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Abstract An autonomous creative system able to learn, create and innovate is pre-
sented. Following previous work on the same topic, the approach explores the in-
terplay between a classifier and an evolutionary system. The classifier is trained
with famous paintings and images created by the system, learning to distinguish be-
tween these two categories. It is then used to assign fitness, leading to the discovery
of imagery that deviates from the one previously created by the system. Addition-
ally, by taking phenotype similarity into account, we further promote the discovery
of diverse images during the course of the evolutionary runs. The images created
throughout the evolutionary runs are added to the training set and the process is re-
peated. This iterative process, which includes retraining the classifier, sets the sys-
tem into a permanent quest for novelty and innovation. The experimental results
obtained across several iterations are presented and analysed, showing the ability of
the system to consistently produce novel imagery and to identify atypical images.

1 Introduction

As posited by McCormack (2007), the development of Aesthetic Judgement Sys-
tems (AJSs) is one of the biggest challenges in the field of Computational Creativ-
ity. Over the course of the years, two main approaches emerged: the development
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of hardwired fitness measures that try to encapsulate some sort of aesthetic prin-
ciple, and the use of Machine Learning (ML) techniques to learn aesthetic models
(Romero, Machado, Carballal, & Correia, 2012).

As we stated in previous works (Machado & Cardoso, 1997; Romero, Machado,
Santos, & Cardoso, 2003; Machado, Romero, & Manaris, 2007; Machado, Romero,
Santos, Cardoso, & Pazos, 2007; Romero, Machado, Carballal, & Correia, 2012),
our long term goal is the development of Artificial Artists (AAs) that display the
full range of abilities of human artists. In this context, the ability to learn aesthetic
models is indispensable, since it gives the system the ability to experience, assess
and react, not only to its own artistic production, but also to the artworks of other,
artificial or human, artists (Machado & Cardoso, 1997). Furthermore, it also creates
the preconditions that allow the system to be inspired by other artists, to detect
trends, and to deliberately innovate and deviate.

The ability to consistently generate innovative and adequate artifacts is a key
trait of creative, human or computational, agents. In this Chapter, we present an
AA that is characterised by the ability to build its own aesthetic model from a set
of examples, and by its permanent quest for novelty and innovation through style
variation and change.

The approach resorts to an expression-based evolutionary art engine and adaptive
classifiers, in this case Artificial Neural Networks (ANNs). The ANNs are trained to
discriminate among the artistic production of the system and that of famous artists.
The evolutionary engine is used to generate images that the ANNs do not recognise
as being products of the system, and that, as such, are novel in relation to its previous
artistic practice. During the evolutionary runs, we also promote the discovery of a
diverse set of imagery by taking phenotype similarity into account when assigning
fitness.

When a set of evolutionary runs is concluded, the novel imagery they produced
is added to the training set, enlarging the area of the search space covered by the
system, and the ANNs are retrained. This leads to a refinement of the classifiers,
which, in turn, forces the evolutionary algorithm to explore new paths and styles
to break with its past. Thus, the consecutive discovery of new styles is attained
through the revision and refinement of the aesthetic criteria for novelty of the AA,
while variation within style is attained by promoting phenotype diversity.

The research presented in this Chapter builds upon our previous efforts on the
same topic (e.g., (Machado, Romero, & Manaris, 2007; Machado, Romero, Santos,
et al., 2007; Correia, Machado, Romero, & Carballal, 2013b; Romero, Machado,
Carballal, & Correia, 2012)) expanding previous approaches by:

• Performing in each framework iteration a set of parallel evolutionary runs instead
of a single one;

• Considering phenotype similarity to promote the discovery of a wide set of di-
verse images in the course of each evolutionary run;

• Using classifiers with access to a larger number of image features;
• Using a significantly larger set of training examples;
• Using an archive to summarise the innovative imagery produced by the system.
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Although we consider that framework presented herein could also be applied to
other domains, the scope of this Chapter is limited to the image domain.

The experimental results obtained across several iterations are presented and
analysed, showing the ability of the system to consistently produce novel imagery
and to identify atypical images without human intervention. We consider that the
results obtained in the course of the first iteration are evocative of images produced
by user-guided evolution. Furthermore, we claim that the images evolved in the last
of the presented iterations are of a significantly different nature, breaking the mould
with the previous artistic production of the AA. As such, we hypothesise that a lim-
ited form of h- and t-creativity (Boden, 2004) may have been attained.

The Chapter is structured as follows: we begin by making an overview of the
state of the art in this field identifying and summarising the works that were more
pertinent to the research presented in this Chapter; in Section 3 we make an overview
of the EFECTIVE framework, presenting the details of its instantiation in Section 4;
this is followed by the presentation and analysis of the experimental results; finally
we draw conclusions and indicate future research.

2 State of the Art

The seminal work of Karl Sims (1991) led to the emergence of a new art form, evolu-
tionary art, which is characterised by the use of evolutionary computation to evolve
populations of artworks. In Sims’ work, users assign fitness to the images, indicat-
ing their favorite ones and, by these means, steering evolution towards regions of the
space that match their criteria. This process is, in many ways, similar to selective
breeding, a practice that humans have been following for centuries in the context
of animal and plant breeding, to develop, enhance, exaggerate and create particular
phenotype traits. This approach to fitness assignment became known as interac-
tive evolutionary computation (IEC). While IEC has many merits and applications,
systems based on IEC are dependent on human users. Therefore, although several
Computer Aided Creativity systems have been developed based on IEC (Machado,
Romero, Santos, et al., 2007), this approach is not viable for the development of
Artificial Artists.

In what concerns automation of fitness assignment, the central question is how
to develop a scheme that strongly correlates to human aesthetics or, at least, some
aspects of it. One of the most popular approaches to tackle this problem is the use of
hardwired fitness functions. There are several notable examples of systems in this
category (Machado & Cardoso, 2002; G. Greenfield, 2002, 2003; Machado, Dias,
& Cardoso, 2002; G. Greenfield, 2005; Ross, Ralph, & Hai, 2006; Neufeld, Ross, &
Ralph, 2007; Machado, Correia, & Assunção, 2015) and also recent works compar-
ing the merits of such aesthetic measures (Ekárt, Joó, Sharma, & Chalakov, 2012;
den Heijer & Eiben, 2010; Atkins, Klapaukh, Browne, & Zhang, 2010; Romero,
Machado, Carballal, & Santos, 2012).
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The use of ML techniques for fitness assignment purposes has also been ex-
plored. In their seminal work, Baluja et al. (1994) used an ANN trained with a set of
images generated by user-guided evolution to assign fitness. Machado et al. (2007;
2007) study the development of AAs able to perform style changes over the course
of several runs. In a related work, Li et al. (2012) investigate aesthetic features to
model human preferences. The aesthetic model is built by learning both phenotype
and genotype features, which are extracted from internal evolutionary images and
external real world paintings. Kowaliw et al. (2009) compared biomorphs generated
randomly, through interactive evolution, and through automatic evolution using a
classifier system inspired by content-based image retrieval metrics. The experimen-
tal results indicate that the results of the automatic system were comparable to those
obtained by interactive evolution. The use of co-evolutionary approaches (Saunders,
2001; G. R. Greenfield, 2002) and hybrid approaches that combine interactive evolu-
tion with hardwired fitness functions (Machado, Romero, Cardoso, & Santos, 2005)
have also been explored.

Another important contribution of Sims’ work concerns the representation. Sims
uses canonical Genetic Programming (GP) (Koza, 1992) to evolve images. The
genotypes are symbolic expressions, which assume the form of a tree, composed
of functions (internal nodes) and terminals (leafs), which may be variables or con-
stants. The phenotypes, i.e. the images, are produced by calculating the outcome of
the symbolic expression over a range of variable values. In other words, the out-
come of expression(x,y) yields the color values of the (x,y) pixel of the image. To
produce the entire image, one iterates over the desired range of x and y values, with
a given step.

One of the questions that naturally arises when considering a representation is its
expressive power. In this case, what types of images can be represented by means of
a symbolic expression of this kind. Although the answer depends, obviously, on the
function and terminal set being used, Machado and Cardoso (2002) demonstrated
that it is possible to represent any given image using a simple function and terminal
set. Provided that the function set contains the if-then-else function and that
the terminal set contains variables x,y and constants, it is trivial to design a symbolic
expression to any image, and hence any image is representable. In simple terms, the
argument is the following: using if-then-else, one can successively partition
the image into smaller areas, eventually reaching pixel level size; then one only
needs to use a constant to define the desired pixel color. Notice that the existence of
if-then-else is not a strict requirement, as long as there is a way to partition
and combine different regions of the image, the idea still holds. Furthermore, many
other types of proof are viable. For instance, if the system has the ability to encode,
explicitly or implicitly, an iterated function system, then one can rely on Barnsley’s
(1993) proof to demonstrate that all images are representable.

From the above, it is safe to say that most expression-based evolutionary art sys-
tems are able to represent any given image. Thus, in theory, it is possible to recre-
ate by evolutionary means any artwork that was ever made or that will be made
(McCormack, 2007). Practice, however, is an entirely different matter. The images
produced by expression-based evolutionary art tend to be abstract and have a math-
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ematical appearance. As pointed out by Machado et al. (e.g. (2007)), each evolu-
tionary art system tends to have its own signature, which is deeply related to the
function set and to the genetic operators being used.

Romero et al. (2003) suggested combining a general purpose evolutionary art
system with an image classifier trained to recognise faces, or other types of ob-
jects, to evolve images of human faces. In recent years, this idea has been put to
practice by several researchers to evolve several kinds of figurative images such
as faces, flowers, leafs, breasts, and font glyphs (Machado, Correia, & Romero,
2012a, 2012b; Correia, Machado, Romero, & Carballal, 2013a; Nguyen, Yosinski,
& Clune, 2015; Martins, Correia, Costa, & Machado, 2015), as well as ambiguous
images (Machado, Vinhas, Correia, & Ekárt, 2015). This kind of approach extended
the realm of imagery produced by expression-based evolutionary art systems, by
assigning fitness based on the resemblance to objects that are usually not present in
the kind of images these systems tend to produce.

Another approach that has the potential to expand the realm of generated imagery
is novelty search. It is important to notice that the use of techniques to promote the
novelty of the solutions, predates the coining of the term novelty search algorithm,
by Lehman and Stanley (2008). The works of Saunders et al. (2001) and Machado
et al. (2007) are examples of early approaches, where novelty plays an important
role in evolution, while in the work of Kowaliw et al. (2009), evolution is guided by
novelty alone. Among the examples that strictly follow a novelty search mechanism
as proposed by Lehman and Stanley, we highlight the works of Secretan et al. (2011)
and Liapis et al. (2013).

Our biggest criticism to canonical novelty search is that we consider that novelty,
alone, is not a sufficient criterion for creativity. Furthermore as it was analysed in the
previous Chapter (McCormack, 2017), EC approaches have demonstrated success
to better locate regions of high creative rewards. As such, the work presented in this
chapter focuses on three central issues: (i) The automation of fitness assignment;
(ii) The development of a system that innovates, overcoming the implicit bias of
its representation and expanding the frontiers of its artistic production; (iii) The
generation of artworks that relate to human aesthetics.

3 The Framework

The architecture proposed by Romero et al. (2003) argues that an AA should be
composed of two main modules: a creator and a critic. The work presented in this
chapter follows, roughly, this architecture, with the role of the creator being played
by an evolutionary computation engine and the role of the critic being played by
an ANN. We employ the Evolutionary FramEwork for Classifier assessmenT and
ImproVEment (EFECTIVE). In abstract, EFECTIVE is a framework that assesses
and improves classifier performance through the synthesis of new training instances.
In our scenario, it fits the role of AA, who, based on the its judgment and its past



6 Correia et al.

Fig. 1 Overview of the EFECTIVE Framework.

experience, iteratively learns from its inspiration and produced work, evolving its
craft along its existence.

EFECTIVE is composed of three main modules: Evolutionary Computation (EC)
engine; Classifier System (CS) and Supervisor; each with distinct roles. In brief, the
EC engine is the one responsible for the evolutionary part, where the examples are
synthesised and evolved. As for the CS, it constitutes the learning approach. The Su-
pervisor module manages the examples that result from the interaction between the
EC engine and classifier system, selecting and filtering synthesised examples that
will be used to improve the training dataset. These modules come together to create
an iterative process for improvement of classifiers. Fig. 1 presents an overview of
the framework.

Before diving into the details of the instantiation of the framework, a succinct
description follows:

1. A set of external images is selected; In the case of this chapter, this set is com-
posed of famous artworks, representing a source of inspiration for the AA;

2. A set of internal images is selected; In this case, the EC engine is used to ran-
domly create a set of images, thus creating a sample of the type of imagery the
evolutionary engine tends to produce;

3. The ANN is trained to distinguish among internal and external images;
4. A new set of evolutionary runs is started; The output of the ANN is used to assign

fitness; Images classified as external have higher fitness than those classified as
internal; Additionally, phenotype diversity is also taken into consideration;

5. During the course of each evolutionary run, an archiving module keeps track of
the artistic production of the AA, storing images that are classified as external
and diverse from other images classified as external evolved during the course of
the run;

6. When the set of evolutionary runs is concluded, the Supervisor module gathers
and merges the archives resulting from each evolutionary run;

7. The consolidated archive is added to the set of internal images;
8. The process is repeated from step 3.

One of the key aspects of this approach is the definition of two classes of images.
The first class contains external imagery. Images that were not created by the GP
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system and that are usually considered “interesting” or of “high aesthetic value”.
Conceptually, the external set should be seen as an “inspiration” for the AA. It pro-
vides a stable attractor that is meant to ensure that the evolved imagery tends to
incorporate aesthetic qualities recognized by humans. The second class contains
internal imagery, it is composed of images generated by the evolutionary engine,
and describes the previous artistic production of the AA. For the purposes of the
present work, this class represents undesirable imagery, since we are interested in
innovation through style change.

In the present case, the task of the evolutionary module is to evolve images that
the ANN classifies as external. This may be accomplished by evolving images that
are:

1. Similar to those belonging to the external set;
2. Different from the set of internal images (e.g., images that are entirely novel,

hence dissimilar from both sets).

Note that in this context, the concept of similarity and dissimilarity is deeply
connected to the features serve as input to the ANN. Therefore, it may deviate from
human perception.

The approach relies on promoting a competition between the evolutionary engine
and the CS. In each iteration, the evolutionary engine must evolve images that are
misclassified by the CS, otherwise no progress is achieved. By assigning fitness us-
ing a classifier and valuing examples that belong to a predefined class, the approach
evolves several misclassified examples (Machado et al., 2012b). These examples
can be potentially useful for improving the performance of the CS.

The systematic expansion of the internal set, and the subsequent retraining of
the ANN, causes an “arms-race” between generator and classifier. As such, from
iteration to iteration, the evolutionary engine is forced to explore new paths, which
results in stylistic change and in the expansion of the diversity of the artistic pro-
duction of the system.

As pointed out by Machado et al. (2007), in the long run, there are two possible
final scenarios, which correspond to natural termination criteria for the approach:
(i) the evolutionary engine becomes unable to find images that are classified as
external; (ii) the ANN becomes unable to discriminate between internal and ex-
ternal imagery. The first outcome reveals a weakness of the evolutionary engine,
which can be caused by a wide variety of factors (deceptive fitness landscape, incor-
rect parametrisation, lack of computational resources, etc.). In the second outcome,
there are two possible sub-scenarios: (ii.a) the images created by the EC system are
similar to some of the external images, which implies that the EC and the CS are
performing flawlessly; (ii.b) the images created by the EC system are stylistically
different from the external imagery, which indicates a flaw of the CS.

In the next Section we present several details pertaining the instantiation of the
framework to the scenario discussed in this Chapter. Applications of the same frame-
work in other, non-artistic, domains can be found in (Machado et al., 2012b, 2012a;
Correia et al., 2013a; Machado, Vinhas, et al., 2015).
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4 Instantiation of the EFECTIVE Framework

The EFECTIVE framework is instantiated for this scenario with one classifier sys-
tem, an evolutionary engine and a supervisor. It starts by training a classifier with an
initial dataset. Then E parallel evolutionary runs are started. When all evolutionary
runs are finished, the supervisor gathers the individuals and decides which ones are
going to be added to the dataset. This cycle is iteratively repeated until a termination
criterion is met. The global parameters of the framework are presented in Table 1.

Table 1 Global parameters of the framework.

Parameter Setting
Classifiers per iteration (C) 1
EC runs per classifier (E) 30
Adequacy threshold 0.5
Dissimilarity threshold 0.01

4.1 Classifier System

The CS is composed of a Feature Extraction module and an ANN. The classifier
participation in the approach is crucial for several reasons: it evaluates the images
that are generated by the evolutionary engine; its performance dictates the number
of examples that are added and/or deleted before retraining the classifier.

In this work, the CS is trained under certain conditions before it is used to assign
fitness during the evolutionary runs. On each training phase the ANN is trained
with the full dataset. If training is entirely successful, meaning that the ANN is
able to fully discriminate between the internal and external sets, we proceed to the
evolutionary runs. However, if false externals exist, i.e. if there are human produced
artworks being classified as evolved images, these images are removed from the
external dataset and a new training attempt is made. Training is only concluded
when no external images are classified as being internal.

The removal of these images has two motivations. First, from the perspective of
the classifier, one can consider that the style these images embody has already been
explored. As such, they should no longer be classified as external. Second, from a
more pragmatic perspective, these images tend to be atypical in relation to the rest
of the images of the external dataset, removing them arguably simplifies the task of
the classifier, which may, in turn, result in classifiers that provide fitness landscapes
that are more favourable for the evolutionary engine.

The existence of false externals, i.e. evolved images classified as human made,
does not have a direct solution. Deleting them would solve nothing. Instead, they
remain in the internal dataset. Future iterations are likely to explore the same short-
coming of the classifier, increasing the number of examples of the same style present
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in the internal dataset, and forcing, due to the increased cardinality of the subset, the
classifier to learn that such images are internal.

4.1.1 Feature Extraction

In our approach, the ANNs do not have direct access to the images, instead each
image is described by a set of image features, which serve as input to the ANN. As
such, we developed a Feature Extractor used to extract relevant features from each
image.

The pipeline of the feature extractor is the following: the input image is resized
to 128×128 pixels; converted to the Hue Saturation Value (HSV) colourspace, and
a copy of the each image channel is stored for further computation; several pre-
processing operations are computed on demand, depending on the feature to be ex-
tracted, i.e. apply Canny filter to the image and extract information from the edges.
In total, the feature extraction process yields a total of 120 features, that are later
used as input for the classifier.

A throughout description of the feature extractor would be long, and is outside
the the scope of this chapter. Therefore, we present a brief description of the fea-
tures extracted, indicating bibliographic references that may provide to the inter-
ested reader a complete description. Most of the features implemented originate
from previous work concerning the aesthetic analysis of images (Datta, Joshi, Li, &
Wang, 2008). The features collected were inspired by the work of Datta et al. (2006),
Li et al.(2009), Faria et al. (2013), Romero et al. (2003), den Heijer (2012) and,
based on our previous work Machado et al. (2007; 2007) and Correia et al.(2013b).

To make the description of the feature set tractable, we introduce a taxonomy
2. Some of the features could be classified in several categories, in these cases we
followed the literature consensus for the feature’s category. When selecting and de-
veloping this group of features, our goal was to cover several aspects of the images’
style and aesthetics.

Although most of the features are implementations based on the state of the art,
we have also introduced some new features in this work. These are briefly described
in the following paragraphs.

As the name suggests, the edge density feature captures information regarding
the number of edges present in the image. This is achieved by applying a Canny
filter to the image and counting the percentage of pixels that correspond to edges,
i.e. white pixels.

We also introduce the Palette analysis features, which are intended to provide ad-
ditional information regarding the image’s colour palette. The core idea is to analyse
the contrasting colours present in the image (Machado, Correia, & Assunção, 2015).
First, we apply a colour quantisation algorithm to reduce the number of colours
using k-means clustering. The colour occurrences are counted and sorted in de-
scending order. We compute the distances among the colours of the resulting image
using the HSV space, as follows: considering two colour vectors (H,S,V ) to rep-
resent the colour, the distances in the S and V colour components are calculated
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Table 2 The proposed feature taxonomy is composed of five categories: colour, complexity, com-
position, salience and texture.
Category Features Reference

Colour

Palette analysis
Average of pixel values (Romero et al., 2003; Datta et al., 2006; Machado, Romero, Santos, et al., 2007)
Standard deviation pixel values (Romero et al., 2003; Datta et al., 2006; Machado, Romero, Santos, et al., 2007)
Weber contrast (Faria et al., 2013)
Michelson contrast (Faria et al., 2013)
Warm and cool colors (Faria et al., 2013)
Contrasting colors (C. Li & Chen, 2009; Faria et al., 2013)
Background simplicity (Rubner, Tomasi, & Guibas, 2000; Datta et al., 2006)

Complexity

Fractal dimension (Romero et al., 2003; Machado, Romero, & Manaris, 2007)
Zipf size (Romero et al., 2003; Machado, Romero, & Manaris, 2007)
Zipf rank (Romero et al., 2003; Machado, Romero, & Manaris, 2007)
JPEG and fractal compression (Romero et al., 2003; Machado, Romero, & Manaris, 2007; Correia et al., 2013b)

Composition

Horizontal and vertical symmetry (den Heijer, 2012)
Liveliness (den Heijer, 2012)
Edge density analysis
Lighting (C. Li & Chen, 2009)
Hue Count (Datta et al., 2006; C. Li & Chen, 2009)
Blur analysis (C. Li & Chen, 2009)
Rule of thirds (Datta et al., 2006)

Salience
Edge distribution (Datta et al., 2006)
Spatial frequency (Faria et al., 2013)
Subject size (Faria et al., 2013)

Texture Tamura contrast (Tamura, Mori, & Yamawaki, 1978)
Tamura coarseness (Tamura et al., 1978)

using the Euclidean norm; for the H channel, which is circular, we use the formula
dist(a,b) = min(|a−b| , |a−MAX−b| , |b−MAX−a|) to compute the distance,
where a and b are two colours and MAX is the maximum value of H. After cal-
culating the distances, we discard the colours that are closer to each other than a
predetermined threshold. This results in n colours, which we consider the images
palette. With the palette we calculate a frequency histogram and we compute the
following metrics: number of palette colours; percentage of occurrences; the mode,
minimum value and maximum value for each component of the colour; histograms
linear regression and error; average distance to the next colour; average and stan-
dard deviation of the differences between the histograms bins; components of the
maximum and minimum distance from one colour to the others. We make the same
analysis by considering the purity of the colours, which translates to only consider-
ing the S and V components of the images channels to compute the metrics, ignoring
the H channel.

4.1.2 Artificial Neural Network

The ANN is a feed-forward network, with one hidden layer and two output neurons.
It is trained with standard backpropagation. The classifier was built using WEKA’s1

FastNeuralNetwork. WEKA is a workbench for machine learning with a significant
number of algorithms and tools available (Hall et al., 2009). The choice of an ANN
based classifier is justified by the success of this approach in previous works of
related nature (Machado, Romero, & Manaris, 2007; Correia, 2009).

1 http://www.cs.waikato.ac.nz/ml/weka/WEKA 3: Data Mining Software in Java
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The ANN receives as input the feature vector. The output indicates its confidence
in classifying the input instance as belonging to the either the internal or the external
class. To avoid a “binary” output, i.e. both neurons returning either 0 or 1, which
would result in an unsuitable fitness landscape, we employ a tolerance threshold
during the training stage. This translates on a modification of the training algorithm,
where, during the backpropagation of the error, if the difference between the output
of the network and the desired output is below the tolerated threshold, then the error
is propagated back as zero (no error). The parameters of the ANN are summarised
in Table 3.

Table 3 Parameters related to the ANNs and their training.

Parameter Setting
Initialisation of weights random, [−0.1,0.1] interval
Learning function backpropagation
Tolerance threshold 0.3
Learning rate 0.3
Momentum 0.2
Epochs 1000

4.2 Initial Datasets

The initial sets of external and internal images play an important role in the per-
formance of our system. We use an external set containing 26238 images includ-
ing works of artists such as: Cézanne, de Chirico, Dalı́, Gauguin, Kandinsky, Klee,
Klimt, Matisse, Miró, Modigliani, Monet, Picasso, Renoir, van Gogh. The images
where gathered from different online sources. The rationale was to collect a wide
and varied set of artworks. Although we avoided repetitions, it is relatively common
for an artist to paint several versions of the same theme. In these cases, and in order
to avoid the subjectivity of deciding what was sufficiently different, we decided to
include the different variations.

The set of internal images is created using the evolutionary engine, described in
the next subsection, to generate 30 initial random populations of size 1600. These
images are added to the internal dataset until the same amount of examples ex-
ist in the two datasets. Although the images were created randomly, some of the
phenotypes may appear more than once. Figure 2 presents samples of the images
belonging to the internal dataset, illustrating the type of imagery that the EC engine
produced in these circumstances.
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Fig. 2 Samples of the internal dataset.

4.3 Evolutionary Engine

For this work we used the geNeral purpOse expRession Based Evolutionary aRt
Tool (norBErT) as the EC engine (Vinhas, 2015). Inspired by the work of Sims
(1991) and Machado and Cardoso (2002), it is a general purpose, expression-based,
GP image generation engine that allows the evolution of populations of images. The
genotype uses a tree representation to encode individuals and create images from
those trees, using a rendering process which consists in generating an output value
for each image pixel. Thus, the genotypes are trees composed of a lexicon of func-
tions and terminals. The functions include mathematical and logical operations; the
terminal dataset is composed of two variables, x and y, and random constant values
and vectors. The phenotypes are images, rendered by evaluating the expression-trees
for different values of x and y, which serve both as terminal values and image coor-
dinates. In other words, to determine the value of the pixel in the (0,0) coordinates,
one assigns zero to x and y and evaluates the expression-tree. In this instantiation
the fitness of the individuals is given by the output of the CS, more precisely, by the
ANN’s output as described in subsection 4.1.2.

As mentioned, we employ a phenotype diversity mechanism by using a novelty
search algorithm, designed to evolve a diverse set of adequate images. The main
goal of this algorithm is to generate a broader set of images than the set that would
be created by a traditional fitness based EA. In essence, it is a method capable of
evolving images according to two criteria that are chosen automatically by analysing
the quality of the images produced in each generation. One criterion is to look for the
best images according to a fitness function and the other consists in taking novelty
and fitness as two different objectives to be maximised. The reason why novelty
is not considered alone is because prior tests have shown how big is the search
space and, consequently, how difficult is to discover suitable images (Vinhas, 2015).
Similar behaviour has occurred when using a single criterion or considering both
fitness and novelty (Vinhas, 2015).

The algorithm’s flowchart is similar to the traditional EA one, differing only in
two main aspects: (i) the creation of an archive to store the most novel solutions
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Fig. 3 Flow of the proposed hybrid algorithm.

and, (ii) a customised selection mechanism, which is able to consider single or mul-
tiple objectives using a tournament based strategy. The algorithm’s flow is shown in
Figure 3, and can be summarised as follows:

1. Randomly initialise the population;
2. Render the images (phenotypes) from the individuals’ genotypes;
3. Apply the fitness function to the individuals;
4. Select the individuals that meet the criteria to be in the archive (archive assess-

ment);
5. Select the individuals to be used in the breeding process. The individuals are

picked using one of the following criteria: (i) according to their fitness, as a stan-
dard EA; (ii) taking into account both the fitness and the novelty metric, which
is computed using the archive members;

6. Employ genetic operators to create the new generation of solutions, that will
replace the old one;

7. Repeat the process starting from step 2, until a stop criterion is met.

4.3.1 Archive Assessment

In this work, the archive has an unlimited size and it plays an important role, because
it is used to evaluate our solution and prevents the algorithm from exploring areas
of the search space already visited. The idea is that the archive should represent the
spectrum of images found to date, and for this reason, the bigger the archive is, the
more the algorithm is able to generate suitable and diverse images. Whereas in the
previously mentioned works the archive size is limited, we opted for not restricting
it.
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At this stage, a candidate individual has its fitness assigned and it has to meet
two requirements in order to be added to the archive: (i) its fitness must be greater
or equal than an adequacy threshold fmin; (ii) it needs to be different from those that
already belong to the archive. This process is performed by computing the average
dissimilarity between the candidate and a set of k-nearest neighbours. When the
average dissimilarity is above a predefined dissimilarity threshold, dissimmin, the
individual is added to the archive. The values for fmin and dissimmin are presented
in Table 4.1.

The dissimilarity metric for an image i is computed as:

dissim(i) =
1

maxarch

maxarch

∑
j=1

d(i, j), (1)

where maxarch is a predefined parameter which represents the number of most simi-
lar images to consider when comparing with image i, and d(i, j) is a distance metric
that measures how different two images (i and j) are. From this dissimilarity mea-
sure there are two exceptions that should be highlighted. If there are no entries in the
archive, the first individual that has a fitness above fmin is added. Moreover, if the
number of archive entries is below maxarch, Equation (1) is used with the number of
archive entries instead of maxarch.

For archive assessment, we resorted to an image similarity metric. Similarity
metrics provide us with a notion of distance between pair of images. The develop-
ment of image distance metrics is an relevant and rich area of research with several
applications. A revision of the state of the art is beyond the scope of this Chapter.
To the interested reader, we suggest the consulting the works of Wang et al.(2005)
and Goshtasby et al. (2012). Images distance metrics typically involve pixel based
operations that can be less or more elaborated. Among the available state of the art
options, we chose to employ the Normalized Cross Correlation (NCC), that can be
calculated, for two images X and Y with a m by n size, in the following way:

NCC(X ,Y ) =
∑

m×n
i=1 XiYi√

∑
m×n
i=1 X2

i ∑
m×n
i=1 Y 2

i

, (2)

where Xi and Yi correspond to the pixels of images X and Y , respectively.
NCC similarity outputs a value in the interval [0,1], where 1 indicates the best

match. This measure, besides providing a fast calculation, is deemed more robust
than most metrics for noisy scenes (Nakhmani & Tannenbaum, 2013). It suits our
needs, in the sense that our approach involves a considerable quantity of images,
and it can minimise the impact of noisy images on our dissimilarity assessment. As
such, we use as distance metric d(i, j) = 1−NCC(i, j).
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4.3.2 Selection Mechanism

The selection mechanism is important to shape how evolution will proceed, de-
pending on the results obtained in a given generation. Our novelty approach has a
customised selection mechanism that can switch between a fitness-based strategy
and a hybrid mechanism that considers both fitness and novelty. It starts as a fitness
guided evolution; however, that can change according to a decision rule, which is
described as: {

change to f itness, adequateinds < Tmin

change to hybrid, adequateinds > Tmax,

where adequateinds is the number of individuals of the current generation that have
a fitness above the threshold fmin; Tmin is the threshold used to verify if evolution
should be changed to fitness, and Tmax is used to verify if it should be changed to
hybrid.

In fitness guided evolution, the tournament selection is based on the fitness values
of the candidate solutions, as in a standard EA. If hybrid evolution is chosen, it is
necessary to compute the novelty of each selected individual, and perform a Pareto-
based tournament selection, using the novelty and fitness of each selected individual
as two different objectives to maximise.

The novelty computation process is inspired by Lehman and Stanley’s work
(2008), with one small change: the k most similar images are considered from the
set of the selected individuals and the archive, instead of considering the whole
population and the archive. An example of this novelty computation is illustrated
in Figure 4: considering k = 4 and a tournament size of 5, the dashed lines denote
the chosen individuals to compute novelty, and it is possible to see that from the 4
nearest individuals picked, 3 were chosen from the tournament while the remaining
one was chosen from the archive.

At this stage, each selected individual has a fitness and novelty value, and there
is the need to determine the winner of the tournament. This process is inspired by
multi-objective EAs, namely the Pareto-based approaches, which select the best in-
dividuals based on their dominance or non-dominance when compared to other indi-
viduals. In this work, the hybrid tournament selection determines the non-dominant
solutions by comparing, among the selected individuals, on the basis of both fitness
and novelty. After computing the set of non-dominant individuals, we have the so-
called Pareto front. The tournament winner will be selected by randomly retrieving
one of the solutions of the Pareto front.

The settings of the GP engine and the archive assessment for each EC run are
presented in Table 4.
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Fig. 4 Novelty computation for an individual.

Table 4 Parameters of the GP engine.

Parameter Setting
Population size 100
Number of generations 50
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap,

sub-tree replacement,
node insertion, node deletion
and mutation

Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Archive assessment width 32 px
Archive assessment height 32 px
Tmin 5
Tmax 15
Function set +, −, × , /, min, max, abs,

neg, warp, sign, sqrt, pow,
mdist, sin, cos, if

Terminal set x, y, random constants

5 The Experimental Results

In this section we present the experimental results obtained using our approach.
As previously stated, one of the key characteristics of our approach is its iterative
nature. In each iteration we perform 30 evolutionary runs, and once these runs end,
the “external” images produced by the system, i.e. the images that expand the range
of the artistic production of the system, are added to the internal set and the ANN
retrained, promoting the discovery of novel images in subsequent iterations.
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Table 5 Statistics regarding evolutionary process across iterations. The results pertain 30 indepen-
dent evolutionary runs for each framework iteration.

Framework Evolved Images Seeds with Avg. generations
iteration external images added ev. external for ev. external

1 38283 30110 30 3.63
2 1426 250 22 18.22
3 816 195 17 20.52
4 752 178 24 25.33
5 366 57 10 29.3
6 1105 433 21 20.24
7 620 131 22 31.64
8 191 31 7 23.86
9 422 115 21 24.90
10 692 62 20 28.5
11 374 126 22 32.27
12 267 101 11 31.09
13 842 352 17 21.76

We are, therefore, primarily interested in analysing the differences, in terms of
produced imagery, that occur from iteration to iteration. It is impossible to show all
the images produced in the course of the evolutionary runs. Even if we only pre-
sented the images classified as external, this would imply presenting 38283 images
for the first iteration alone. As such, we will present a synthesis of the results, which
aims to convey the key experimental findings. We divide our analysis into subsec-
tions as follows: first, we present and examine the results concerning the evolution
of fitness throughout iterations; next, we will inspect the images produced; finally,
we analyse the classifier’s training and performance in each iteration.

Although we present results concerning 13 iterations of the framework, it is im-
portant to stress that further iterations are still being performed. Therefore, the pro-
cess is not concluded, and all evidence indicates that a significantly higher number
of iterations would be necessary before a breakdown of the EC engine or classifier
takes place.

5.1 Analysis of the Numeric Results Concerning Evolution

Table 5 depicts a series of statistics concerning the evolutionary process across it-
erations, namely: the total number of images evolved in the course of the 30 evo-
lutionary runs of each iteration that were classified as external (Evolved external);
the number of these that was added to the internal set used to train the classifier
guiding the next iteration after supervision (Images added); the number of seeds in
which the EC engine was able to find at least one image classified as external (Seeds
with ev. external); the average number of generations necessary for finding an image
classified as external (Avg. generations for ev. external). This average is calculated
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taking only into account the seeds where at least one image classified as external
was found.

As it can be observed, a striking number of images classified as external was
found in the course of the first iteration, 38283, which corresponds to an average of
1276.1 per evolutionary run. All of the evolutionary runs were able to find “external”
images and, on average, they took 3.63 generations to find the first image classified
as external.

Although this number is somewhat surprising, it is far from being unexplainable.
In essence, this result means that it is easy for the system to break from his “past”
and produce novel imagery.

The initial set of internal images was created by randomly generating geno-
types and their corresponding phenotypes. As such, the images of the initial internal
dataset did not undergo evolution. By supplying an aesthetic model, and a mecha-
nism that steers evolution towards regions of the search space that where not covered
by the initial dataset, we are fundamentally changing the nature of the images that
the system tends to produce. When confronted by images that are novel, and that
probably do not fit in either of the categories (internal or external), the classifier is
forced to make a choice, eventually classifying some of these novel images as exter-
nal. Once such image is found, evolution quickly explores and exploits such type of
imagery, leading to the discovery of a high number of images classified as external.

On a second stage, the phenotype diversity mechanisms kicks in, contributing to
the discovery of a diversified set of images classified as external. The importance
of the phenotype diversity mechanism can be verified by the fact that out of the
38283 classified as external, 30110 were added to the internal dataset. Thus, only
8173 of the evolved images classified as external, roughly 21%, was considered
similar to the ones already in the archive of their corresponding evolutionary runs
and, therefore, discarded. This result shows that the phenotype diversity mechanism
is able to prevent stagnation of the evolutionary runs and convergence to a fixed type
of image.

After the “explosion” of novelty that occurs in the first iteration, the task of the
evolutionary engine and, as will be seen, of the classifier, becomes increasingly
harder and an abrupt decrease of productivity is verified. In the course of the 30
generations of the second iteration, the EC engine found 1426 images that were
classified as external. Although this is still an impressive number, it pales in compar-
ison with the numbers observed in the first iteration. This increase in difficulty can
also be observed by the increase on the average number of generations necessary to
find an external image 18.22 and by the fact that only 22 out of the 30 evolutionary
runs were able to find images classified as external. The chart presented in Figure
5, concerning the evolution of the fitness of the best individual of each generation
across iterations, further highlights the differences in the difficulty of the task of the
EC engine in the first and second iteration.

Out of the 1426 external images found in the course of the second iteration,
250 were added to the internal dataset, since the remaining 1176 were considered
sufficiently similar by our archiving algorithm to these 250. This illustrates a well-
known fact concerning novelty search algorithms (as defined by Lehman and Stan-
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Fig. 5 Evolution of the fitness of the best individual of each generations. Results are averages of
30 independent evolutionary runs for each iteration.

ley (2008)): as optimising fitness becomes harder, it becomes significantly more
difficult to find solutions that are both novel and fit. In other words, although the
phenotype diversity mechanisms are activated and contribute to the diversity of the
population, finding images that are simultaneously novel, in relation to the ones
evolved in the course of the evolutionary run, and adequate, i.e. classified as exter-
nal, becomes increasingly difficult.

As the number of iterations increases, and as the internal dataset becomes larger,
one would expect an increasing difficulty in finding images classified as external
(and also an increasing difficulty in learning to differentiate between the two sets).
Although this tends to be true, it is not always the case. As Figure 5 illustrates,
although there is a clear differentiation among the lines representing the evolution
of fitness of the first two iterations and the remaining ones, and although these dif-
ferences are statistically significant, the same does not happen for the remaining
iterations. The explanation for this fact is twofold: (i) the number of images added
in each iteration is not sufficient to make the task visibly harder; (ii) the training
of the classifier includes a stochastic component, and as such, even if trained with
the same datasets, different classifiers may induce different fitness landscapes with
different difficulties.
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Fig. 6 Fittest individual from each population of a typical evolutionary run of the first iteration.
The image in the upper-left corner corresponds to population 0; remaining images in standard
reading order.
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5.2 Analysis of the Visual Results

Next we make an analysis of the visual results, i.e. the images, produced in the
course of the 13 iterations. The complexity of the setup, and the vast number of
images classified as external that were evolved make this analysis particularly hard.
Furthermore, and although we will try to be as objective as possible, the analysis
entails a degree of subjectivity that cannot, and perhaps, should not, be avoided. We
divide this analysis in three subsections, focusing, respectively, on the analysis of the
visual results of the first iteration, intermediate iterations, and thirteenth iteration.

5.2.1 First Iteration

We begin by trying to convey what happens within each of the 30 evolutionary runs
of the first iteration. For this purpose, Figure 6 depicts the fittest individual from
each of the 50 generations of a typical evolutionary run of the first iteration. As it
can be observed, the fittest images of the first two generations are quite amorphous.
By the third generation, the EC engine finds its the first image classified as external.
From this point onwards, the phenotype diversity mechanism kicks in, promoting
the discovery of images that are, simultaneously adequate, i.e. classified as external,
and different from the ones previously evolved in the course of this specific run.
This mechanism does not produce immediate effects in terms of the fittest image
of the generations, but it prevents the algorithm from converging, and creates the
conditions for the discovery, within the evolutionary run, of different images that
are also classified as external. As such, the apparently abrupt changes that can be
observed in Figure 6 result, mainly, from a progressive evolutionary process that
promotes the diversity of the population.

In Figure 7 we present a sample of the images classified as external evolved in
the course of the same run as the one depicted in Figure 6. Since we were unable to
find a reasonable algorithm for automatically sampling the set of evolved images in
a convincing manner, this and other samples presented in this Chapter were selected
by hand, trying, in all cases, to maximise the diversity of the sample and making it
as representative as possible. As it can be observed, the diversity of the populations
and of the images being classified as external is larger than what Figure 6 suggests,
showing the adequacy of the phenotype diversity mechanisms.

Figure 8 depicts the fittest individual of each of the 30 evolutionary runs of the
first iteration. All of these images have been classified as external. There are, at
least, three predominant traits: most of the images tend to be dark and with low con-
trast; several exhibit a star-like shape; many of them include some sort of noise. In
some cases, the contrast is so low that the images appear to be of uniform color for
the human eye; however, a color adjustment and equalization operation will reveal
the hidden structure. Regarding this point, it is relevant to point out that several of
the features that serve as input to the ANN are invariant regarding contrast among
colors, so these results also highlight the differences in the perception of images be-
tween humans and ANNs. It also appears to be safe to state that several of the runs
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Fig. 7 Samples of the images classified as external, generated throughout the course single typical
evolutionary run of the first iteration.

converged to the same type of imagery, which is an expected result. The runs are
performed in parallel and the classifier, which ultimately defines the fitness land-
scape is common to all. Therefore, the fitness landscape has the same local and
global optimum, an optima with a larger basis of attraction are bound to be explored
more often. Additionally, each evolutionary run has its own archive and no access to
the archives of others, therefore the phenotype diversity mechanisms cannot avoid
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Fig. 8 Fittest individuals of the last generation of each of the 30 seeds of the first iteration.

imagery being explored in other evolutionary runs – they only operate within the
production of a specific run.

Figure 9 presents a sample of the 38283 images evolved in the course of the first
iteration and classified as external. Obviously, the visual inspection of 38283 and
the selection of a representative set sufficiently small to present in this Chapter is
close to impossible. Nevertheless, we believe that the selected samples illustrate the
diversity of images classified as external that were evolved throughout the course of
this iteration.

Based on the results presented, we believe it is safe to claim that the images
classified as external are substantially different from the ones belonging to the initial
dataset. On the other hand, it is also safe to state that they are substantially different
from the external dataset composed of human-made artworks. In a nutshell, the EC
engine is producing images that are distinct from both initial datasets, and that the
classifier, which is forced to classify them into one of these two sets, identified
as external. We also believe that it is safe to claim that these images are novel in
relation to the ones previously produced by the EC system (i.e. the initial set of
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Fig. 9 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the first iteration.
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internal images), not only from a computational perspective, but also to the human
eye.

In our subjective opinion, several of these images are aesthetically interesting
and appealing. Considering our background and experience using user-guided evo-
lutionary art systems, which spans more than a decade, it is relevant to make the fol-
lowing observation: these images are, in many ways, similar to the ones we evolved
through user-guided evolution in the course of these years. An anecdotal evidence
of this fact is that, when confronted with Figure 9, one of the authors asked “Why
are we including user-guided images?”. Proving that this resemblance is real is be-
yond the scope of the present paper, nevertheless, even without strong evidence to
make this claim, we consider this one of the most unexpected, and possibly relevant,
results of this Chapter.

5.2.2 Intermediate Iterations

In this subsection we make an overview of the visual results obtained in the second
to the twelfth iterations. These results are illustrated by the samples of the images
classified as external presented in Figures 10 to 20. It is important to remember that,
in most cases, for each of the images presented in the figures a significant number
of images of similar nature was evolved throughout the corresponding run.

Rather than making a detailed analysis, we will focus on highlighting some of
the most striking results obtained in each iteration, identifying, whenever possible,
trends that emerge in several runs and that, as such, represent optima with large
basis of attraction for the classifier being used in that particular interaction.

In the course of the second iteration the EC engine evolved 1436 images classi-
fied as external. These images result from 22 of the 30 runs. The images presented in
the figures are ordered by evolutionary run. As such, two similar images presented
side by side typically indicate that they were evolved in the same run, similar images
that are not adjacent to each other typically indicate the rediscover of the same type
of imagery in two different runs.

A brief scrutiny of the images presented in Figure 10 reveals that most of
the evolutionary runs converged to different imagery, but also the recurrence of
some themes. Among these, we highlight the stripped star-like shapes, which also
emerged in the first iteration, and that continue to be present, although “rendered”
in a different style. One of the interesting results concerns the evolution of several
“minimalistic” images (e.g. the two rightmost images of the first row and the left-
most images of the fifth row), which occurs in several runs. Although they appear
minimalistic, this type of image is particularly hard to evolve, and their simplistic
nature contrasts with the size of their genotypes. In fact, an inspection of the learn-
ing process after the second iteration appears to indicate that the emergence of these
images is deeply related to the presence in the initial dataset of external imagery that
are also minimalistic and monochromatic (see Subsection 5.3. In fact the use of a re-
duced color palette occurs in several of the evolutionary runs. This is consistent with
the color schemes used in many of the images belonging to the external dataset and
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Fig. 10 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the second iteration.

contrasts with with the typical imagery produced by the EC engine. More impor-
tantly, considering the nature of this Chapter, the appearance of the evolved images
classified as external appears, in most cases, to be different from the initial dataset
of external images and from the images evolved in the course of the first iteration.

Analysing the images produced in the course of the third iteration, of which a
sample is presented in Figure 11, one can observe the same overall patterns: most
runs tend to converge to different types of images; most evolved novel imagery in
relation with the previous production of the system; there are some recurring themes,
namely the star-like images, which are “rendered” in different styles. The emergence
of images with strong and contrasting colors (magenta, green, yellow, white, black)
occurs in several evolutionary runs. This type of imagery is highly atypical of the
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Fig. 11 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the third iteration.

EC engine and matches the chromatic characteristics of several of the artworks of
the external set.

As we will see when analysing the results of other iterations, the emergence
of graphic elements such as lines, points and planes, also characterises some of
the evolved images. Although these are usually considered graphic primitives for
humans, the EC engine has no explicit way of creating such elements. As such, their
emergence is deeply linked with the fitness landscape induced by the classifiers.

Much of what was stated regarding the images evolved in the third iteration also
applies to the ones evolved in the fourth (see Figure 12). Many of the images are
characterised by the emergence of organic lines and planes. Others appear to be
composed of multiple layers with transparencies (e.g. leftmost image of the third
row).
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Fig. 12 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the fourth iteration.

In the fifth iteration, the EC engine experienced difficulties in finding images
classified as external. Only 10 of the 30 evolutionary runs found such images and,
on average, these took 29.3 generations to evolve. In total, 366 images classified as
external were evolved, a number that is reduced to 57 by our archiving algorithm.
For these reasons, the diversity of the images presented in Figure 13 is not as large as
in previous iterations. The feature common to all of these images is the presence of
“noise” patterns. It is also interesting to notice that a vast percentage of the images
is monochromatic and with intricate detail. In several of the cases (e.g. the black and
white images of the first and last row) the lines are discontinued, in the sense that
they emerge from the arrangement of several white or gray dots that are not actually
connected.
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Fig. 13 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the fifth iteration.

Although the productivity of the AA during the fifth iteration was not high, the
addition of these images to the internal dataset, coupled with the removal of some of
the external images (see Subsection 5.3), appears to cause profound changes in the
classifier. There is a burst of productivity in the course of the sixth iteration, 1105
images of which 433 are added to the archive, a number that is only surpassed by
the first iteration. As Figure 14 illustrates, this burst of productivity coincides with
a change of style in comparison with the previous iterations. This sudden increase
of productivity can be explained by the performance of the classifier, and will be
discussed in Subsection 5.3.

Productivity decreases during the seventh iteration, see Figure 15, and reaches
an all time low in the eighth iteration (refer to Figure 16). Generally speaking, one
can state that the images classified as external evolved in the course of the seventh
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Fig. 14 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the sixth iteration.

iteration correspond to variations in style of themes already explored in previous
iterations, almost as if the AA further refined and included additional detail to pre-
viously explored images. The ones evolved in the eighth iteration appear, in our
eyes, to be of the same style as images evolved in some of the previous iterations.
The classifier is not able, even during training, to fully discriminate among the in-
ternal and external datasets. As previously explained, this opens the door for the
repetition of styles and imagery that was not sufficiently explored in previous iter-
ations. Our analysis indicates that this is what happened in the course of the eighth
iteration, the AA artist explored styles that, although already present, were not suf-
ficiently explored. As the cardinality of such images increases the Classifier system
is “forced” to recognise such images as internal and, therefore, the EC engine will
no longer be able to explore them in future iterations.
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Fig. 15 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the seventh iteration.

Like previously, the changes to the datasets gave rise to a classifier that bases
its assessments on different premises, inducing a different fitness landscape, which
happens to be more prone to evolution. In the ninth iteration, the EC engine evolved
a total of 422 images, of which 115 where archived, finding images classified as
external in 21 of the 30 runs. As can be observed by inspecting Figure 17, there is
a mixture between new and old themes and styles. Interestingly, several images that
are evocative of landscapes (three leftmost images of the third row) were evolved.

The tenth iteration was one of the most productive ones in terms of the total
number of images classified as external, 692, but of these only 62, less than 10%
made it to the archive. As it can be observed in Figure 18, several runs converged to
the same type of imagery, reducing the overall diversity and productivity of the set.
Visually, we identify three main styles which emerge in several runs: the black and
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Fig. 16 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the eighth iteration.

white minimalistic images; images that appear to have a white transparent layer (e.g.
the five leftmost images of the first row, but also the two rightmost of the last row);
The images exploring a combination of magenta and green. Like in several of the
previous iterations, the star-like shape continues to be one of the favorite “themes”
of the AA.

The lack of diversity of the tenth iteration contrasts to the visual diversity of the
eleventh. Although only 374 images classified as externals were found, 126 of these
images were archived. On average it took 32.27 generations to find the first image
classified as external. Although there is some stylistic agreement among several
evolutionary runs (see Figure 19) the overall diversity is significantly higher than
in the previous iteration. The purely black and white images disappear from this
iteration onwards, likely due to the combination of two factors: the inclusion of
several of these images in the internal dataset and, most importantly, the removal of
a large number of strictly black and white images from the external dataset.

The twelfth iteration is among the least productive ones, only 267 images classi-
fied as external were found and only 11 of the 30 runs found such images. In spite
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Fig. 17 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the ninth iteration.

of this lack of productivity, visible in Figure 20, some of the evolutionary runs were
able to find novel imagery that contrasts both in terms of style and theme from the
previous artistic production of the system.

5.2.3 Thirteenth Iteration

The thirteenth, and last iteration presented in this Chapter, corresponds to burst of
novelty and productivity of the system. Although a similar burst occurred in the
sixth iteration, the nature of the burst appears significantly different. In this case,
the increased productivity is coupled with significant stylistic variations and may be
seen as a moment where the AA actually “broke the mould”.



34 Correia et al.

Fig. 18 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the tenth iteration.

As we will see in the next section, while the increase of productivity in the sixth
iteration seems to be linked with shortcomings of the classifier, here it appears to
be linked with significant changes to the way the classifier system differentiates
between the class of internal and external imagery. Thus, while in the other interme-
diate iterations the AA seems to be making minor stylistic variations of images that
it has already produced, and opportunistic exploitations of shortcomings of the clas-
sifier, what happens in the thirteenth iteration seems to be rather different, resulting
from profound changes of the aesthetic model, caused by the cumulative revision of
the internal and external set. Making an analogy, this can be seen as an “Eureka”
moment, where the system discovers substantially different styles, expanding and
enriching the range of its artistic production.
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Fig. 19 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the eleventh iteration.

As it can be observed by the sample of the images presented in Figure 21, al-
though there are some recurring themes, the detail of “execution” of the images of
the thirteenth generation classified as external is a lot higher than in previous itera-
tions. The images seem to be more elaborate, detailed, and refined, when compared
with previous iterations. At the same time, some novel ornamentation techniques,
such as the one depicted in the three rightmost images of the first column, were dis-
covered, and some novel themes seem to emerge. The exploration of “light” (see,
e.g. leftmost image of the third row and the rightmost image of the fifth row) also
emerges as a visible and distinctive traits.

We considered the images resulting from the first iteration comparable to the
ones evolved through user-guided evolution. Although, in fairness, the same could
be stated for a significant portion of the images evolved in the course of the thir-
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Fig. 20 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the twelfth iteration.

teenth, it is equally fair to state that some of the runs created imagery that is stylis-
tic dissimilar from what we have evolved through user-guided evolution, or other
means. Thus, many of these images strike us not only as novel in relation to the
previous artistic production of the AA, but also as novel and surprising in relation
to our own experience and production.

5.3 Training of the Classifiers

In this subsection we make an overview of the results pertaining the training of the
classifier. As previously mentioned (see Section 4.1), when an iteration is concluded



Breaking the Mould 37

Fig. 21 Samples of the images classified as external, generated throughout the course of the 30
evolutionary runs of the thirteenth iteration.

the images classified as external, evolved in the course of the iteration, are gathered
by the supervisor and added to the internal dataset. This is followed by several train-
ing attempts, which may imply removing images from the external dataset. Training
is concluded when no external images are classified as being internal. The existence
of internal images classified as external implies that the EC engine may revisit pre-
vious styles, but, when this occurs, the consequent increase of the number of images
of those styles present in the internal dataset will eventually force the classifier to
recognise such images as internal.

Table 6 presents a summary of pertinent statistics regarding the training phase. It
details, per iteration: the number of training attempts necessary to reach a classifier
without false internals (attempts); the total number of false externals identified in
the course of these attempts (False Externals); the number of false externals and
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internals after the training attempts are concluded (CS False External and CS False
Internal, respectively), which reflects the ability of the classifier that is going to be
used to guide the following iteration to discriminate between the sets; the size of the
external and internal datasets after training is concluded (Total External and Total
Internal).

As it can be observed, the training of the classifier for the first iteration required
two attempts. One external image, a black and white photograph of a detail of a
painting, was removed from the external dataset. Unfortunately, due to copyright
issues this and other external images cannot be replicated in the Chapter. After the
second attempt, no external images were classified as internal, but one internal im-
age, a black and white a star-like shape was deemed as external. The existence of
this image, and the difficulty in classifying it may, at least partially, explain the re-
currence of such theme in several iterations.

As previously mentioned, the first iteration generated a wide and varied number
of images. As a consequence, 30110 images have been added to the internal dataset
and the training of the classifier that guided the second iteration took a significantly
larger number of attempts; in total 68 external images have been removed. These
are, mostly, black and white engravings, and quite interestingly, some images of
mathematical objects, an artwork of M. C. Escher, which also has a mathematical
appearance, and a cartoon image. In what concerns the engravings, we believe that
these images were removed by two main reasons: (i) at the resolution that the FE
processes these images, they could easily be confused with images produced by the
EC engine; (ii) more importantly, these images tend to be atypical in relation to the
other images belonging to the external dataset, which makes them harder to classify.
In what concerns the images of mathematical objects, they seem to be computer
generated and, therefore, the confusion with the images produced by the AA is
natural. After the removal of these images the classifier is able to fully distinguish
between the two sets.

The same overall trend occurs in iterations 2 to 3, although the number of at-
tempts varies (4 and 7, respectively) the types of external images being excluded
is the same, including engravings, M. C. Escher artworks, black and white draw-
ings, photographs of sculptures, and minimalistic paintings (some of them by Kaz-
imir Malevich). The reasons for their misclassification are the same: they are either
atypically in relation with the rest of the external set or, confusable with computer
generated imagery, i.e., similar in style with the images the EC engine is prone to
create.

The fourth generation provoked few changes of the external dataset, removing
only 11 images. While 10 of these are black and white drawings, the remaining
one is notable since it is the first Mondrian removed from the external set. The
images produced in the fifth generation, provoked the exclusion of 18 images from
the external dataset, among which two by Matisse and two by M.C. Escher. The
most relevant issue concerning the training subsequent to the fifth iteration is that
the resulting classifier, that will guide evolution in the sixth iteration, misclassifies
28 internal images. This gives the EC engine a large degree of freedom to explore
previously visited imagery, which explains the burst of productivity observed in the
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sixth iteration. The exploitation of these “shortcomings” leads to the generation of
images that, once added to the internal dataset prevent their future exploitation.

In the seventh iteration, a total of 248 external images were removed from the
external dataset, these include: Black and white engravings, several M. C. Escher
artworks (14 to be precise), several Mondrian paintings, and numerous line draw-
ings. The eighth iteration, the least productive of all, provoked the removal of 31
external images, that tend to be of the same type as the ones previously identified.
After these removals, the classifier is, again, able to fully distinguish among the two
sets.

The ninth and tenth iterations caused the removal of few external images, 8 and
6, respectively. Confirming our previous observation that, although these iterations
were productive, they were not particularly fruitful in terms of the novelty of the
evolved imagery. As mentioned previously, although 692 images classified as exter-
nal were evolved in the tenth iteration, only 62 of these made it to the archive.

These numbers contrast with the ones of the eleventh and twelfth iteration where,
respectively, 47 and 63 were deleted. These include several Picasso, Dalı́, Paul Klee,
Mondrian, and Mark Rothko paintings, as well as several line drawings. The lack of
texture, at low resolution, appears to be the binding trait of these paintings.

As mentioned previously, in our opinion, the thirteenth iteration is different from
the others in the sense it corresponds to a pronounced shift in style. As such, it is
particularly interesting to inspect what kind of changes to the external dataset the
evolved imagery induces. In total 64 external images where removed. In previous
iterations most of the removed images were black and white drawings or engrav-
ings, this is not the case in the thirteenth generation; only ten of the deleted images
are black and white. The remaining images are Renascence style paintings (unfor-
tunately, they do not include the Mona Lisa), two Van Gogh paintings, three by
Kandisky and one by Miró. Quite interestingly, four paintings of Monet’s Waterloo
Bridge, a theme that is present in several of his artworks, were also removed. In this
case it was possible, and quite easy we might add, to identify the evolved images that
promote the confusion between internal images and these artworks. Some of them
are depicted in the bottom two rows of Figure 21, and we believe that the reader will
also understand why, in the eyes of the classifier, they can be easily confused.

6 Conclusions and Future Work

In this Chapter we presented an Artificial Artist that is characterised by its perma-
nent quest for novelty. The system is composed of two main modules: a generator
and an evaluator. The role of the generator is played by an expression based evolu-
tionary engine and that of the evaluator by an artificial neural network. The network
is trained to discriminate among the images produced by the evolutionary engine
and a set of famous artworks. The fitness of the images being evolved depends on
the output of the classifier, promoting the discovery of images that the network clas-
sifies as external. In each iteration of the framework we perform 30 evolutionary
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Table 6 Statistics regarding the training of the classifiers of each iteration in terms of: number of
attempts, false internals and externals during training, false externals after training, and size of the
internal and external and internal dataset after training.

During Training Cycles After Training Attempts
False False CS False CS False Total Total

Iteration Attempts External Internal Externals Internals Externals Internal
initial 2 1 1 1 0 26238 26239

1 7 23 68 0 0 26170 56349
2 4 52 20 3 0 26150 56599
3 7 41 67 3 0 26083 56794
4 6 7 11 3 0 26072 56972
5 2 40 18 28 0 26054 57029
6 2 7 18 3 0 26036 57462
7 3 11 248 3 0 25788 57593
8 3 23 31 0 0 25757 57624
9 3 11 8 5 0 25749 57739
10 3 126 6 5 0 25743 57801
11 8 145 47 4 0 25696 57927
12 6 99 63 7 0 25633 58028
13 4 88 64 3 0 25589 58380

runs. When these are concluded, the relevant misclassified images are added to the
set representing the production of the AA and the neural network is retrained.

For the above reasons, the approach promotes and explores a competition be-
tween generator and evaluator. From a theoretical standpoint – assuming that the
evolutionary engine and the artificial neural network are adequate and always able
to cope – the iterative expansion of the internal set leads, necessarily, to change since
the evolutionary algorithm is forced to explore new paths. Moreover, assuming that
a sufficiently large number of iterations is performed and that both systems cope,
the convergence to the aesthetic model (or models) implicitly defined by the set of
external images, which provides an aesthetic reference to the artistic production of
the AA, is bound to eventually occur.

To increase the diversity within evolutionary runs, and prevent their early conver-
gence and stagnation, we include mechanisms to promote the phenotype diversity
of the populations. This implies taking two criteria into account when performing
tournament selection: the adequacy of the image (which results from the output of
the neural network) and its diversity in relation to the images produced in the course
of the same run.

The analysis of the experimental results confirms the adequacy and potential of
the approach, revealing that the system is able to consistently produce novel imagery
of arguable, aesthetic merit. As such, we consider that we successfully developed a
creative system that is able to learn, create and innovate in an entirely autonomous
way.

The experimental results indicate that the images produced in the course of the
first iteration of the framework are similar to those produced by expression-based
interactive evolutionary art systems, where the role of the evaluator is played by a
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human. Analysing the results, we consider that the behaviour and production of the
system during the first twelve iterations can be considered as e-creative. We con-
sider that what happens during the thirteenth generation is significantly different
and goes beyond e-creativity. In this case, the system made a qualitative and sub-
stantial change both in terms of production and aesthetic model, thus breaking the
mould. We put forward the hypothesis that this behavior can be seen as a limited
case of h-creativity – in the sense that the system produced images that appear to be
different from those previously attained by evolutionary means – and of t-creativity,
in the sense that the changes appear to be related from deep changes in the aesthetic
model and, therefore, of a profound transformation of the search space.

Future work will focus on two main aspects: further improvement of the frame-
work, which includes additional testing, namely testing some of the hypothesis
raised. In what concerns the refinement of the framework, we consider that the
framework can only be fully assessed once it is pushed to its limits. We present
the results of thirteen iterations, but further ones are still being performed. Although
it is impossible to predict, the number of iterations necessary to provoke the col-
lapse of one of the modules is likely to be large. By taking the framework to the
point of collapse, we hope to gain additional insights regarding the limitations of
the evolutionary engine and, specially, of the classifier. Such insights will guide fu-
ture developments. The inclusion of a curator module, which would select from the
artistic production of the Artificial Artist a small set of artworks, would also be a
valuable addition to the framework. From a conceptual standpoint, this confers to
the system a degree of introspection and self-analysis that it currently lacks. From
a practical perspective, it would avoid the need of hand-picking representative ex-
amples, which may induce a bias in the presentation of the experimental results. In
what concerns testing, we are particularly interested in verifying if the images that
were evolved in the course of the first interaction are indeed similar, to humans and
computers, to those resulting from user-guided evolution. For that purpose, we are
gathering a set of user evolved images and we will test if humans and computers are
able to discriminate between them.
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