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Abstract. Cable-stayed bridges construction involves the determina-
tion of a high number of design variables, both static and dynamic.
Moreover, the properties of such variables make them statically indeter-
minate, meaning that a change in one design variable affects the response
of the entire structure. This property makes the design of cable-stayed
bridges a complex optimization problem. In this work, we use a Genetic
Algorithm to evolve solutions for this problem. A set of experiments are
executed, where conventional variation operators are used for exploring
the solution space. The first experiments suggest that this is a problem
with a deceptive landscape. However, we show that we can design so-
lutions that optimize structural objectives. Moreover, we want also to
minimize costs while presenting different optimized solutions. In the sec-
ond set of experiments, we included a baseline solution in the population
to evaluate if we could find better solutions using this approach. The re-
sults on the second set showed that it was possible, thus we moved to the
third set of experiments with more parameter tuning. The experimental
results suggest that we are able to find new and suitable solutions for
the problem comparable to the existing baseline approach.

Keywords: Genetic Algorithm, Bridge Design, Optimal Design, Decep-
tive Landscape, Structural Dynamics

1 Introduction

Structural Engineering is a fertile ground for new ideas, structural systems,
concepts, in particular when designing complex structures [1]. Usually, the work
of structural engineers is performed as a series of ‘trial and error’ iterations,
where changes are made to a computer model of the structure until the structure
is stable and satisfies standard requirements presented in the Eurocodes – the
structural design codes for the European Union, in this case, EN 1991 to EN
1998 and Setra Footbridge guidelines. This process is strongly dependent on each
designer capability, creativity and experience.

Structures can be roughly divided into two groups: statically determinate
and indeterminate structures [2]. Statically determinate structures are easier to
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solve and, for a fixed geometry, the stresses in all internal elements are known.
Statically indeterminate structures become more complex because a change in a
particular structural element changes the stress distribution in the entire struc-
ture, even without changing the geometry. A complex statically determinate
structure can be calculated by hand in a reasonable amount of time, while an
indeterminate structure with moderate complexity cannot. In recent years, the
advance in computers using the finite element method allows engineers to analyse
even complex, indeterminate structures in a reasonable amount of time [3].

Artificial Intelligence (AI) has long been identified with high potential to im-
prove the work of structural engineers [4]. Moreover, Evolutionary computation
has been used for solving structural design problems [5, 6]. Other AI methods
have been proposed to tackle specific problems such as pattern recognition and
machine learning for damage detection and structural health monitoring [7].

Research works on the optimum design of Cable Stayed Bridges (CSBs) have
increased over the past three decades. Most of this can be attributed to the
increase in computational performance for the analysis of the structure as well
as CSB construction technology [8, 9]. These two key factors contributed, for ex-
ample, to the increase of the CSB record span from 490m in 1991 (Ikuchi Bridge
in Japan) to 1104m in 2012 (Russky Bridge in Russia). The same trend does
not happen to other types of structures. For example, suspension bridges where
the record span of 1991m dates back to 1998 (Akashi Kaikyo Bridge in Japan),
or arch bridges where the current record span of 552m in 2009 (Chaotianmen
Bridge in China) is not much longer than older structures such as the Bayonne
Bridge opened in 1931 in the USA with 510m or the famous Sydney Harbour
Bridge opened in 1931 with 503m. The reason for this is that it was not possible
to calculate recent CSB without the advances in computer science since they
are highly nonlinear and static indeterminate structures. Even in 1999, struc-
tural engineers did not have the necessary computational capabilities to solve
all load cases in the most complex cable-stayed bridges [8]. Evolutionary compu-
tation was not possible back then as a single analysis of the structure was very
time-consuming.

The optimum design of CSB can be viewed as a relevant benchmark for arti-
ficial intelligence algorithms as it requires to consider both the geometry, cross-
section, cable tensioning and control devices to address the real-world problems.
Other types of structures such as arch bridges require mostly to compute the
section sizing [10].

In terms of contributions we enumerate the following: (i) an out-of-the-shelf
evolutionary approach to optimise and explore different solutions for a controlled
cable-stayed bridge problem; (ii) different fitness functions designs based on var-
ious criteria and objectives of the problem; (iii) comparison between a set of
optimisation approaches proposed on this work and; (iv) the obtained results
suggest that the system dynamic properties create a deceptive landscape that
must be adequately addressed in order for the algorithm to find efficient solu-
tions.
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Fig. 1. An example of a CSB bridge.

The remainder of the document is organised as follows. In Section 2, we
overview the related work regarding optimising the design of bridges. Next, Sec-
tion 3, we explain the approach of this work for modelling this problem and
system dynamics with a traditional Genetic Algorithm (GA). In Section 4, we
present the set of experiments performed around this case study. Afterwards we
present the results in Section 5 and we draw our final conclusions in section 6.

2 Related Work

The previous research works on the optimum design of CSB started by addressing
the cable tensioning problem with fixed geometry and structural sections [11–
13]. This problem has also been addressed more recently using genetic algorithms
(GA) [14, 15].

The simultaneous optimization of the geometry, sizing and cable tensioning
has also been studied using gradient-based optimization techniques [16, 17] and
more recently with genetic algorithms [18] with simpler modelling constraints,
conditions and with a smaller number of variables than the work presented in this
document. Overall, based on the literature, the performance of gradient-based
optimization using multi-start procedure is faster than using GA. However, the
main drawback is that it requires a very high amount of time to program the
details and sensitivities of the problem, unlike GA that it is a more hands-off
approach, i.e. that can be used with much lower implementation effort.
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Another drawback is that if one changes the structural analysis software, the
sensitivity-based code will no longer be available, while the GA can be more
easily adapted to another software.

The inclusion of the dynamic loads creates additional constraints for the
design problem. Previous researches have focused on earthquakes [19, 20], wind
aerodynamics [21–23] and pedestrian induced action in cable stayed footbridges
[24–26].

Both wind aerodynamics and pedestrian induced action cause resonance in
the structure, which magnitudes are strongly dependent on the structural damp-
ing (ξ) by a factor of (1/2ξ). Usually, steel footbridges are vibration prone since
they exhibit very low damping (0.4%) and thus the dynamic criteria are a gov-
erning factor for the design. There are mainly three options to mitigate the
vibrations of footbridges: (i) increase the mass of the structure. This is not effi-
cient or desirable since footbridges are required to be slender and aesthetically
appealing to become part of the landmark; (ii) Changing the bridge dynamic
properties such that the vibration frequency of each mode does not fall within
the critical range for the pedestrian induced actions; (iii) Inclusion of control
devices such as viscous dampers or tuned mass dampers (TMDs) which was the
option to retrofit the London Millennium Footbridge, for example, [27, 28].

To the author’s knowledge, no previous work addressed the optimum de-
sign problem of controlled pedestrian CSB using evolutionary computation al-
gorithms. The problem is based on previous works by [25, 26] was a sensitivity
based algorithm is used to find the optimum results for both geometry, section
sizing, cable tensioning and control device properties. This has the advantage of
having already a feasible and improved solution (not necessarily a global opti-
mum) to compare the results with. Also, the sensitivity based algorithm requires
the researchers to employ the sensitivities analysis, the derivation of the equilib-
rium equations, which constitute a high time expenditure in the implementation
of the optimization algorithm. We are aware that the nature of the problem can
call for different approaches, including multi-objective optimization, nevertheless
we intend to explore and harness the complexity of the problem using a standard
GA.

3 The Approach

We use a standard Genetic Algorithm [29] to search for solutions in the search
space. The individuals are a set of Design Variable (DV)s that parameterize the
design of the bridge. To that effect the following fixed DVs have been considered:

– Bridge Length: LTotal=220m;
– Bridge Width : 4m;
– Tower Height below deck: 10m;
– Number of cables (Ncables)=4

The number of cables is considered for each side of each tower. The structure
is parameterized with four towers leading to a total of 8 cables for the entire
structure. An example of such a structure is depicted in figure 1.
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Table 1. Design variables description.

Description

Geometry

DV1 Central span (tower to tower distance) of the structure
DV2 Distance between the first and second cables anchorage

in the lateral span of the deck
DV3 Distance between the tower and the first cable in the

central span
DV4 Distance between the last cable anchorage and the

bridge symmetry axis
DV5 Height of the towers
DV6 Distance where the cables are distributed in the

top of the towers
DV7 Distance between the top of each tower
DV8 Distance between each tower at the base

Control

DV9 Transversal stiffness of the tower-deck connection
DV10 Vertical stiffness of the tower-deck connection
DV11 Transversal damping of the tower-deck connection
DV12 Vertical damping of the tower-deck connection

Sectional and tensioning

DV13 Added mass of the concrete slab
DV14 Deck section
DV15 Deck section (triangular section)
DV16-19 Tower sections (rectangular hollow section)

above and below the deck
DV20 Cables pre-stress
DV21 Cables cross section

The DVs have been considered similar to works available in the literature,
nonetheless, they were normalized. The objective of this normalization is for fu-
ture works to obtain a database of solutions that could be more easily correlated
even for different bridges. A more detailed explanation about the DVs can be
found in Ferreira et al. work [25]. Each specific DV affect a specific geometric,
sectional or control property of the bridge as shown in table 1.

The implementation is a standard GA, where a fixed-sized population of solu-
tions is evaluated, selected and submitted to variation operators in a loop with a
certain termination criterion (i.e., a predetermined number of generations). The
representation of an individual of the population consists of an array of floats
representing the values of the DVs. An aspect of the representation of the indi-
viduals is that each DV has its domain of range values, which are presented in
table 2. The selection implemented is the tournament selection where the best N
individuals are selected to apply variation operators. The conventional variation
operators, crossover and mutation are applied. The crossover of this approach
is the uniform crossover, where each DV has a chance to swap between the par-
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Table 2. Individual’s domain values.

Domain

Geometry

DV1 [0.9, 1.2]
DV2 [0.7, 1.3]
DV3 [0.7, 1.3]
DV4 [0.7, 1.3]
DV5 [0.1, 2.0]
DV6 [0.1, 4.0]
DV7 [0.1, 1.3]
DV8 [0.1, 1.13]

Control

DV9 [0.001, 1000]
DV10 [0.001, 1000]
DV11 [0.001, 1000]
DV12 [0.001, 1000]

Sectional and tensioning

DV13 [0.1, 7.0]
DV14 [0.1, 80.0]
DV15 [0.5, 1.3]
DV16 [0.4, 1.5]
DV17 [0.1, 20.0]
DV18 [0.3, 20.0]
DV19 [0.3, 9.0]
DV20 [0.7, 3.0]
DV21 [0.5, 9.0]

ents. The mutation is the replacement of a DV value for another drawn from a
uniform distribution in the domain of the corresponding DV.

We are designing variables for the CSB, a task normally done by structural
engineers. The objectives in a real-world scenario are to minimize the costs of
constructions while maintaining the structural and safety constraints. Thus, we
consider the following objectives for our approach: minimize the bridge costs and
minimizing the structural constraints. These two objectives are affected by the
chosen DVs. In order to complete the modelling of the GA, we need to design
a proper fitness assignment that guides towards the solution of the problem. In
eq. 1 is depicted as the fitness function used for the set of experiments of this
work.

f(x) =

{
1/S(x), if S(x) > 1.04

a+ b/C(x), if S(x) ≤ 1.04
(1)

Where x is an individual, C(x) is a function that computes the cost of an individ-
ual, S(x) is a function that evaluates the structural constraints of and individual,
“a” is a bonus value constant for the “S(x) > 1.00” constraint and “b” is a con-
stant for the target cost. The C(x) is used to calculate the cost of the bridge
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Table 3. GA’s Parameters for exp1 and exp2 .

Parameter Setting

Number of generations 5000
Population size 50
Elite size 1
Tournament size 2
Crossover operator uniform crossover
Crossover rate 0.8
Mutation operator gene replacement
Mutation rate per gene 0.1
a fitness constant 50
b fitness constant 0.9

according to some pre-determined pricing of the materials. The S(x) calculates
all security and structural constraints and returns the maximum value of each
variable considered. From a practical perspective, we have only to ensure that
the maximum value of S(x) is bellowed 1.04, preferably, around 1.00. These two
functions represent the two objectives that we must optimize, as minimization
problems. Note that both, from a structural engineering perspective, are cor-
related. By increasing some of the values of the DVs we are strengthening the
structure of the bridge which results in a low S(x) value but could translate to
a costly solution, i.e., a high value of C(x).

4 Experimental Setup

We developed three experiments for this case study. The first experiment referred
to as exp1 , are the first set of experiments where we aim to optimize the problem
further than a baseline conventional approach from [25]. Based on the results
of exp1 , later explained in Section 5, we performed experiments in which we
insert in the starting population an individual of the best baseline approach.
After drawing some conclusions from exp2 we moved to some adaptations on
the hyper-parameters and performed the experiments of exp3 .

Note that, as said in 3, for this problem we had some fixed constraints and
objectives. However, the approach can be adapted and some of these constraints
can be included in the set of DVs. We fixed some of these constraints such as,
the size of the bridge to 220 meters and the number of cables to 4, to compare
with a baseline conventional solution which has the following optimized solution:

– Bridge cost: 91.354 kAC
– Max Structural Constraints value: 0.9962

The evolutionary engine settings are presented in table 3. For exp3 we changed
the “Tournament size” to 3, the “Mutation rate per gene” to 0.2 and the
“Crossover rate” to 0.85. Due to the stochastic nature of the approach, we per-
formed 15 evolutionary runs for each experiment.
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Fig. 2. The Average and Maximum fitness across generations for exp1 . The results are
averages of 15 evolutionary runs.

5 Experimental Results

For exp1 we evaluate the approach in terms of fitness optimization, cost values
and structural constraints. In figure 2 we can observe that we can optimize
the fitness function. However, while looking at the average population, we see
instability on the curve behaviour. After the first few 200 we have a lot of ups
and downs from one generation to the other, around the same average value.
This fast growth and the average population values oscillation suggest that the
fitness landscape is deceptive. Fully investigating this, is out of the scope of the
paper but it is an avenue of research that is already being pursued. Regarding the
best solutions per generation, we can observe that rapidly grows and stabilizes.
To further see the variations, we analyse the cost and structural constraints for
the best individuals.

In terms of structural constraints, part of the first objective of the fitness
function, we can observe on figure 3 that is achievable and maintained. It starts
with lower values, which is normal but there is a small correlation between having
this value low and the cost of the solution high, showing that we must find a
solution that balances the two objectives.

In figure 4 we can observe the cost of the best individual across the genera-
tions. As expected, inversely like the fitness, the values rapidly decrease although
in the first 100 iterations it is quite high. To see the results with more detailed
we also provide a “close-up” plot, which shows the values of the cost after 400
iterations as shown in figure 5. We can observe that there are some alterations
along the iterations, but, for the number of evaluations defined in the setup,
the best solution on average only reaches the 110kAC which is higher than the
baseline approach. Since we have done several seeds and arrived at this result,
at the time we questioned if it was possible to get or improve on the baseline
approach using this approach.

Thus, we then move to exp2 where we use the GA but we include a copy
of the baseline solution in the starting population, promoting local exploration
of solutions. We can observe the fitness behaviour in figure 6. The results sug-
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Fig. 3. The structural constraint value of the best individual across generations for
exp1 . The results are averages of 15 evolutionary runs.

Fig. 4. The cost of the best individual across generations for exp1 . The results are
averages of 15 evolutionary runs.

gest that the behaviour as not changed. In terms of structural constraints we
obverse little to none differences across generations in figure 7. The main point
of conclusions here is the figure 8. It shows that we can further improve from
the baseline solution, showing that there are other solutions for the problem.
Furthermore, suggests that the parameters need to be adjusted for the problem
at hand, something that motivated the final set of experiments of this work, the
exp3 .

After exp1 and exp2 we performed exp3 knowing that it was possible to
evolve solutions for the problem and it was possible to improve beyond the base-
line solution. We performed some tests and determined the changes of parameters
empirically. The rationale beyond the defined values is the following: we wanted
to promote more changes from one iteration to the other, hence changing the
increase on the mutation rate. We also increase the crossover rate and the size
of the tournament to increase selective pressure.

A close up of the results after 400 iterations, in terms of cost, is presented in
figure 9. We tend to have the same behaviour of exp1 but now it surpasses the
baseline approach under the same number of evaluations. We get values of cost
around almost 90.00kAC. In terms of structural, we have the values around 1.0
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Fig. 5. The cost of the best individual across generations, starting from generation
400, for exp1 . The results are averages of 15 evolutionary runs.

Fig. 6. The Average and Maximum fitness across generations for exp2 . The results are
averages of 15 evolutionary runs.

as shown in figure 10. The solutions evolved in this set of experiments are able
of achieving the desired objective, while maintaining low costs.

We can observe in table 4 that the algorithm arrives at different solutions.
Note that the results that are shown are from the best solutions found in each
experiment and are just representative of the universe of solutions that the GA
encounters. We can observe that some of the DVs are unchanged when compared
to the baseline solution, which could be indicating that the best optimize solution
only changes a few variables once we arrived at the baseline one. The best result
observed during the set of three experiments is the a solution with the cost of :
90.893kAC and structural constraints of 1.016. Overall the results show that we
can find different and better solutions than the baseline solution obtained via
gradient optimization.

Fig. 11 and 12 present the structural model geometry where each line repre-
sents a structural element. The Best exp1 solution is awkward from a structural
Engineering perspective at the first impression. The central span is lower than
half of the bridge length (DV1¡1) which is not an usual CSB geometry. Also, the
tower height to central span ratio (affected by DV5) is markedly low. The reason
for this is that, in exp1 , the GA could not balance the bridge, probably due to the
lower mutation rate in this experiment. It then converged to a extradosed bridge
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Fig. 7. The structural constraint value of the best individual across generations for
exp2 . The results are averages of 15 evolutionary runs.

Fig. 8. The cost of the best individual across generations, starting from generation
400, for exp2 . The results are averages of 15 evolutionary runs.

where the cable stay system becomes secondary and the bridge deck works as
a continuous beam. This can also be seen in DV10 which has a very high value
in Best exp1 . In the other solutions the bridge floats over the tower intersection
as only a very slender connection is required. the opposite happens in Best exp1
where the tower-deck connection needs to be very rigid to support the bridge
deck. This solution is not governed by the dynamic constraints, but rather by
the static response, in particular, the deck stresses. As it can be seen in Figure
13, the response is well below the established limits. This is because the bridge
is much stiffer than the baseline solution which also makes it more expensive.

The best solutions for exp2 and exp exp3 are very similar to the baseline.
In terms of geometry the relevant difference is in the cable anchorage position
that change in Best exp2 and exp3 (see Figure 12). Another main difference
seems to be in DV10, which is the stiffness of the tower-deck connection in the
vertical direction. Even if the numerical value is quite different the solutions
have similar properties since the baseline stiffness is relatively low (this is why
DV9 to DV12 have an exponential type domain as presented in Table 4). DV12
(damping in the vertical tower-deck connection) also presents a difference in the
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Fig. 9. The cost across generations, starting from generation 400, for exp3 . The results
are averages of 15 evolutionary runs.

Fig. 10. The structural constraint value of the best individual across generations for
exp3 . The results are averages of 15 evolutionary runs.

results. The constraints have a sensitivity to this parameter. Figure 13 presents
the deck peak accelerations in the vertical direction for three different solutions.
The 1.018 S(x) value for the Best exp2 solution can be viewed in this figure as
the vertical acceleration slightly exceeds the limits.

6 Conclusions

We perform different experiments using a GA and compare them with a domain
knowledge baseline solution. First, we show that a conventional Evolutionary
approach is able to optimize the fitness function and find solutions that are: (i)
suitable in terms of requirements; (ii) and that minimize the cost. Furthermore,
the approach is able to find solutions that are suitable and comparable to the
baseline solution.

The preliminary results using a conventional Genetic Algorithm to evolve
towards the maximization of the structural objectives indicate that we are able
to optimize the fitness function. However, while optimizing the structural objec-
tives, the solutions found do not minimize the cost of solutions. When combining
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Fig. 11. Baseline (blue) vs Best Exp1 (red) structural model geometry of the bridge.

Fig. 12. Baseline vs Best Exp2=Best Exp3 structural model of the bridge.
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Table 4. Best solutions of all the three experiments and the difference between cost,
structural constraints and DVs values against the baseline approach.

Baseline(B) dif(B,exp1) Best exp1 dif(B,exp2) Best exp2 dif(B,exp3) Best exp3

C(x) 91.354 -13.006 104.360 0.461 90.893 0.481 90.873
S(x) 0.996 -0.043 1.039 -0.022 1.018 -0.021 1.017

DV1 1.075 0.147 0.927 0.000 1.075 0.000 1.075
DV2 0.700 -0.224 0.924 -0.598 1.298 -0.599 1.299
DV3 0.892 0.118 0.774 -0.136 1.028 -0.136 1.028
DV4 1.300 0.001 1.299 0.000 1.300 -0.009 1.309
DV5 0.498 0.146 0.352 0.000 0.498 0.000 0.498
DV6 0.100 -0.717 0.817 0.000 0.100 -0.002 0.102
DV7 0.100 -0.003 0.103 0.000 0.100 -0.001 0.101
DV8 1.300 0.058 1.242 0.020 1.280 0.020 1.280
DV9 3.690 -10.422 14.112 0.000 3.690 0.001 3.689
DV10 0.986 -316.751 317.738 -16.039 17.025 -15.039 16.025
DV11 2.775 1.785 0.990 0.000 2.775 -0.009 2.784
DV12 33.113 -301.763 334.876 7.160 25.953 8.160 24.953
DV13 0.792 0.452 0.340 0.000 0.792 0.001 0.791
DV14 3.989 -0.975 4.964 0.016 3.973 0.017 3.972
DV15 0.500 -0.066 0.566 0.000 0.500 0.000 0.500
DV16 0.497 -0.251 0.748 -0.017 0.514 -0.017 0.514
DV17 0.840 0.095 0.744 0.000 0.840 0.001 0.839
DV18 0.667 -0.411 1.078 0.000 0.667 0.000 0.667
DV19 0.667 -0.222 0.889 0.000 0.667 -0.002 0.669
DV20 1.913 -0.130 2.043 0.029 1.884 0.029 1.883
DV21 6.552 -1.585 8.137 0.000 6.552 0.002 6.550

both objectives, the experiments reveal that the fitness landscape is deceptive.
Small local changes either make no impact on the objectives of the fitness func-
tion or high impact one of the objectives making the solution not viable. However,
the results from the last experiment allowed us to surpass the baseline approach
by tweaking the starting parameters.

As future work, we plan to develop other variation operators and fitness
functions to optimize the solutions towards both objectives. We intend to fur-
ther study the fitness landscape and analyse how we can minimize the deceptive
nature of the search space. We plan on exploring both optimal and diverse so-
lutions via novelty search for this problem with different constraints, starting
objectives and more DVs. Another topic of interest to go is the re-utilization of
solutions, i.e., some variables from one bridge configuration could be re-utilized
to solve other bridges. Furthermore, we feel that this a problem that could be
used for benchmark and we are moving efforts to provide this problem to the
community.
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Fig. 13. Comparison between the dynamic responses of each of the bridge solutions.
This represents the peek of acceleration of the deck peak accelerations in the vertical
direction with the increase of pedestrians frequency in the bridge.
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