces — Facity

3.1 Model definition

We are using a type of GANs suitable for generating images, the DCGAN [2].
They make use of deep convolutional layers to better explore space correlation
in images, producing more realistic images. For every GAN, the latent space,
which is the input for all generators, is an array of floats of shape 1 x 100. The
generators used in both MNIST datasets are built with the following model,
generating output with shape 28 x 28 x 1:

Dense ((7, 7, 128), activation="relu”)
UpSampling2D ()

Conv2D (128, kermnel_size=3, padding="same”))
BatchNormalization (momentum=0.8))
Activation (" relu”))

UpSampling2D ())

Conv2D (64, kernel_size=3, padding="same”))
BatchNormalization (momentum=0.8))
Activation ("relu”))

Conv2D (1, kernel_size=3, padding="same”))
Activation (” tanh”))

The generator used with the facity dataset, has an output shape of 128 x
128 x 3 and is built with the following model:

Dense ((8, 8, 128), activation="relu”)
UpSampling2D ()

Conv2D (256, kernel_size=3, padding="same”)
BatchNormalization (momentum=0.8)
Activation (" relu”)
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UpSampling2D ()

Conv2D (128, kernel_size=3, padding="same”)
BatchNormalization (momentum=0.8)
Activation (" relu”)

UpSampling2D ()

Conv2D (64, kernel_size=3, padding="same”)
BatchNormalization (momentum=0.8)
Activation (" relu”)

Conv2D (3, kernel_size=3, padding="same”)
Activation (” tanh”)

The discriminators used for each GAN, all follow the same model, having an
input shape defined by the output of the generators.

Conv2D (32, kernel_size=3, strides=2, padding="same”)
LeakyReLU (alpha=0.2)

Dropout (0.25)

Conv2D (64, kernel_size=3, strides=2, padding="same”)
ZeroPadding2D (padding=((0, 1), (0, 1)))
BatchNormalization (momentum=0.8)

LeakyReLU (alpha=0.2)

Dropout (0.25)

Conv2D (128, kernel_size=3, strides=2, padding="same”)
BatchNormalization (momentum=0.8))

LeakyReLU (alpha=0.2))

Dropout (0.25))

Conv2D (256, kernel_size=3, strides=1, padding="same”)
BatchNormalization (momentum=0.8)

LeakyReLU (alpha=0.2)

Dropout (0.25)

Flatten ()

Dense (1, activation=’'sigmoid ’)

After building both the model of the discriminator and of the generator, they
are combined into a single, combined, model which receives the same input as
the generator and has the output of the discriminator.

3.2 GAN Training

The adversarial neural networks are trained by having the discriminator learn
to distinguish the real samples, which come from the input datasets, from the
fake samples, that are generated by the generator, and by having the generator
learn to produce images that successfully trick the discriminator into classifying
them as real samples [1].

The input datasets used Figure 2, were the following:

— MNIST — dataset of handwritten digit with 70000 (60000 for training and
10000 for testing) 28x28x1 (black and white) images, divided into 10 classes[11].
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Fig. 2. Samples from the datasets used for training. From left to right: MNIST,
Fashion-MNIST, Facity

— Fashion MNIST — dataset of pieces of clothing with 70000 (60000 for training
and 10000 for testing) 28x28x1 (black and white) images, divided into 10

classes [12].
— Facity — dataset of faces with 4024 128x128x3 (rgh) images, not divided by

training or classes.

3.3 Latent Space Exploration

In order to traverse the latent space, we require to generate sets of individuals.
To pursuit our objectives, we used the following approaches:

— Random Sampling (RS)
- GA
— MAP-Elites

The three approaches were thought to evolve set of individuals, but they vary
in the way they promote change along with iterations.

In the RS approaches a completely new random set of individuals is created
at the beginning of each generation and evaluated by an evaluation function, as
shown in 1.

Algorithm 1 Random Sampling
1: procedure RANDOMSAMPLING iterations, popsize, objective, fitnessfunc)
2: for i < 1 to iterations do

population = RANDOMPOPULATION(popsize)

population = FITNESSFUNC(population)

best = BEST(population, objective)
return BEST(population)

The GA is an EC approach where we start with a randomly generated popu-
lation of individuals, but a new population is created trough variation operators
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Algorithm 2 Genetic Algorithm
1: procedure GENETICALGORITHM(generations, popsize, problemargs)
2: population = RANDOMPOPULATION (popsize)
for ¢ <~ 1 to generations do
population = VARIATIONOPERATORS(popsize, problemargs)
population = problemargs.FITNESSFUNC(population)

population = problemargs.SORT(objective)
return BEST(population)

(mutation and crossover) which are applied to the individuals of the old popu-
lation evaluated by a certain fitness function (refer to algorithm 2).

The last algorithm, the MAP-Elites, works a little bit differently. It is an illu-
mination algorithm, and it was made for exploring the search space of solutions
as much as possible [13]. A map of plausible combinations of feature dimen-
sions for the individual’s phenotype, which is previously defined, is maintained
throughout the training. The algorithm starts by generating a random number
of individuals and placing them on the feature map. Afterwards, MAP-Elites
runs by iterations. At each iteration, a single new individual is created from
applying variation operators to individuals already placed in the map. Each new
individual is then evaluated and placed in the map according to its features,
though in each cell of the map, only the best is kept according to the fitness
function.

Algorithm 3 MAP-Elites

1: procedure MAPELITES(iterations, initpopsize, map, problemargs)
2: for i < 1 to initpopsize do

newind = RANDOMINDIVIDUAL(problemargs)
PLACEINMAP(newind, map)

for i < 1 to iterations do
newind = VARIATIONOPERATORS(map, problemargs)

PLACEINMAP(newind, map)
return BEST(map)

Individuals, Initialization For this problem, we the decided to work with
sets of 50 images, meaning that, since we are working with a latent dimension
of size 100, each individual has a genotype of size 5000 that is represented in an
1 x 5000 array. In order to maintain consistency, The initialization of individuals
follows the same Gaussian distribution as the prior used to generate fake images
in the training of the generative models.

Evaluation, Metrics and Variation Operators All algorithms use the same
method to evaluate the fitness of the individuals, an average similarity function.
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Through the use of the specified GAN generator, the genotype of the individuals
is transformed into a set of images. Afterwards the images are compared to one
another using a similarity metric, averaging between all values at the end. Since
we want the most diversity possible, we have modelled the problem for mini-
mization. In terms of the feature dimensions for MAP-Elites, both the average
similarity and max similarity are used map individuals.

To measure similarity, 2 distinct metrics were used, namely Root-Mean-
Squared Error (RMSE) and Normalized Cross-Correlation (NCC) [14]. The RMSE
metric is calculated as

s = 1 [P (A B)

size

(1)
while NCC is calculated as

> (A-B)©(A-B)
VZA©A) x (CBGB)

Where A and B are images, size is a function that measures the size of the
images and ® is the Hadamard product. We selected these metrics for their fast
calculation time and to observe the impact of both since they work in different
ways. With RMSE we have a strict and direct pixel by pixel comparison whereas
with NCC we are looking for certain contrast in the pixel intensities. These are
options out of a number of different similarity metrics [14], but covering all of
them is out of the scope of .

Two variation operators were used for the experiments: crossover and muta-
tion. In the crossover, the two individuals are chosen from the set of available
individuals using tournament selection in the GA and random choice in MAP-
Elites. In both algorithms, the algorithm used is the uniform crossover [15].

In the case of the mutation operator, it was used a random reset mutation,
where each gene has a probability of being mutated. The mutation resets the
selected genes with completely new values that are taken from the same Gaussian
distribution used in the initialization of the individuals.

NCC = (2)

4 Experimental Setup

The experimental setup was thought to analyse how different algorithms and
distinct metrics affect, for different situations, the end result in terms of diversity,
which is the main goal. Moreover, by analysing the observable characteristics of
the sets of images obtained, we also wanted to see if the diversity measured by
an algorithm, is consistent to what we, as humans, perceive as a diverse.

To perform the experiments three generative models were trained, 1 for each
dataset to be used Figure 3. Most of the parameters are the same Table 1, the
only thing that changes is the number of epochs of training: (i) MNIST - 200;
(ii) Fashion-MNIST - 800; (iii) Facity - 1000.

So that the results would be comparable, we keep the conditions of the al-
gorithms as close as possible Table 2, for instance, performing a number of
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Table 1. GAN Parameters

Parameter Setting

optimizer Adam

betal 0.5

beta2 0.999

learn rate 0.0002

batch size 32

loss function Binary Cross-Entropy

noise distribution N(0,1)

Fig. 3. Random sample of images generated from the 3 generative models

iterations on MAP-Elites that would produce the same number of evaluations
as in the GA, maintaing the same number of generated images and attempts to
reach the diverse set of images.

5 Experimental Results

In this section, we analyse the results from the experiments in terms of opti-
misation of the fitness function and the visual outputs from each algorithm. In
order to analyse the results for comparison, we provide graphics with aggregated

Table 2. GA and MAP-Elites Parameters

Parameter Setting

Population size 50 in RS/GA, initial<50 in MAP-Elites
Number of generations 500 in GA, 25K in RS/MAP-Elites
Genotype length 50x size of latent space

Elite size 1

Tournament size 3

Crossover operator uniform crossover

Crossover rate 0.7 in GA/MAP-Elites

Mutation operator gene replacement

Mutation rate per gene 0.02 in GA/MAP-Elites

feature dimensions avg similarity : bins=[0:0.01:1],

max similarity bins=[0:0.01:1] in MAP-Elites
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the values of evaluations. We group the values for Random Sampling and Map
Elites in iterations, that corresponds to 50 evaluations. This way, it is possible
to compare with the information of the GA. Basically, one iteration is equiva-
lent to a generation on the GA, which in turn is equivalent to 50 evaluations on
Random Sampling and Map Elites algorithms. We also separate the analysis of
image diversity in two groups based on the similarity metric: RMSE and NCC.

In figure 4, we can observe the results of the different algorithms across
the iterations. It is clear that the GA is able to optimise the fitness function.
The same does not happen with MAP-Elites though, we get little improvement
compared to the random sampling, and that does not change when working
with different datasets, the difference between the actually gets narrower the
more complex is the type of images.
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Fig. 5. Heatmap of the Map constructed with MAP-Elites for each dataset and similar-
ity metric. Images correspond to Oth, 12000th and 25000th iterations of the algorithm.
The color represent fitness, yellow for better fitness and blue for worse, while the red

represents the best individual. The x axis corresponds to the average similarity and
the y axis to the maximum similarity.
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When analysing the Map Elites algorithm, we are also concerned with the
mapping of the individuals. As such, we analysed the heatmaps of the algorithm
across iterations for the datasets and metrics, as presented in figure 5, to under-
stand how much of the space was being explored by the algorithm, which helps
us to understand the distribution of samples along with the iterations.

We can observe that space exploration is limited and that it generally seems
to take increasingly more time to expand and, therefore, more time to find better
solutions. It is noticeable the existence of a cluster of solutions in this approach
and that the expansion is easier for less fit (dark blue) zones, which corroborates
the evolution graphs. Here we clearly see how much MAP-Elites struggles to
find better solutions when the mapping is not favourable to the problem. With
the facity dataset and the NCC metric, the random initialisation values were
clustered into a very small area, which made it really difficult for the algorithm
to expand. Even the variation operations caused changes so small that they still
fall in the same area.

The results suggest that this algorithm is not suitable for this type of problem.
However, it could be related to the selection of feature descriptor and algorithm’s
parametrisation. The mapping functions tend to be simplistic and become a
bottleneck that does not allow the ideal exploration of the search space and
expansion of the mapped area, something that we will further investigate.

In terms of visuals the outputs from Figure 6 and Figure 7 showcase the best
set of images that maximize the pre-determined criteria. For this last analysis, we
only focused on the NCC metric and RMSE metric, respectively. It is noticeable
the differences between the different approaches and metrics. In general, every
approach, for each metric, ended up having a different set of images at the end.

Between the NCC and RMSE results, one aspect is noticeable, and it show-
cases the particularity of each similarity metric. In the RMSE, we observe that
it tended to pick a set of variables that generated images which minimize the
overlap of elements and with a dissimilar background (facity). The NCC, on the
other hand, tended to promote contrast between the different images. This is
a clear example of the success of the approach of searching and achieving the
pre-determined objective. Among the different approaches, we can observe that
the GA was able to generate the most visually diverse set of images.

6 Conclusions

This work presents multiple methods that enable the user to explore the latent
space with a pre-determined objective. We have implemented Genetic Algo-
rithms and Map Elites and compared with the traditional approach of random
sampling from the latent space. Some of the results obtained with were unex-
pected but suggested that we are able to generate diverse sets of latent variables
that translate into samples that correspond to certain criteria. The conducted
experiments, in the image domain, with different datasets, point out that it is
possible to apply our approach to GANs of different types of datasets, ranging
from grayscale to colour images. The overall results worked as a proof of con-
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cept that is possible to guide the generation of latent variables towards certain
criteria.

Future work could include other strategies and objectives for navigation, such
as the usage of different metrics; fine-tuning of parameters, application of dif-
ferent criteria for illuminating the latent space in map-elites, which may include
working with more than 2, usage of multiple seeds per set as well as adding a
pre-processing layer that could help focus on the regions of interest in the images
(for example the removal of the background). Moreover, the generation of groups
of images uncovers problems of generalization. Therefore research could be done
in order to explore reinforcement of training datasets.
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