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Neuroevolution of Generative Adversarial
Networks

Victor Costa, Nuno Lourenco, Jodo Correia, and Penousal Machado

Abstract Generative Adversarial Networks (GAN) is an adversarial model that
became relevant in the last years, displaying impressive results in generative tasks.
A GAN combines two neural networks, a discriminator and a generator, trained in
an adversarial way. The discriminator learns to distinguish between real samples of
an input dataset and fake samples. The generator creates fake samples aiming to fool
the discriminator. The training progresses iteratively, leading to the production of
realistic samples that can mislead the discriminator. Despite the impressive results,
GANSs are hard to train, and a trial-and-error approach is generally used to obtain
consistent results. Since the original GAN proposal, research has been conducted not
only to improve the quality of the generated results but also to overcome the training
issues and provide a robust training process. However, even with the advances in the
GAN model, stability issues are still present in the training of GANSs. Neuroevolution,
the application of evolutionary algorithms in neural networks, was recently proposed
as a strategy to train and evolve GANs. These proposals use the evolutionary pressure
to guide the training of GANs to build robust models, leveraging the quality of
results, and providing a more stable training. Furthermore, these proposals can
automatically provide useful architectural definitions, avoiding the manual discovery
of suitable models for GANs. We show the current advances in the use of evolutionary
algorithms and GANS, presenting state-of-the-art proposals related to this context.
Finally, we discuss perspectives and possible directions for further advances in the
use of evolutionary algorithms and GANSs.
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1 Introduction

Generative Adversarial Networks (GAN) [16] is an adversarial model that makes
use of neural networks to produce samples based on an input distribution. GAN
can be applied in several contexts, for example, in the generation of image, video,
sound, and text, being able to produce impressive results concerning the quality of
the created samples. This model gained a lot of relevance in recent years, leveraging
the interest of the community on improving the original proposal.

The original GAN model proposes the use of two neural networks: a discriminator
and a generator. These two components are trained in an adversarial manner, resulting
in a zero-sum game between them. Each component of a GAN is trained following
its specific process. To train the discriminator, a real data distribution, usually in
the form of a dataset, is used as input. The generator is trained using a second
distribution, such as a normal or a uniform distribution. This distribution forms the
latent space that is used to feed the generator and produce samples with the objective
of mimic the characteristics of the real data distribution. At the end of the training
process, the generator learns to capture the real data distribution indirectly, i.e.,
without looking into the input dataset. Therefore, the generator will be able to create
fake samples based on the learned distribution. On the other hand, the discriminator
learns to distinguish between these fake samples and samples drawn from the real
data distribution.

Despite the fact that GANs can be used as a generative component to produce
samples in a variety of areas, applications in the image domain are more frequently
reported by the production of realistic samples, representing significant advances
when compared to other methods [3, 21, 51]. Therefore, the focus of this chapter
is on the applications of GANSs to the image domain. Nevertheless, the techniques
presented here can be extended and adapted to other contexts.

Although GANs have attained incredible results, their training is challenging,
and the presence of problems such as the vanishing gradient and the mode collapse
is common [7, 13]. The balance between the discriminator and the generator is
frequently the cause of these problems. In the case of the vanishing gradient, the
discriminator becomes so powerful that it can distinguish almost perfectly between
samples created by the generator and real samples. After this, because of the training
approach used in GANSs, the process stagnates. Regarding the mode collapse, the
problem occurs when the generator fails to capture the entire representation of the
distribution used as input to the discriminator. This is an undesired behavior, as
we want not only to reproduce realistic samples but also to reproduce the diversity
of the input distribution. Although there is a diversity of strategies and techniques
to minimize the effect of these problems, they are still affecting the GAN training
[17, 38]. Most of the proposed solutions appeal to mathematical models to deal
with these problems, such as the use of more robust loss functions and stable neural
network layers [3, 5, 26, 51]. Other proposals also worked on the architecture of the
neural networks in order to avoid these issues [30, 34].

In spite of these issues, research was also conducted to improve the original GAN
model with respect to the quality of the results, leveraging it to impressive levels
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[3, 21, 26]. Other researches also proposed changes on the model to introduce a
conditional input [20, 28, 31, 36]. Thus, a relevant effort is being made to improve
GANsS, not only to overcome the difficulties on the original model but also to extend
the initial concept to different objectives!.

In GANSs, the adversarial characteristics and the necessity of an equilibrium
between the generator and the discriminator make the design of the network crucial
for the quality of the results. Therefore, the topology and hyperparameters that
compose the neural networks of the generator and the discriminator are important to
keep the balance between them in the training process. If one component becomes
more powerful than the other, the GAN training will probably become unstable and
may not produce the desired outcome. In this case, the design of the neural network
is paramount to achieve convergence on training.

The design of a neural network is usually defined by hand in an empirical process,
based on expert knowledge, which requires spending human time in repetitive tasks,
such as experimentation and fine-tuning [7]. Experiments are used to validate and
fine-tune the model, aiming to find efficient architectures to produce a neural net-
work for a specific problem. However, some approaches can be used to automatize
this process. In the field of evolutionary computation, neuroevolution can be used to
design and optimize neural networks [27, 41, 50]. An evolutionary algorithm (EA)
is based on the evolutionary mechanism found in nature, using it to evolve a pop-
ulation of potential solutions, producing better outcomes for a given problem [40].
In neuroevolution, this concept is adapted to the context of neural networks. In this
case, the population is composed of individuals encoded through a genotype that
represents, in some level of abstraction, neural networks. The genotype-phenotype
mapping is the process that uses the genotype to produce the concrete representation
of the neural network, which represents the phenotype of the individual. As in a
regular EA, these individuals are evaluated and selected for reproduction to form the
next generations of potentially better solutions.

Neuroevolution can be applied to evolve both the network architecture (e.g.,
topology, hyperparameters and optimization method) and the internal parameters
(e.g., weights) [50]. NeuroEvolution of Augmented Topologies (NEAT) [41] is a
well-known neuroevolution method that evolves the weights and topologies of neural
networks. A further proposal originated DeepNEAT [27], a modification of the model
that expands NEAT to larger search spaces, such as in deep neural networks.

Although neuroevolution is usually applied to standalone neural networks, the
concepts can also be applied in the context of GANs. Furthermore, in the mechanics
of the GAN model, the generator and discriminator are competing in a zero-sum
game in the task of creating and discriminating fake and real samples. Therefore, a
competitive model can be suitable to represent populations of individuals in GANs.
In EAs, coevolution is the simultaneous evolution of at least two distinct species [19,
35, 42]. In competitive coevolution, individuals of these species are competing
together, and their fitness function directly represents this competition. Thus, the

LA list of proposals related to GANSs can be found at https://github.com/hindupuravinash/the-gan-
z00.
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applicability of a competitive coevolution environment in an EA to train GANs can
also be evaluated [9, 10, 14, 46].

In recent years, researchers have been applying the concepts of EAs to improve
the performance of GANs with different strategies [1, 9, 10, 14, 47, 46]. The authors
found advances not only in the quality of the outcome but also regarding the stability
issues in the training of GANs. We present in this chapter the state-of-the-art of
these proposals, discussing their main advantages and drawbacks, and presenting
further directions for improvements. The following proposals will be described in
this chapter: E-GAN [47], Pareto GAN [14], Lippizaner [1], Mustangs [46], and
COEGAN [9, 10].

The remainder of this chapter is organized as follows. Section 2 introduces the
concepts of GANS, presenting the challenges and advances in this field. Section 3
summarize the possibilities regarding the application of EAs in the context of GANs.
Section 4 presents the current proposals that use EAs with GANs. Section 5 discuss
the application of EAs in GANs, drawing particular attention to the drawbacks and
advantages of each approach, presenting directions for further improvements. Finally,
Sect. 6, concludes this chapter with the final considerations about the subject.

2 Generative Adversarial Networks

Generative Adversarial Networks (GAN), proposed by [16], is an adversarial model
that became relevant mostly for the performance achieved in generative tasks on the
image domain, representing significant improvements over other generative methods.
We present in this section the model definition, the common issues found when
training a GAN, and how to evaluate and compare GANs using state-of-the-art
metrics.

2.1 Definition

A GAN combines two neural networks in a unified training algorithm: a discriminator
D and a generator G. The discriminator D aims to distinguish between real and fake
examples, given a real data distribution usually in the form of a dataset (e.g., a
digits dataset). Therefore, the discriminator outputs the probability of the input to
be a real sample, i.e., a sample belonging to the real data distribution. For this, the
discriminator is trained with samples from both the real distribution and samples
created by the generator. The generator G receives samples from another input
distribution (e.g., a uniform or a normal distribution), and outputs a fake sample,
attempting to capture the data distribution used in the training of D.

These components are trained in an adversarial manner, creating strong generative
and discriminative components. The generator never looks directly into the distribu-
tion used to train the discriminator. Therefore, it is expected that the generator does
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not output simple copies of the real distribution and presents some novelty on the
samples in a successfully trained GAN.

loss

created sample
o

Generator -

random input

Discriminator

Z real?
loss

EENX

[Sx]»]o
=EEN
N Jwls

-

input dataset

Fig. 1 High-level interaction between the components of a GAN trained with a digits dataset.

Figure 1 represents the high-level interaction between these components when
using a digits input dataset, such as the MNIST dataset [24]. Note that the generator
does not receive samples from the input dataset used on the discriminator training.
Both the discriminator and generator are trained with backpropagation and a gradient
descent method. Therefore, different loss functions are used in the GAN components.
The loss function of the discriminator is defined as follows:

JPUD,G) = ~E~pyurallog D()] = Ez-p, [log(1 = DG(2))]. (1)
For the generator, the non-saturating version of the loss function is defined by:
J'G) = ~Ez-p, [log(D(G(2))]. @

In Eq. 1, paa:a represents the dataset used as input to the discriminator. In Eq.
1 and Eq. 2, z is the latent space used as input to the generator, p, is the latent
distribution, G is the generator, and D represents the discriminator.

The classical training procedure of a GAN is presented in Algorithm 1. In lines 2-
6, the discriminator is trained for k steps, using a batch of m samples. For performance
reasons, the original GAN model used k£ = 1 for the experiments. The generator is
trained in lines 7-8. The losses described by Equations 1 and 2 are applied in lines 5
and 8, respectively. The optimization method used for training can be any stochastic
gradient descent method, such as the Adam optimizer [23] or RMSprop [45].

GANS are hard to train, and training stability is an issue that systematically affects
the results. So, to achieve good outcomes in training, a trial-and-error approach is
frequently used. Some works developed a set of techniques to train GANs to improve
the probability to achieve convergence. A study about the training of GANs [38]
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Algorithm 1 Classical training algorithm for GANs.

for n iterations do
for k steps do

1:
2
3 fake_samples «— sample(m, P;(g))

4 real_samples «— sample(m, Pga:q(x))

5: train_discriminator(D, G, fake_samples,real_samples)
6 end for

7 fake_samples «— sample(m, P;(g))

8 train_generator(G, D, fake_samples)

9:

end for

proposes the use of strategies such as label smoothing and minibatch discrimination
in order to obtain better results. However, these strategies only minimize the effect
of the problems that usually happen in the training process. Several other variations
of the original GAN model were proposed to improve the effect of these problems
[3, 17, 21, 26, 30]. In Sect. 2.2, we describe some of these problems regarding the
training of GANs.

2.2 Common Problems

The vanishing gradient and the mode collapse are amongst the most common prob-
lems affecting the stability when training GANs. They are widespread and represent
a significant challenge to obtain useful representations for applying GANSs in differ-
ent domains. These issues are often part of a bigger problem: the balance between
the discriminator and the generator during the training. Although several approaches
tried to minimize those obstacles, they still affect the training and remain unsolved
[3, 17, 38]. Following we describe the mode collapse and the vanishing gradient
issues, presenting how they affect the training of GANSs.

2.2.1 Mode Collapse

In the mode collapse problem, the generator captures only a small portion of the
dataset distribution provided as input to the discriminator. This diminished repre-
sentation is not desirable since it is expected that a generative model reproduces the
whole distribution of the data to achieve variability on the output samples.

Figure 2 represents images created by a generator after a failed training of a GAN
using the MNIST dataset. The effects of the mode collapse can be clearly seen in
these images. We can see in the samples on the left of Fig. 2 that only the digits
9 and 7 are represented. However, in the samples on the right, the digits cannot be
identified correctly. The generator creates only a superposed combination of digits.



Neuroevolution of Generative Adversarial Networks 7

Fig. 2 Samples created by

a GAN after training that
resulted in the mode collapse
issue. Note that the GAN was
training using the MNIST
dataset, which contains digits
from 0 to 9. However, on
the left, the generator can
only create samples related to
the digits 7 and 9. In the right,
the generator failed to create a
real digit, outputting the same
unrealistic pattern.

%2 %4142
%2 %1% %
234242
22 %442
12 %4272
3 %% %%

The lack of variability demonstrated in these examples characterizes the problem as
mode collapse.

2.2.2 Vanishing Gradient

The vanishing gradient occurs when one of the GAN components, i.e., the dis-
criminator or the generator, becomes powerful enough to harm the balance required
on the training. For example, the discriminator can become too strong and not be
fooled anymore by the generator when distinguishing between fake and real samples.
Hence, the loss function is too small, the gradient does not flow through the neural
network of the generator, and the GAN progress stagnates. In the GAN training, the
equilibrium between the discriminator and generator is essential to the training con-
vergence. The vanishing gradient problem happens when this equilibrium is violated
in an irreversible way.

Fig. 3 Losjses.0f. the gener- Generator
ator and discriminator of a Discriminator
training experiment with the
vanishing gradient issue. As
the loss of the discriminator
approximates to zero, the loss
of generator stagnates.

Loss

Iteration

Figure 3 presents an example of a GAN training that suffers from the vanishing
gradient problem. We can see in this figure the progression of losses of the gen-
erator and discriminator through iterations. Note that when the discriminator loss
becomes zero (marked by the dashed vertical line), the generator stops to improve
and stagnates until the end of the training. As such, the quality of samples created by
the generator will not improve anymore. It is important to note that the divergence
between the generator and discriminator, expressed by the losses, does not need to
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always decrease [13]. Even when the loss increases, the training can reach a good
solution in the end. Therefore, regarding the vanishing gradient, the problem only
occurs when the loss approximates to zero. The GAN model tolerates steps with a
reduction in the loss without losing convergence capabilities.

2.3 Evaluation Metrics

Several metrics can be used to quantify the performance of a GAN [6, 49]. As the
generators are commonly the most relevant component of a GAN, these metrics
usually target them. However, the measurement of the performance when executing
generative tasks is a relevant problem and there is not a consensus yet in the com-
munity about the best metric to use. We highlight here two of the most commonly
reported metrics for GANs in the literature: the Inception Score and the Fréchet
Inception Distance (FID) score.

Other metrics, such as the skill rating [32], were evaluated and obtained relevant
results. Despite this, they are still not widely used by the community, becoming hard
to use them in a comparison study to evaluate a proposal with other works. However,
they can still be useful to use in the context of EAs. They can be used not only as
comparison criteria between the solutions but also as fitness functions to guide the
evolution.

2.3.1 Inception Score

The Inception Score (IS) [38] is an automatic metric to evaluate synthetic image
samples that were created based on an input dataset. This method uses the Inception
Network [43, 44] to get the conditional label distribution of the images created by
a generative algorithm, such as a GAN. This network should be previously trained
using a dataset, usually the ImageNet dataset [37]. Therefore, the Inception Score is
defined as:

IS(x,y) = exp(ExKL(p(y|x)|Ip(y))), 3)

where x is the input data, y is the label of the data, p(y) is the label distribution,
p(y|x) is the conditional label distribution, and KL is the Kullback-Leibler diver-
gence between the distributions p(y|x) and p(y). It is recommended to evaluate the
IS metric on a large number of samples, such as 50000, in order to provide enough
diversity to the score [38].

The IS metric has some drawbacks, such as the sensitivity to the weights of the
Inception Network used in the calculation [4]. Moreover, the network used in the
Inception Score, which was trained in the ImageNet dataset, may not be applicable
with consistent performance to other datasets.
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2.3.2 Fréchet Inception Distance

Fréchet Inception Distance (FID) [18] is the state-of-the-art metric to compare the
generative components of GANs. The FID score outperforms other metrics, such as
the Inception Score, with respect to diversity and quality [25]. As in the Inception
Score, FID also uses a trained Inception Network in the computation process. In
the FID score, a hidden layer of Inception Net (also usually trained on ImageNet) is
used in the transformation of images into the feature space, which is interpreted as a
continuous multivariate Gaussian. This transformation is applied to a subset of the
real dataset and samples created by the generative method. The mean and covariance
of the two resulting Gaussians are estimated and the Fréchet distance between these
Gaussians is given by:

FID(x,g) = ||ux — ﬂg”% +Tr(Xx + Zg - Z(szg)]/z)' 4)

In Eq. 4, p1x, Xx, tg, and X, represent the mean and covariance estimated for the
real dataset x and fake samples g, respectively. In summary, the FID score is given
by the norm of the means and the trace of the covariances between real and fake
samples.

3 Exploring the Evolution of GANs

Several aspects that compose the GAN model can be actively used as evolvable
components in an evolutionary algorithm. However, it is important to keep in mind
that the EA should preserve the balance of these components in order to tackle the
issues listed in Sect. 2.2. We discuss in this section the possibilities for the application
of EAs to the GAN model. The options related to neuroevolution and the aspects of
GANSs will be presented as possible choices to design an algorithm.

3.1 Neuroevolution

Neuroevolution is the application of EAs in the evolution of a neural network.
It can be applied to evolve weights, topology, and hyperparameters of a neural
network [50]. When used to discover the network topology, a substantial benefit is the
automation of the architecture design and parameter decision, transforming a manual
human effort into an automatic procedure. This automation is even more critical
with the rise of deep learning, which is producing deeper models and increasing the
search space [27]. However, the increase in the search space is also a challenge for
neuroevolution. These methods have high time-consuming executions that may turn
their application unfeasible.
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Neuroevolution can be fully applied in the context of GANs. The evolution of the
topologies of the discriminator and the generator should take into account that the
equilibrium between them is paramount to the convergence of the training process.
Not only the structure (i.e., the number of layers and the connections between them)
but also the internal characteristics of each layer composing a neural network can
be the subject of evolution. For example, the type of a layer (e.g., convolution or
fully connected), the number of output features, and the activation function (e.g.,
ReLU, ELU, Tanh). Other aspects relevant to the network can also be a variable of
the individual, such as the choice for the optimizer used in the training, the learning
rate, the batch size, and the number of the training iterations (e.g., the k parameter
of Algorithm 1).

We can also make use of other techniques regarding evolutionary computation
in neuroevolution, such as coevolution. Coevolution is the simultaneous evolution
of at least two distinct populations (also denominated species) [19, 35]. There are
two types of coevolution algorithms: cooperative and competitive. In cooperative
coevolution, individuals of different species cooperate in the search for efficient
solutions, and the fitness function of each species is designed to reward this coop-
eration. In competitive coevolution, individuals of different species are competing
between them in the search for better solutions. Here, their fitness function directly
represents this competition in a way that scores between species are inversely re-
lated. For example, NEAT was successfully applied to a competitive coevolution
environment [42].

The coevolutionary approach used in an EA can lead to some issues, such as
intransitivity and disengagement [2, 29]. The intransitivity occurs when a solution
a is better than b and b is better than c, but this does not guarantee that a is better
than c. This issue can lead to cycling between these solutions during the evolutionary
process, preventing the progress of individuals toward optimal solutions. Disengage-
ment occurs when the equilibrium between the populations is broken. In this case,
individuals from one population are much better than individuals from the other,
leading to ineffective progression.

GANSs can be modeled as a competitive coevolution problem. We can consider a
population of discriminators as competitors to a population of generators. Therefore,
an EA can make use of competitive coevolution concepts to match individuals from
these two populations at the evaluation phase. Furthermore, we can relate problems
that frequently affect the training of GANs (Sect. 2.2) to coevolution problems. For
example, the vanishing gradient can be linked to the disengagement issue. Thus,
the use of coevolution can be explored in combination with other techniques (e.g.,
neuroevolution) to solve challenges of the GAN training process.

3.2 Variations of GANs

Several advances over the original GAN model were recently proposed. These pro-
posals focused not only on the improvement of the quality of the created samples
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but also on the improvement of the training stability. These proposals can be divided
into two main categories: architecture improvements and alternative loss functions
[33, 48].

In the category of architecture improvements, we have DCGAN [34], a set of
constraints and rules that guide the design of the components of a GAN. DCGAN
became a reference architecture for the discriminator and the generator in GANs.
Some of these rules are:

* Use batch normalization in the generator and discriminator;
* Use the ReLU activation function in all hidden layers of the generator;
* Use LeakyReLU in all layers of the discriminator.

In the experiments presented with DCGAN, the training stability was improved, but
there are still issues such as the mode collapse problem in some executions [34].

Other proposals introduced different aspects into the original GAN model [5, 7,
11, 12, 15, 21, 22, 51]. We can use some of these strategies as inspiration for an EA.
For example, the method described in [21] uses a predefined strategy to grow a GAN
during the training procedure. The main idea is to grow the model progressively,
increasing layers in both discriminator and generator. This mechanism will make the
model more complex while the training procedure runs, resulting in the generation of
higher resolution images at each phase. However, these layers are added progressively
in a preconfigured way, i.e., they are not produced by a stochastic procedure. These
concepts can be expanded to be used in an EA. Instead of a predefined grow, the
progression of the discriminator and the generator can be guided by evolution, using
a fitness function that can prevent and discard unfitted individuals.

Other approaches use multiple components instead of only a single generator
and a single discriminator. For example, GMAN [11] proposed a model that uses
multiple discriminators in the training algorithm. On the other hand, MAD-GAN [15]
explored the use of multiple generators in the GAN training. An EA can be aligned
with these concepts with the proposal of a solution that contains two entirely different
populations of discriminators and generators.

Another strategy to overcome the training issues and improve the original GAN
model is the use of alternative loss functions. A variety of alternative loss functions
were proposed to minimize the problems and leverage the quality of the results,
such as WGAN [3], LSGAN [26], and SN-GAN [30]. WGAN proposes the use of
the Wasserstein distance to model the loss functions. LSGAN uses the least-squares
function as the loss for the discriminator. SN-GAN proposes the use of spectral
normalization to improve the training of the discriminator. An EA can take advantage
of these variations and use the loss function as an interchangeable component.

4 Current Proposals

We present in this section the state-of-the-art on the application of evolutionary
algorithms in GANs. These proposals are aligned with the possibilities presented in
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Sect. 3, presenting solutions to apply them and improve the GAN training process.
To the best of our knowledge, these are the proposals that use EAs in the context
of GANs: E-GAN [47], Pareto GAN [14], Lippizaner [1], Mustangs [46], and CO-
EGAN [9, 10]. In this section we describe these solutions, focusing on the choices
concerning the aspects of the EA and the characteristics of GANs. Therefore, we
report the characteristics of the algorithms concerning the selection method, fitness
functions, variation operators, evaluation, and experiments.

4.1 E-GAN

A model called E-GAN? was proposed to use EAs in GANs [47]. The approach
applies an EA to GANs using a mutation operator that can only switch the loss
function of the generator. Therefore, the evolution occurs only in the generator, and a
single-fixed discriminator is used as the adversarial for the population of generators.
The network architectures for the generator and the discriminator are fixed and based
on DCGAN [34].

The population of generators contains individuals that have different loss func-
tions. Therefore, the mutation operator used in the process can change the loss
function of the individual to another one selected from a predefined set. Each loss
function in the predefined set focused on an objective to help in the GAN learning
process. A minimal population of individuals is used to capture the possibilities of
the predefined losses and provide an adaptive objective for the training. In this case,
the population of generators is composed of three individuals, each one representing
one of the possible losses.

The possibilities for losses are implemented through three mutation operators:
minimax, heuristic, and least-squares mutation. The minimax mutation follows the
original GAN objective given by Eq. 2, minimizing the probability of the discrimina-
tor to detect fake samples. On the other hand, the heuristic mutation aims to maximize
the probability of the discriminator to make mistakes regarding fake samples. The
least-squares mutation is based on the objective function used in LSGAN [26]. Only
these operations are available and crossover is not used in the E-GAN algorithm.

Two criteria were used as fitness in the evaluation phase of the algorithm. The
first, called quality fitness score, is defined as:

Fy = E.[(D(G(2))], (5)

that is similar to the loss function used in the generator of the original GAN model
(Eq. 1). The second criteria, called the diversity fitness score, is defined as:

Fq = —log||Vp — Ex[log(D(x))] - E;[log(1 — D(G(2)))], (6)

2 Code available at https://github.com/WANG-Chaoyue/EvolutionaryGAN.
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In Eq. 5 and Eq. 6, z, G and D represent the latent space, the generator, and the
discriminator, respectively. These two fitness criteria are combined as follows:

F =F, +yFy, (M

using the y parameter to regulate the influence of the diversity criteria on the final
fitness.

At each generation, the individuals are evaluated following their specific loss
function, and only the best-fitted generator survives for the next steps. In the next
generation, the survivor individual is used to train the discriminator and to generate
the three children for the next evaluation.

The E-GAN model was evaluated on the CIFAR-10, LSUN and CelebA datasets.
The Inception Score was used as the metric to analyze the results. As specified in
E-GAN, the population used in the experiments consist of a single discriminator and
three generators. The authors concluded that E-GAN improved training stability and
achieved satisfactory performance, outperforming other methods in some scenarios.

4.2 Pareto GAN

A neuroevolution approach to train GANs was proposed in [14]. Although not
named by the authors, we refer to this solution as Pareto GAN?3. The proposal uses
a genetic algorithm to evolve the architecture of the neural networks used for both
the generator and the discriminator. A single individual (G;, D;) is used to represent
both the generator and the discriminator in the EA.

The crossover operator combines two parents exchanging the discriminator and
the generator between them. For example, a crossover between the individuals
(G1,Dy) and (G, D;) produces the children (G, D;) and (G, D). The crossover
operator does not change the internal state of the generator and the discriminator
in each individual. To accomplish this, a set of possible mutations is applied to
individuals when creating a new generation.

Regarding the architecture of the neural networks, the mutation can change, add
or remove a layer. Mutation can also change the internal state of a layer, such as the
weights or the activation function. Some mutation operators also work on the GAN
algorithm level. There is an operator to change the loss function used in the GAN
algorithm by using a predefined set of possibilities. Another possibility is to change
the characteristics of the algorithm. Here, it is possible to change the number of
iterations for the generator and the discriminator when training an individual (e.g.,
the parameter k of Algorithm 1).

A benchmark for GANs based on the problem of Pareto set approximations was
also proposed [14]. The comparison between the Pareto front of a solution and the
real front is used to assess the quality of the samples and can also identify issues, such
as the mode collapse problem. Therefore, the inverted generational distance (IGD)

3 Code available at https://github.com/unaigarciarena/GAN_Evolution.
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[8] was used as fitness to drive the EA. The IGD measures the smallest distance
between points in the true Pareto front and in the Pareto front approximation and is
given by:

1 , r u
IGD = W (Z Mmingead(r, a)p) ,d(r,a) = (;(rk - ak))

reR

1
2
’

®)

where R is the real Pareto front, A is the Pareto approximation, and m is the
number of vectors in R.

The evaluation phase will transform each individual (G;, D;) into a concrete
GAN, composed of a discriminator and a generator, that will be trained according
to the regular GAN algorithm. The fitness is calculated, and the selection uses the
Pareto-dominance to compose the offspring that will form the next generation.

The proposed solution was evaluated using bi-objective functions as the input
data, each one with 10 input variables. A population of 20 individuals, evaluated for
500 generations, was used in the experiments. The authors found that the algorithm
was able to found architectures for the discriminator and the generator that improve
the Pareto set approximation. The experiments do not include evaluations with image
datasets. However, experiments using the same data dimension as the MNIST dataset,
i.e., with 784 input variables, were also conducted. The authors concluded that the
solution is scalable to this dimension, as the results showed that useful architectures
were also found in this case.

4.3 Lippizaner

A model called Lipizzaner# defines a coevolutionary framework to train and evolve
GANs [1]. In Lipizzaner, the evolution occurs only on the internal parameters of
the generator and discriminator, such as the weights of their neural networks. Thus,
the network architecture used in both the discriminator and generator is fixed and
defined a priori. The architecture varies with the dataset used in the experiments.
For MNIST, an MLP network composed of four layers and 700 neurons was used.
On the other hand, an architecture based on DCGAN was used for the experiments
with the CelebA dataset.

The fitness used in Lippizaner for the generators and discriminators is based on
the GAN objective function, a variation of Eq. 1 (Sect. 2). At the evaluation step, the
value £L(G;, D;) is calculated for each pair G; D;, and the fitness values are updated
as fg, —= L(G;, D;) and fp, += L(G;, D;) for the generator and the discriminator,
respectively.

Spatial coevolution was used to design the algorithm that trains and evolve the
generators and discriminators. Individuals are distributed over a two-dimensional
toroidal grid, where each cell contains individuals from the generator and discrimi-

4 Code available at https://github.com/ALFA-group/lipizzaner-gan.



Neuroevolution of Generative Adversarial Networks 15

Fig. 4 A 3 x 3 grid repre-
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nator populations. In the evaluation phase, the EA matches individuals in neighbor
cells following a coevolutionary pairing approach. A five-cell neighborhood was
used to determine these interactions. Figure 4 displays an example of a 3x3 grid with
the spatial coevolution strategy used in Lipizzaner. The generator is determined as a
mixture of generators in this neighborhood.

Lipizzaner uses two mutation operators. The first operator mutates the learning
rates of the optimization method used in the generator and the discriminator. In
this case, a normal distribution is used to change the learning rate at small steps
at each generation. The second operator is a gradient-based mutation that updates
the weights of the individuals in the populations of generators and discriminators.
This operator uses the Adam optimizer [23] to update the weights together with an
evolution strategy to update the mixture weights.

The model was evaluated on the MNIST and CelebA datasets, using a 2 x 2 grid,
forming a population of 4 generators and 4 discriminators. These populations were
evolved through 400 generations. The authors found that Lipizzaner was able to avoid
the mode collapse problem in most of the experiments. The model can recover from
the mode collapse issue and continue to improve as the training advances through
the next generations.

4.4 Mustangs

The models E-GAN and Lipizzaner were combined in a hybrid approach to train and
evolve GANSs, called Mutation Spatial GANs (Mustangs)> [46]. As in Lipizzaner
and E-GAN, the topologies of the generator and discriminator are fixed during the
algorithm, i.e., the architectures are not a target of the EA.

Mustangs combines the mutation operators used in E-GAN and the spatial co-
evolution mechanism used in Lipizzaner. The goal is to leverage the diversity of
genomes in the population. Thus, the loss function of generators can be modified by

5 Code available at https://github.com/mustang-gan/mustang.
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the mutation operator, as in E-GAN. As in Lipizzaner, the match between individ-
uals occurs in a toroidal grid, and the internal weights of the neural networks are
calculated based on the neighborhood.

The Mustangs model uses the same fitness strategy used in Lipizzaner, i.e., the
fitness is based on the GAN objective function, a variation of Eq. 1 (Sect. 2). Thus,
at the evaluation step, the value £(G;, D;) is also calculated for each pair G; D;, and
the fitness values are also updated as fg, —= L(G;,D;) and fp, += L(G;,D;) for
the generator and the discriminator, respectively.

The operators used in Mustangs are a combination of the ones used in Lipizzaner
and E-GAN. Therefore, as in E-GAN, the loss function of the individuals can be
changed. However, the strategy used here is to randomly select one of the three
possibilities for the loss function, instead of evaluating the individuals using all
losses. The mutation operators used in Lippizaner are also applied for Mustangs.
Thus, Mustangs also applies an evolution strategy to update the weights. Crossover
is not used in this proposal.

The evaluation follows the same proposal of Lipizzaner. Mustangs uses spatial
coevolution to pair discriminators and generators, using a toroidal grid to spatially
distribute the individuals. Therefore, individuals are matched using the grid neigh-
borhood to calculate the fitness and evaluate each individual. As in Lipizzaner, the
generator is determined as a mixture of generators in this neighborhood.

Mustangs was evaluated with the MNIST and the CelebA datasets. As the archi-
tectures of the neural networks that compose a GAN are fixed and predefined, the
authors chose different topologies according to the dataset used in the experiments.
A four-layers MLP network with 700 neurons and a DCGAN-based architecture
were used for the experiments with the MNIST and the CelebA dataset, respectively.
For MNIST, a grid size of 3x3 was used with a time limit of 9 hours. For CelebA, the
experiments were executed with a 2 X 2 grid for 20 epochs. A comparison between
standard GAN, E-GAN, Lipizzaner, and Mustangs was presented. The authors found
that Mustang is able to generate the best results in respect of the FID score. They
also concluded that spatial coevolution is an efficient way to model the population
of generators and discriminators to train GANS.

4.5 COEGAN

Coevolutionary Generative Adversarial Networks (COEGAN)®, a proposal combin-
ing neuroevolution and coevolution to train and evolve GANs, was presented by us in
[9, 10]. This approach took inspiration on DeepNEAT [27], adapting and extending
the model to the context of GANS.

An array of genes compose the genome of COEGAN. The genotype-phenotype
mapping transforms this array into a sequence of layers in a deep neural network.
Each gene represents either a linear, convolution or transpose convolution layer (also

6 Code available at https://github.com/vfcosta/coegan.
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known as deconvolution layer). Moreover, each gene also has some common internal
parameters, such as the activation function, chosen from the following set: ReLU,
Leaky ReLU, ELU, Sigmoid, and Tanh. The genes representing a convolution or
transpose convolution layer only have the number of output channels as a variable
parameter. The number of input channels is calculated dynamically, based on the
setup of the previous layer. Similarly, the linear layer only has the number of output
features as a variable parameter. The previous layer is also used to calculate the
number of input features. Thus, the parameters subject to variation operations are
the activation function, the number of output features, and the number of output
channels.

Figures 5 and 6 are examples of the genotypes of a discriminator and a generator,
respectively. The genotype of the discriminator is composed of a convolutional
section and followed by a linear section (composed of fully connected layers). As
in the original GAN model, the discriminator outputs the probability that the input
sample is a real sample, drawn from the dataset. Similarly, the genotype of the
generator is composed of a linear section and followed by a transpose convolutional
section (also known as convolutional section). The generator outputs a fake sample,
with the same characteristics (i.e., dimension and channels) of a real sample.

Fig. 5 A genotype of a

discriminator. In this case N Conv2d
; ’ activation_type: LeakyReLU
the genotype is composed of stride: 2
three genes: two convolutional kernel size: 5
and one linear gene. The in_cha;lnels: 3
phenotype transformation out_channels: 128
creates a network with three *
layers in the same linear
sequence as displayed in the . .COHVZd,
- activation_type: ReLU
genome. The output layer is stride: 2
represented by the linear gene kernel size: 5
and outputs the probability of in_channels: 128
the input sample to be real or out_channels: 32
fake. *
Linear

activation_type: Sigmoid
out_features: 1
in_features: 1569

Competitive coevolution was used to model the algorithm. Therefore, COEGAN
is composed of two separated subpopulations: a population of generators, where
each G; represents a generator; and a population of discriminators where each D;
represents a discriminator. A speciation mechanism, inspired by the strategy used
in NEAT, was used in each subpopulation to promote innovation. The speciation
mechanism ensures that recently modified individuals will have the chance to survive
for enough generations to be as powerful as individuals from previous generations.
For this, each population is divided into species based on a similarity function (used
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Fig.6 A genotype of a genera-
tor. The genotype is composed
of three genes: a linear gene
and two deconvolution (also

Linear
activation_type: LeakyReLLU
out_features: 16384
in_features: 100
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lution) genes. In general, the +
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stride: 2

the discriminator. However,
%n this case, the. output layer in_channels: 256
is a deconvolution layer that out_channels: 128
outputs the samples created

by the generator. *

kernel_size: 5

Deconv2d
activation_type: Tanh
stride: 2
kernel_size: 5
in_channels: 128
out_channels: 3

to group similar individuals). Thus, the innovation, represented by the addition of
new genes into a genome, may cause the creation of new species in order to fit the
individuals containing these new genes. The individuals belonging to new species
will have a higher chance to survive because they will not directly compete with
more powerful individuals from other species.

COEGAN is only interested in the evolution of the neural network architectures.
Thus, the parameters of the layers in the phenotype (e.g., weights and bias) are not
part of the evolution, being modified by the training with a gradient descent method.
The variation operators are focused on the evolution of the network topology.

Different fitness functions for the generator and the discriminator were used
in COEGAN. For discriminators, the fitness is based on the loss function of the
original GAN model, i.e., the fitness is equivalent to Eq. 1 (Sect. 2). The same
approach was tested on the generator using Eq. 2 (Sect. 2), but preliminary results
presented instabilities when using this strategy, making it not suitable to be used
as fitness. Thus, the generator uses the FID score [18] as fitness, i.e., the fitness is
represented by Eq. 4 (Sect. 2.3). FID is the state-of-the-art metric to compare GANs
and outperforms other metrics, such as the Inception Score [38]. The use of the FID
score as fitness puts selection pressure in COEGAN and directs the evolution of the
population towards the creation of better generators.

Only mutation is used as the variation operator for COEGAN. The mutation
process is composed of three operations: add a new layer, remove a layer, and change
an existing layer. In the addition operation, a new layer is randomly selected from the
set of possible layers (linear or convolution for discriminators and linear or transpose
convolution for generators). The remove operation randomly selects an existing layer
and excludes it from the genotype, adjusting the connections between the previous
and the next layers. The change operation acts on the activation function and the
specific attributes of a layer. The activation function is randomly drawn from the set
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of possibilities. The number of output features and the number of output channels
can be mutated for the linear and convolution layers, respectively. These attributes
are mutated using a uniform distribution with a predefined range to limit the possible
values. Crossover was also experimented and evaluated in preliminary experiments
but it was discarded as it promotes instability, decreasing the performance of the
system.

COEGAN keeps the parameters (weights and bias) of the genes involved in a
mutation operator when possible. So, the new individual will carry the information
from previous generations and the training continues from the last state, simulating
the transfer learning mechanism used in deep neural networks. However, in some
cases these parameters cannot be kept, such as when the change occurs in the
parameters of a linear or a convolution layer. In these cases, the new setup of the
layer is incompatible with the previous configuration, and the new layer will be
trained from the beginning.

In the evaluation step of the EA, individuals from the populations of discriminators
and generators must be paired to be trained and to calculate the fitness for the
individuals. The pairing strategy is crucial to coevolution, and some challenges can
be related to the issues occurred in the GAN training (see Sect. 3.1). Two pairing
strategies were used to evaluate COEGAN: all vs. all and all vs. k-best.

In all vs. all, each discriminator is paired with each generator, resulting in all
possible matches. In this case, the fitness for discriminators is the average of the
losses obtained by the training with each generator. As the FID score does not use
the discriminator in the calculation, the pairing strategy does not affect the fitness
for generators. The all vs. all strategy is important to promote diversity in the GAN
training and improve the variability of the environment for both discriminators and
generators. However, the trade-off is the time to execute this approach.

In all vs. k-best, k individuals are selected from one population to be matched
against all individuals in the other population. Therefore, each generator is paired
with & best discriminators from the previous generation and, similarly, each discrim-
inator with k best generators. For the first generation, a random approach is used, i.e.,
k random individuals are selected for pairing in the initial evaluation. This approach
provides less variability in the training but is more efficient, as fewer matches will
be executed per generation.

For the selection phase, COEGAN uses a strategy based on NEAT [41]. The
populations of generators and discriminators are divided into subpopulations using a
speciation strategy based on the used in NEAT. Each species is composed of individ-
uals with similar genomes, i.e., similar network structures. Therefore, the similarity
between individuals is based only on the parameters of each gene composing the
genome, excluding the weights of the similarity calculation. The distance § between
two genomes i and j is defined as the number of genes that exist only in i or j. The
speciation approach uses the distance to cluster individuals based on a d; threshold.
This threshold is calculated at each generator in order to fit the previously chosen
number of species. Fitness sharing is used to adjust the fitness of individuals inside
each species. Individuals are selected in proportion to the average fitness of the
species they belong to. Besides this process, a tournament between k; individuals
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is applied in each species to finally select the individuals to breed and compose the
next population.

To evaluate the COEGAN proposal, experiments using the MNIST and the
Fashion MNIST datasets were presented. These experiments compare COEGAN,
a DCGAN-based solution, and a random search method using the FID Score, In-
ception Score, and the root mean square error (RMSE) metrics. The experiments
ran for 50 generations, using 10 individuals for the populations of generators and
discriminators.

Figure 7 presents the results of the FID score on the MNIST dataset (lower is
better). We can see that COEGAN outperforms the other approaches. The random
approach presented high variability and worse results in terms of this metric. This
is evidence that the choices for the fitness functions for COEGAN provide enough
evolutionary pressure to guide the evolution to better outcomes.

Fig. 7 The FID score on the
MNIST dataset comparing

COEGAN, the DCGAN- —— COEGAN
based architecture, and the 250 p random
random search method. Note DCGAN

that, as expected, the random
search does not achieve good
results and presents high vari-
ability on the FID score. The
DCGAN-based result shows
the convergence of the GAN
training. However, COEGAN
presents the best results and a
smooth decreasing pattern on 0 10 20 %0 40
the FID score. generation

Figure 8 displays the samples created for the generator after the COEGAN train-
ing process. We can see the samples in this figure resembling the data in MNIST.
No evidence of the vanishing gradient was found in the experiments with COEGAN,
and the mode collapse occurred only partially in some executions. COEGAN avoids
these issues by using the evolutionary pressure to discard failed individuals from the
population. As these individuals will perform worse than others, they will eventually
not be selected, and their issues will not persist through generations. The diversity
provided by the population of generators and discriminators is also a factor that
prevents these issues from happening. The variability of the training with multi-
ple instances of generators and discriminators, instead of a single generator and
discriminator, can be a way to provide a stronger and stable training for GANs.
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Fig. 8 Samples generated by COEGAN when training on the MNIST dataset.

Table 1 Aspects of the GAN used in the evaluated proposals.

Algorithm Discriminator Generator Architecture Loss Function
E-GAN single-fixed  three DCGAN-based evolvable!
Pareto GAN many many evolvable evolvable!
Lippizaner = many many MLP and DCGAN-based? original GAN
Mustangs many many MLP and DCGAN-based? evolvable!
COEGAN many many evolvable original GAN

! The loss function is selected using a predefined set of possibilities.
2 The DCGAN-based architecture was used with the CelebA dataset and a simpler approach with
the MNIST dataset (see Sect. 4.3 and Sect 4.4)

5 Discussion

Section 4 presented the current proposals that apply evolutionary algorithms in the
context of GANs. We can see that a variety of techniques frequently used in EAs,
and introduced here in Sect. 3, were used in these proposals. Following we present
and discuss these characteristics regarding the aspects of the GAN model used in the
proposals, the choices concerning the EA, and the experimental results.

5.1 Characteristics of the GAN model

Table 1 presents choices with respect to the GAN model used in each proposal.
These proposals are compared under the perspective of four attributes: the number
of discriminators used in the algorithm, the number of generators, the architecture
of each component, and the loss function used to train the GAN.

Except for E-GAN, all proposals used multiple discriminators in their model. For
the generators, all proposals used multiple generators, with E-GAN using a fixed
number of three generators, corresponding to the number of possible loss functions
designed in the algorithm. Thus, E-GAN works with small populations, limiting the
evolutionary options that can emerge through generations. On the other hand, Mus-
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Table 2 Aspects of the evolutionary algorithm used in the evaluated proposals.

Algorithm Pairing Variation Operators Fitness Selection
E-GAN one-vs-three mutation (loss) custom best individual
Pareto GAN — crossover and mutation IGD Pareto dominance
Lippizaner  spatial coevolution mutation (weights) GAN objective spatial

Mustangs spatial coevolution mutation (weights, loss) GAN objective spatial

COEGAN all vs. (all | k-best)! mutation (architecture) FID and loss NEAT-based

1 COEGAN presented experiments using both the all vs. all and the all vs. k-best approaches.

tangs adapted successfully the E-GAN model in the context of a larger population,
using the spatial coevolution approach of Lipizzaner to handle the individuals.

Regarding the architecture, only the Pareto GAN and COEGAN used an evolvable
approach. The other proposals used a predefined and fixed architecture for the neural
networks of generators and discriminators. Therefore, Pareto GAN and COEGAN
work with larger search spaces, as the architectures that can emerge from the EA
have a high number of possibilities. They are also potentially able to enhance the
balance between generators and discriminators, as the complexity of the architecture
is determined by the algorithm.

Lippizaner and COEGAN use a fixed loss function for the GAN training. E-GAN,
Pareto GAN, and Mustangs use an evolvable approach to the loss function. This
approach uses a set of predefined possibilities to select and attribute a loss function
to an individual. A more flexible approach can also be used instead of a predefined
set, using genetic programming to discover better loss functions for GANs. However,
the proposals analyzed in this chapter did not explore this approach.

5.2 Aspects of the Evolutionary Algorithm

Table 2 presents a comparison between the solutions presented in Sect. 4, focusing
on the aspects of the evolutionary algorithm. Four aspects of the EA were analyzed:
the pairing approach, the variation operators, the fitness function, and the selection
method.

As multiple generators and/or discriminators are used in all proposals and the
GAN training occurs using generators and discriminators as adversarial, an approach
has to be used to pair the individuals. With the exception of Pareto GAN, all other
solutions use separated individuals to represent discriminators and generators. In
E-GAN, as there are only a single discriminator and three generators, the policy
for pairing is to use the discriminator to evaluate all three generators. Lippizaner
and Mustangs use the same spatial coevolution strategy to match generators and
discriminators. In COEGAN, the all vs. all and all vs. k-best were used.

The variation operators are paramount to provide diversity in the search for good
solutions in an EA. Pareto GAN uses crossover and mutation as operators. It is
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also the solution that provides the most variability regarding the elements that can
be evolved through generations in the EA. As Pareto GAN models its individual
as a representation of the entire GAN, i.e., encoding both the discriminator and
the generator into the genotype, the crossover works exchanging the generator and
the discriminator between two parents to form the offspring. The other solutions
modeled the GAN with independent genotypes to represent the generator and the
discriminator. Therefore, this approach is not applicable to them. COEGAN also
evaluated a strategy to apply crossover, using a cut point to share parts of the neural
network between parents. However, this strategy proved to be not efficient for the
method.

COEGAN and Pareto GAN are the only solutions that have evolvable neural
network architectures. The mutation operator is used to provide small changes in
these architectures that are built through generations to produce strong discriminators
and generators. E-GAN, Lippizaner, and Mustangs use a restricted mutation strategy.
In E-GAN, only the loss function can be switched. In Lippizaner, the mutation is
applied to the weights to assist in the GAN training. Mustangs combines the operators
of E-GAN and Lippizaner. Different from Lippizaner and Mustangs, COEGAN does
not apply a mutation operator directly to the weights. However, this option can be
explored to develop a hybrid approach that evolves the weight when the gradient
descent training stagnates for a number of generations.

The choice for fitness is diverse among the proposals. E-GAN uses a custom
function that represents the quality and diversity of the created samples. As only the
generator is subject to evolution, the discriminator does not have a fitness associated.
Pareto GAN based its fitness on the concepts of the Pareto front, using the inverted
generational distance (IGD) to represent the fitness value. Lippizaner and Mustangs
use the GAN objective function to calculate the fitness for the individuals. COEGAN
follows a distinct approach for the fitness function. The loss function of discriminators
of the original GAN model is used as fitness for them. In the generator, the FID score
is used as fitness. COEGAN takes advantage of the capabilities in the FID distance to
represent the diversity and quality of the created samples. As the FID is commonly
used by researchers to compare GANSs, the implementation of this metric into an EA
is a way to provide automatic insight about the solutions produced by the method.

The selection method used in E-GAN is based on the choice of the best generator.
As E-GAN has only three generators, each one with a specific loss function, the
fitness guide the evolution by selecting the function that fits the best generator
for the current environment. The switches between functions thought generations
give to E-GAN the means to provide enough diversity for a convergence. In Pareto
GAN, Pareto dominance is used as the strategy to select individuals to form the
next generation. Lippizaner and Mustangs have a selection based on the spatial
coevolution mechanism used in the evaluation phase. The neighborhood is used to
evaluate and replace the individual in the center of a neighborhood according to the
fitness. COEGAN uses an approach based on classical NEAT selection. Therefore,
speciation is used to ensure that individuals from different species will have the
opportunity to develop the skills needed to survive. Some of these strategies can
be combined into a single solution to build a stronger algorithm. For example, the
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Table 3 Comparison of the experiments presented in the proposals.

Algorithm Dataset Population (D x G) Generations Metric

E-GAN CIFAR-10, LSUN, CelebA 1 x 3 200000 Inception Score
Pareto GAN bi-objective functions 20! 500 IGD
Lippizaner =~ MNIST, CelebA 4x4 400 -

Mustangs MNIST, CelebA 4x4,9%9 time-limited, 20 FID score
COEGAN MNIST, Fashion MNIST 10 x 10 50 FID score

! In Pareto GAN one individual completely represents a GAN, i.e.,it contains both a generator and
a discriminator.

mechanism that guides the selection for Lippizaner and Mustangs can be applied in
COEGAN to reduce the complexity of the evaluation phase and bring the advantages
given by spatial coevolution.

5.3 Experiments and Results

Table 3 compare the proposals under the perspective of the experimental setup used to
assess the contributions of each solution. Four experimental attributes are presented:
the dataset used in the training, the number of generators and discriminators in the
populations, the number of generations used in training, and the metric used to
evaluate the results.

Except for Pareto GAN, all proposals used image datasets in the experiments.
Pareto GAN uses bi-objective functions to validate the model, also including a
function that simulates the data dimension of the MNIST dataset. In the category
of images, MNIST is a simple dataset and should be used carefully to draw generic
conclusions about the performance of a solution. The CelebA dataset is perhaps the
most commonly used data to validate GANs. Therefore, it would be important to
assess the performance of Pareto GAN and COEGAN in this dataset.

The populations used in the experiments vary a lot among the proposals. Except
for E-GAN, the solutions used multiple individuals for both populations in the exper-
iments. Although it is possible to use more individuals in E-GAN, the experiments
used only a single discriminator and three possibilities for generators (representing
each possible loss function). In Pareto GAN, one individual completely represents a
GAN. Therefore, 20 individuals were used, meaning that 20 independent GANs with
their own generator and discriminator was trained through generations. Lipizzaner
and Mustangs use spatial coevolution to distribute the individuals in a grid of 2 X 2
for the MNIST dataset. For CelebA, Mustangs used a grid of 3 x 3. As these grids
hold a single generator and discriminator in each cell, the population is composed of
4 and 9 individuals for the 2 X 2 and 3 X 3 setups, respectively. Spatial coevolution
reduces the number of iterations needed to evaluate the individuals. Thus, a larger
number of individuals can be used to evaluate Lipizzaner and Mustangs. Besides,
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COEGAN can adopt the spatial coevolution approach to reduce the training time and
also increase the number of individuals in the experiments.

The number of generations used to evaluate each approach also present high
variability. Each approach adapted the experiments to use a number of generations
respecting their internal characteristics. For example, as E-GAN works with smaller
populations, the number of generations needed to converge is much higher than the
others. On the other hand, COEGAN uses only 50 generations on the experiments.
As COEGAN uses a population of 10 individuals for generators and discriminators
with the all vs. all pairing approach, each individual will execute the training process
for ten times at each generation.

A metric is commonly used to evaluate the samples created by the generator.
COEGAN and Mustangs use the FID score to report and analyze the results. As
discussed in Sect. 2.3, the FID score is currently the state-of-the-art metric used to
evaluate and compare GANs. The Inception Score, the former most used metric for
GANs, was applied in the E-GAN experiments. Pareto GAN adopted the IGD as the
metric, that is adequate to its approach that is based on the Pareto set approximations.
Lipizzaner analyzed the results through visual inspections and does not present an
evaluation with respect to some objective measurement.

As the proposals use different metrics, we can not directly compare the results
between all proposals. Only COEGAN and Mustangs share the same metric in the
evaluation of the results. The average FID reported for COEGAN [10] and Mus-
tangs [46] are 49.2 and 42.235, respectively. Further experiments for COEGAN [9]
achieved an average of 42.6 for the FID score. However, the difference between the
average FID scores of COEGAN and Mustangs is small and experiments with equal
conditions should be made to better compare these solutions.

6 Conclusions

We present in this chapter the state-of-the-art of evolutionary algorithms applied
to Generative Adversarial Networks (GANs). An overview of GANSs introduces the
challenges of the training method and how the common problems affect the resulting
performance. We also explore the applicability of concepts related to evolutionary
computation in the context of GANs, showing components that can be evolved and
participate actively in an EA. These concepts are materialized into the state-of-the-
art proposals of EAs applied to GANS that can be found in the literature. We discuss
the characteristics of these proposals, demonstrating the drawbacks and possible
improvements for further research.

Despite the recent advances in GAN:S, it is possible to see that there are still
open problems. The stability of training remains a challenge, being tackled by
researches using different approaches, such as the proposal of new loss functions
and/or alternative architectures. GAN is a relatively new model, and the use of EAs
in this context is in its early years. With the rise of the computational power and new
methods to apply EAs with robust machine learning techniques (e.g., deep learning),
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EAs can be viewed as a strong way to train and evolve GANSs. In this way, the
proposals presented in this chapter showed advantages in the union between EAs
and GANSs. A set of different techniques was used by them, with different choices
concerning the GAN model and the EA. The diversity of strategies present in GANs
and also in evolutionary computation compose a large number of open possibilities
for exploration.

As future work, the techniques used in the proposals presented in this chapter
can be combined in the development of new solutions. For example, the spatial
coevolution strategy used in Mustangs and Lipizzaner can be adapted to the other
proposals. On the other hand, the neuroevolution techniques used in Pareto GAN
and COEGAN can also be evaluated in the other solutions. Besides, the proposed
solutions can be explored in larger experiments. The algorithms can run on a larger
number of generations and, when possible, with a larger population of generators
and discriminators. These experiments can make possible to evaluate the quality of
the outcome and also the scalability of the proposals. Complex datasets can also
be used to assess the robustness of the proposed solutions. Different techniques
related to GANs can also be incorporated into the algorithm. For example, the use
of alternative loss functions (as in WGAN [3]), spectral normalization [30], or the
self-attention module for GANs [51]. Other techniques concerning neural networks
can also be experimented, such as the recently proposed competitive gradient descent
algorithm [39]. Alternative fitness functions can also be investigated to better guide
the progress of GANs in an EA. For example, the skill rating metric [32] uses the
mechanism that classifies the skill of players in a game to quantify the performance
of generators and discriminators in GANs. The adversarial characteristics of GANs
and a competitive coevolution environment can leverage the advantage with the use
of this metric, providing an efficient evaluation of individuals in the population of
generators and discriminators.
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