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ABSTRACT

This article presents MixMash, an interactive tool which streamlines the process of music mashup 
creation by assisting users in the process of finding compatible music from a large collection of audio 
tracks. It extends the harmonic mixing method by Bernardes, Davies and Guedes with novel degrees 
of harmonic, rhythmic, spectral, and timbral similarity metrics. Furthermore, it revises and improves 
some interface design limitations identified in the former model software implementation. A new user 
interface design based on cross-modal associations between musical content analysis and information 
visualisation is presented. In this graphic model, all tracks are represented as nodes where distances 
and edge connections display their harmonic compatibility as a result of a force-directed graph. 
Besides, a visual language is defined to enhance the tool’s usability and foster creative endeavour in 
the search of meaningful music mashups.
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INTRODUCTION

Mashup creation is a music composition practice strongly linked to various sub-genres of Electronic 
Dance Music (EDM) and the role of the DJ (Shiga, 2007). It entails the recombination of existing 
pre-recorded musical audio as a means of creative endeavour (Navas, 2014). This practice has been 
nurtured by the existing and growing media preservation mechanisms that allow users to access large 
collections of musical audio in digital format for their mixes (Vesna, 2007). However, the scalability 
of these growing audio collections also raises the issue of retrieving musical audio that matches 
particular criteria (Schedl, Gómez, & Urbano, 2014). In this context, both industry and academia 
have been devoting effort to develop tools for computational mashup creation, which streamline the 
time-consuming and complex search for compatible musical audio.

Early research on computational mashup creation, focused on rhythmic-only attributes, 
particularly those relevant to the temporal alignment of two or more musical audio tracks (Griffin, 
Kim & Turnbull, 2010). Recent research (Davies, Hamel, Yoshii, & Goto, 2014; Gebhardt, Davies, 
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& Seebe, 2016; Bernardes, Davies, & Guedes, 2018) has expanded the range of musical attributes 
under consideration towards harmonic- and spectral-driven attributes. The former aims to identify 
the degree of harmonic compatibility in musical audio, commonly referred to as harmonic mixing. 
The latter aims to identify the spectral region occupied by a particular musical audio track across the 
frequency range (e.g., the concentration of energy in low, middle, and high frequency bands), which 
can then guide the spectral distribution of the mix.

The interface design of early software implementation models adopts a one-to-many mapping 
strategy between a user-defined track and a ranked list of compatible tracks to show the results to 
the user (Mixed in Key, n.d.; Native Instruments, n.d.; Davies et al., 2014). Recently, Bernardes et al. 
(2018) proposed an interface design which adopts a many-to-many mapping strategy, which offers a 
global view of the compatibility between all tracks in a music collection and promotes serendipitous 
navigation (Figure 1). It represents each audio track in a collection as a graphical element in a navigable 
2-dimensional interface. Distances among these elements indicate harmonic compatibility and the 
additional graphic variables of these elements, such as colour and shape, indicate rhythmic and spectral 
information relevant to mashup creation. By exposing users to the compatibility between all tracks 
in a collection, this interface design aims to promote an overview of the relations between tracks.

In short, advances in computational mashup creation models, emphasize a gradual increase in 
the number of extracted data-driven attributes from musical audio and a global view of the audio 
collections through information visualization. This tendency acknowledges the subjective nature of 
the task and enhances the degree of personalization in the search for compatible audio in mashup 
creation. However, scalability of these audio collections now raises concerns at the usability level 
in many-to-many interface design (Bernardes, Davies, & Guedes, 2018; Maçãs et al., 2018). Figure 
1 b) highlights the three main limitations: (i) the clutter resulting from the superposition of graphic 
elements; (ii) the static representation of the tracks, which does not promote a finer exploration of 
particular dense areas; and (iii) the reduced number of existing graphic attributes in the visual tracks 
representation to depict musical audio content-driven information. From these limitations it was 
possible to define the three main goals for the present work: (i) the prevention of overlapping graphic 
elements and subsequent simplification of the visualisation; (ii) the creation of a system capable 
of dynamically adapt to the user interactions; and (iii) the complete representation of the tracks’ 
musical characteristics and their harmonic compatibility. To address the identified interface design 
limitations, it was adopted in Maçãs et al. (2018) a methodology based on the Three Cycle View of 
Design Science Research (Hevner, 2007). This methodology promoted the iterative implementation 

Figure 1. Screenshot of the visualisation of the original MixMash interface representing (a) 50 musical audio tracks and (b) 200 
musical audio tracks. Refer to Bernardes et al. (2018) for a detailed interpretation.
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of the visualisation model and the definition of the visual representations of the attributes of musical 
audio tracks.

The current paper extends Maçãs et al. (2018) in four aspects. First, it provides a detailed 
overview of computational mashup creation, from the early rhythmic-only alignments to the current 
multidimensional attribute spaces, which to the best of our knowledge has not been addressed 
elsewhere. Second, it expands the range of musical audio attributes under consideration, notably 
including timbre as a relevant dimension, following recent evidence on its significant impact on 
listening preference as listeners are able to reliably evoke changes in timbre towards their preferences 
(Dobrowohl, Milne, & Dean, 2019). Third, it details the signal processing underlying all metrics 
adopted to extract content-driven information from musical audio. Fourth, the force-directed algorithm, 
visual mappings and interactive interface are thoroughly described.

The remainder of the paper is organised as follows. The Background summarises the related 
work. MixMash: Compatibility Method describes the audio analysis methods that support a novel 
music visualisation system for assisting music mashup creation. The Methodology presents the 
development strategies for the visualisation model. MixMash: Visualisation Model presents a new 
approach for the visualisation of compatible musical audio tracks, a description of the established 
associations between graphic elements and musical audio attributes, and the interface design. The 
Conclusion states the conclusions of this work and its future directions.

BACKGROUND

The present section is divided into three parts, in which the authors present related work concerning 
the following topics: harmonic mixing methods, the visualisation methods applied to represent music, 
and the characterisation of force-directed graphs and their application in the visualisation of music 
collections.

Harmonic Mixing
There are four major harmonic mixing methods in the literature: key affinity, chroma vectors similarity, 
sensory dissonance minimisation, and hybrid (hierarchical) models. The initial three approaches 
focus on single harmonic attributes only, and the latter approach provides a hierarchical view over 
harmonic compatibility.

Key affinity is one of the earliest computational approaches to harmonic mixing. It has been 
proposed by industry (Mixed in Key, n.d., Native Instruments, n.d.) and is computed as distances in 
the Camelot Wheel or circle of fifths representation (Mixed in Key, n.d.). This approach enforces 
some degree of tonal stability and large-scale harmonic coherence of the mashup by privileging the 
use of the same diatonic key pitch set.

Chroma vectors similarity inspects the cosine distance between chroma vector representations 
of pitch-shifted versions of two given audio tracks as a measure of their compatibility (Davies et al., 
2014; Lee, Lin, Yao, Li, & Wu, 2015). The similarity is typically computed at the time scale of beat 
durations, thus privileging small-scale alignments over large-scale harmonic structure between audio 
slices with highly similar pitch class content.

Sensory dissonance models follow the same local and small-scale alignment strategy as chroma 
vectors similarity between pitch-shifted versions of overlapping musical audio, yet adopt a more 
refined metric of compatibility, which aims to minimize their combined level of sensory dissonance 
(Gebhardt, Davies & Seebe, 2016); a motivation well-rooted in the Western musical tradition by 
favouring a less dissonant harmonic lexicon.

Recently, a hybrid hierarchical model for harmonic mixing has been proposed by Bernardes et 
al. (2018). It combines previous approaches for (small- and large-scale) harmonic compatibility in a 
single framework. Furthermore, it proposes a novel interface design approach, which offers a global 



International Journal of Art, Culture and Design Technologies
Volume 8 • Issue 2 • July-December 2019

23

view over the harmonic compatibility of an entire music collection (many-to-many), beyond the 
existing one-to-many relationships between a user-defined track and an audio collection (Bernardes 
et al., 2018).

Music Visualisation
Historically, numerous artists have created audiovisual associations, later referred to as graphic notation 
and visual music. Pioneering works by Kandinsky, Pfenninger, Cage, Fischinger, and Whitney explore 
combinations of visual principles—mainly colour and shape—to emphasise the audiovisual experience 
(McDonnell, 2007). In the present work, the visual translation of a collection of musical audio tracks 
is approached from two different points of view: music visualisation and the visual representation 
of a large collection of musical audio tracks. Regarding music visualisation, some authors have tried 
to solve this problem by focusing on the geometry of musical structure (Bergstrom, Karahalios, & 
Hart, 2007), while others have focused on a solution based on mappings between a specific set of 
musical characteristics and some visual characteristics (Snydal & Hearst, 2005; Wattenberg, 2002; 
Sapp, 2001). For example, Wattenberg (2002) uses arc diagrams to connect sequences containing 
the same pitch content, revealing the structure of musical compositions. On the other hand, Sapp 
(2001) presented a multi-timescale visualisation of the harmonic structure and the key relations in a 
musical composition. Another experimental approach has been presented by Rodrigues, Cardoso, and 
Machado (2016), where a visualisation model is created to provide a perceptually relevant experience 
for the user. Overall, the aforementioned visualisations do not allow great modularity of data, often 
binding the visual clarity of each element and limiting the comparison of other musical characteristics.

Although visualisations of large collections of musical audio collections have already been 
addressed by some authors (Grill & Flexer, 2012; Hamasaki & Goto, 2013; Rauber, Pampalk, Merkl, 
2003; Schwarz and N. Schnell, 2009; Gulik, Vignoli, & Van de Wetering, 2004), it still is an area in 
need of great development. Grill and Flexer (2012), similarly to the work of Bernardes et al. (2018), 
developed a visualisation strategy capable of representing perceptual qualities from a large collection 
of sounds. Although their musical focus was in sound textures, they aimed at finding an intuitive and 
meaningful interface. For this purpose, they built an audiovisual language based on the cross-modal 
mechanisms of human perception. In this project, subjects were able to successfully associate sounds 
with the corresponding graphic representations. Hamasaki and Goto (2013), Gulik et al. (2004) and 
Schwartz and Schnell (2009) also proposed interactive visualisations of several layers of information; 
however, they do not represent the perceptual relevance of the musical characteristics at a visual level.

Force-Directed Graphs
The visualisation of graphs handles the representation of relational structures in data, aiding in 
the analysis, modelling, and interpretation of complex network systems (Meirelles, 2013). Graph 
visualisation is characterised by the existence of two main elements: (i) nodes, representing an 
entity (e.g., person, cell, machine); and (ii) edges, representing the relationship between nodes. Such 
models are often applied to large and complex datasets, which entails a set of problems related to 
performance and clutter. As the graphs grow in size, the required visual space and computational 
resources also increase (Herman, Melançon, & Marshall, 2000). To solve this, clustering techniques 
are applied by grouping similar nodes by their semantics and/or position on the graph. Through 
clustering, it is possible to reduce visual clutter and complexity, enhance clarity and performance, 
and create a simplified overview of the network’s structure (Herman et al., 2000; Kimelman, Leban, 
Roth, & Zernik, 1994).

The positioning of nodes in space can be defined through a different set of graph layouts, such 
as arc diagrams, treemaps, circular, and force-directed layouts. In this paper, the latter is adopted. 
Force-directed graphs are based on a physical system that organises the network through forces of 
repulsion and attraction applied continuously to each node. This technique facilitates the visual 
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interpretation of the inherent structure of the data, improving the analysis and comprehension of the 
relations within complex networks (Jacomy, Venturini, Heymann, & Bastian, 2014).

Force-directed graphs are used in a variety of areas, such as biology, medicine, literature, 
sociology (Enright and C. A. Ouzounis, 2001; Goh et al., 2007, Chen, 2006; Heer and Boyd, 2005; 
Gilbert, Simonetto, Zaidi, Jourdan, & Bourqui, 2011; Fu et al., 2007), but also in the visualisation 
of music collections (Vavrille, n.d.; Gibney, n.d.). In the work of Muelder, Provan, and Ma (2010), 
a force-directed layout was applied to visualise music libraries. Each piece of music represents a 
node, positioned depending on its similarities with other musical audio tracks (e.g., same artist). 
Songrium (Hamasaki & Goto, 2013), is a music browsing service that visualises relations among 
original songs and their derivative works. Each node represents a video-clip and each edge connects 
an original work to its derivatives. In addition, songs with similar moods get stronger forces, thus 
are positioned closer together.

The current work expands the state-of-the-art by applying a force-directed graph to the mashup 
creation process. To enable the user to analyse the graph and relate musical audio tracks from large 
collections, the harmonic compatibility metrics are applied to the forces of the graph nodes. This 
improves the visual separation of distinct musical audio tracks, which can have a positive impact on 
user creativity (Henry, Fekete, & McGuffin, 2007).

MIXMASH: COMPATIBILITY METHOD

MixMash is a software application which aims to assist users in finding musical mashups in the 
context of mashup creation. It builds on metrics and methods presented in Bernardes et al. (2018) 
and expands the state-of-the-art of harmonic mixing by providing a greater amount of relevant 
information to the process of music mashup. Its main novelty lies in a hierarchical harmonic mixing 
method, which includes metrics for both small- and large-scale structural levels, i.e., local (e.g., beats 
or phrases) and global (e.g., large sections or overall musical mashup) harmonic alignments between 
musical audio tracks, respectively. Moreover, this method considers three additional dimensions that 
can help users defining the compatibility of musical audio tracks and remaining compositional goals 
in terms of rhythmic (onset density), spectral (region) and timbral qualities.

To promote an intuitive search for compatible tracks in a music collection, a many-to-many 
mapping strategy was previously introduced in the interface design. This design opposes the ranked 
track list to a user-defined track, adopted in previous systems harmonic mixing software (Mixed 
in Key, n.d.; Native Instruments, n.d.), which is (i) inefficient computationally, as it recomputes 
intensive audio signal analysis every time a different audio track is selected as target, and (ii) limited 
in promoting creative endeavor and serendipity (Bernardes et al., 2018). A flexible many-to-many 
mapping strategy was allowed by the adoption of novel signal processing methods for small- and 
large-scale harmonic compatibility metrics in a confined spatial configuration. This method is at 
the basis of the MixMash visually-driven interface strategy. The signal processing methods used to 
compute these harmonic compatibility metrics, followed by the additional rhythmic, spectral, and 
timbral attributes are described next.

Small- and Large-Scale Harmonic Compatibility
MixMash adopts the perceptually-motivated Tonal Interval Space (Bernardes, Cocharro, Caetano, 
Guedes, & Davies, 2016) for representing the harmonic content of musical audio tracks. Each track 
exists as a 12-dimensional (12-D) Tonal Interval Vector (TIV), T k( ) , whose locations represent 
unique harmonic configurations. An audio track TIV, T k( ) , is computed as the weighted Discrete 
Fourier Transform (DFT) of an L

1
 normalized chroma vector, c n( ) , such that:
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comparison of music at different hierarchical levels of tonal pitch (Bernardes et al., 2016). To represent 
variable-length audio tracks, the chroma vectors, c n( ) , resulting from 16384 sample windows analysis 
at a 44.1 kHz sampling rate (≈ 372 ms) with 50% overlap are accumulated across the track duration.

From the audio tracks TIVs, two metrics that capture the harmonic compatibility between TIVs 
to be mixed are computed. Of note is the split between small- and large-scale harmonic compatibility, 
which roughly correspond to the sound object and meso or macro time scales of music, respectively. In 
other words, the small scale denotes the basic units of musical structure, from notes to beats, and the 
large scale inspects the structural levels between the phrase and the overall musical piece architecture 
(Roads, 2001). In the context of the current work, the first aims mostly at finding good harmonic 
matches between the tracks in a collection, and the second in guaranteeing control over the overall 
harmonic structure of a mix, i.e., the tonal changes at the key level across its temporal dimension.

Equation 2 computes the small-scale harmonic compatibility, S
i p,

, between two given audio 
tracks, i  and p , represented by their TIVs, T k

i ( )  and T k
p ( ) , as the combination of two indicators: 

perceptual relatedness, R
i p,

, (Equation 3) and dissonance, D
i p,

, (Equation 4). The smaller the 
perceptual relatedness, R

i p,
, the greater the affinity between two given tracks, as shown by Bernardes 

et al. (2016). The smaller the degree of dissonance, D
i p,

, the greater their compatibility, as shown 
by the empirical data in Gebhardt et al. (2016).

S R D
i p i p i p, , ,
= ⋅ 	 (2)

where:

R T k T k
i p

k
i p,

= ( )− ( )
=
∑
1

6 2
	 (3)

D
aT k a T k

a a w ki p

i i p p

i p

,
= −

( )+ ( )
+ ( )












1 	 (4)

a
i
 and a

p
 are the amplitudes of T k

i ( )  and T k
p ( ) , respectively.
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Large-scale harmonic compatibility, L
i p,

, is a derivation of the perceptual relatedness, R
i p,

, 
indicator, as it expresses the relatedness of a given track TIV from the m = 24  major and minor key 
TIVs, and can be interpreted as the degree of association of a given track to a musical key (Bernardes, 
Davies, & Guedes, 2017). As such, the large-scale harmonic compatibility can be computed by 
interpreting T k

i ( )  and T k
p ( )  in Equation 3 as a track TIV and a key TIV, respectively. The m = 24� 

major and minor keys TIV are computed by adopting the 12 shifts of the C major and C minor keys 
chroma vectors, c n( ) , shown in Figure 2, in Equation 1.

Rhythmic, Spectral and Timbral Attributes
Three additional descriptions of rhythmic, spectral, and timbral audio track attributes are computed. 
They are subsidiary of the primary small- and large-scale harmonic compatibility metrics and aim to 
refine the search among compatible audio tracks. Next, a description of the metric and their musical 
interpretation in the context of music mashup creation, most notably in MixMash, is provided. Readers 
can refer to Brent (2010) for a comprehensive description of their computation.

Each audio track’s rhythmic content is described by its note onset density, O
i
, of a musical track 

i , and is computed by a threefold stage. First, a spectral flux function for each track is computed, 

Figure 2. Sha’ath’s (2011) key profiles for the C major and C minor keys
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using the timbreID library (Brent, 2010) within Pure Data. This function describes the amount of 
novelty from a windowed power spectrum representation of the audio signal (window size ≈ 46 ms 
with 50% overlap). Second, the peaks from the function above a user-defined threshold, t , are 
extracted and interpreted as note onset locations. Prior to the peak detection stage, a bi-directional 
low-pass IIR filter, with a cut-off frequency of 5 Hz, was applied to avoid spurious detections. The 
note onset density, O

i
, is then computed as the ratio between the number of onsets and the entire 

duration of the track (in seconds).
An indicator of the spectral region, B

i
, of a musical track i , is given by the centroid of the 

accumulated Bark spectrum, b,  across the duration of an audio track (Equation 5). The Bark spectrum, 
b , is computed by the timbreID library (Brent, 2010), which balances the frequency resolution across 
the human hearing range, by warping a power spectrum representation to the 24 critical bands, h , 
of the human auditory system (i.e., Bark bands).

B
b h

b
i

h h

h h

=
⋅

=

=

∑
∑
�

�
1

24

1

24
	 (5)

where b
h

 is the energy of the Bark band h . The B
i
 indicator can range from 1 to 24 Bark bands.

Following Pachet and Aucouturier (2004), the timbral similarity, C
i p,

, between two tracks, i  
and p , is given by the cosine similarity between their mel-frequency spectrum coefficients (MFCC), 
M
i
 and M

p
 (Equation 6). MFCC vectors, M , include 38 components resulting from applying a 

100 mel-scaled filter bank spacing in the timbreID library (Brent, 2010).

C
M M

M Mi p

i p

i p
,
=

⋅
	 (6)

The timbral similarity metric, C
i p,

, ranges between 1 and -1, which corresponds to tracks with 
equal timbre and the most dissimilar timbre, respectively.

METHODOLOGY

The methodology used for the development of the present work is based on A Three Cycle View of 
Design Science Research (Hevner, 2007). This methodology facilitates the development of interactive 
applications and promotes quicker iterations between the several phases of the application development, 
such as the visualisation implementation, the visual component’s validation, and the guidelines for 
its refinement (Figure 3).

The present methodology is divided into three parts: The Relevance Cycle, the Design Cycle, and 
the Rigor Cycle. Firstly, in the Relevance Cycle, the research context is defined. The requirements and 
problems from the previous system were highlighted, leading to the definition of the key objectives 
for the new system (see Introduction).

Secondly, in the Design Cycle, the new system was developed through a loop of research between 
the implementation of the visualisation components and their assessment. This iterative process 
promotes the analysis and improvement of previous steps and the experimentation and refinement of 
different approaches. In particular, this cycle was divided into four main phases: (i) the data analysis, 
which is related to the computation of the harmonic compatibility matrix (see MixMash: Compatibility 



International Journal of Art, Culture and Design Technologies
Volume 8 • Issue 2 • July-December 2019

28

Method); (ii) the design of the visualisation model, which relates to the iterative process between 
definition of the graphical variables to represent the musical characteristics and the visualisation 
model and its validation with experts in Information Visualisation; (iii) the implementation of the 
model, where the ForceAtlas2 algorithm was studied and implemented; and (iv) the evaluation of the 
system. The definition of such phases is aligned with the methodologies proposed by Wilkins (2003) 
and Fry (2004) from the Information Visualisation field. The validation of the system was conducted 
through an initial informal evaluation (Lam et al., 2011), in which the visualisation components 
were discussed between the authors and external experts from the visualisation field to assess the 
visualisation intuitiveness and usability.

Finally, the Rigor Cycle connects with the central Design Cycle through an iterative exchange of 
knowledge, both from scientific foundations as from the visualisation validation. This final cycle is 
characterised by fine-tuning the visualisation model through knowledge acquired from the evaluations 
and related work.

MIXMASH: VISUALISATION MODEL

The visual representation of the relationships between audio tracks were guided by three objectives (see 
Introduction): (i) the implementation of an adaptive visualisation model (see subsection Force-directed 
System); (ii) the distinction between the different sound characteristics of the several musical audio 
tracks (see subsection Graphic Variables and Audiovisual Mappings); and (iii) the conception and 
implementation of a simple and intuitive interface (see subsection Interface Design and Interaction).

To improve the scalability, interaction, and visualisation of the interface previously presented in 
Bernardes et al. (2018), a force-directed graph layout based on the ForceAtlas2 algorithm (Jacomy, 
Venturini, Heymann, & Bastian, 2014) was implemented. This visualisation technique enabled the 
creation of an emergent, organic, and appealing environment for the user. Furthermore, it improves 
the readability of the previous interface of Bernardes et al., by preventing overlaps, arranging the 
tracks in space by their harmonic compatibility, and by enabling the user to explore and interact with 
tracks of interest easily. Additionally, to characterise, distinguish and improve the readability of the 
tracks and to augment the graphic attributes that represent and distinguish the tracks, a graphical 
representation for the musical audio tracks was also studied and applied.

To enable the user to filter the track collection according to harmonic, rhythmic, spectral, and 
timbral attributes, a graphic interface was also implemented (Figure 4). With the force-directed 
algorithm, the user can detect the most harmonically compatible tracks through their visual proximity 
in the canvas. This is caused by the forces applied to each track, which depend directly on the harmonic 
compatibility. However, the user can manipulate the impact of the forces of attraction and repulsion 

Figure 3. The Three Cycle View of design science research
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between tracks, easing the comprehension of more cluttered zones. Additionally, highly compatible 
tracks are clustered to reduce undesired clutter. These clusters are visually distinguished from the 
tracks and can be expanded or withdrawn through interaction. The force-directed algorithm and each 
component of the interface are described in more detail in the following subsections.

Force-Directed System
The ForceAtlas2 algorithm (Jacomy, Venturini, Heymann, & Bastian, 2014) can be characterised by 
its ability to place the nodes within a graph according to their connections weight. The algorithm 
simulates a physical system that spatially arranges the network’s nodes in an automatic form. The 
nodes have forces of repulsion to prevent them from overlapping, and the edges between nodes apply 
forces of attraction to bring the nodes closer. These edges have different force values according to the 
similarity between nodes (e.g., their harmonic compatibility). By applying continuously, the different 
forces, the graph converges to a balanced state that aids the semantic interpretation of the network. 
The ForceAtlas2 algorithm was fully implemented, thus for a detailed description of the algorithm, 
refer to Jacomy et al. (2014).

In this project, two types of nodes are defined: the ones representing each musical audio track 
in the collection, t, and the ones representing each one of the m = 24 major and minor musical keys. 
The visual distinction between the nodes is discussed at length in subsection Graphic Variables and 
Audiovisual Mappings. By representing the musical keys, m, through nodes, and consequently their 
relation to the musical audio tracks, the most compatible key of each musical audio is indicated. This 
enables the user to visually detect the tracks and sets of tracks more harmonically compatible with 
the different keys and relate tracks according to this compatibility.

The weight of the edge between two nodes is mapped according to the compatibility value in 
the t + m square matrix. This square matrix is computed through a given a user-defined collection 
of t audio tracks and m = 24 major and minor keys and expresses the metrics for small-scale (Si,p) 
and large-scale (Li,p) scale harmonic compatibility (see MixMash: Compatibility Method). As in 
ForceAtlas2, the weight defines the force of attraction between nodes. For this project, the more 

Figure 4. Screenshot of the visualisation interface. On the left, the interaction panel; at the centre, the graph.
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compatible the nodes, the higher the force of attraction, and consequently the closer the nodes. A 
force of repulsion is applied to all nodes to avoid them to overlap. These forces are applied to the 
nodes independently of their type, facilitating the interpretation of the graph and interaction when 
searching for harmonically compatible tracks, t.

Two mechanisms were implemented to enable the user to refine the graph layout: (i) a connectivity 
threshold; and (ii) musical key restriction. Both mechanisms can be explored by the user through 
the left panel of the interface (Figure 4). Through the connectivity threshold, the user can define a 
threshold value to determine whether two nodes are connected. For each node, the connections to 
other nodes only occur when their harmonic compatibility value is lower than the predefined value. 
The second mechanism limits the connections between nodes and keys. Through this mechanism, 
the user can define whether a track is connected to all compatible musical keys or only to its most 
probable key. This mechanism is intended to reduce clutter and enhance the association between 
keys and musical audio tracks.

As the number of tracks in a collection can vary greatly, an agglomerative clustering algorithm 
(Rokach & Maimon, 2005) is implemented to prevent cluttered graphs. This algorithm aggregates 
the nodes by their compatibility values. A minimum number of three nodes per cluster is required 
to prevent small clusters, which wouldn’t enhance the clarity of the visualisation. Each cluster is 
also connected to the compatible nodes and clusters, thus exposing their harmonic relation to the 
neighbourhood elements. These compatible nodes are retrieved from the list of compatible nodes of 
each node within the cluster. If an outer node is connected to an inner node of a cluster, a connection 
between the node and the cluster is established. The attraction force between a cluster and a compatible 
node is equal to the average force of all forces between inner nodes and the connected outer node 
(as depicted in Figure 5).

As in ForceAtlas2, all nodes gravitate around the centre of the canvas. This effect results from 
the attraction force applied to all nodes towards the canvas centre point. The gravitational force is 
significantly weaker than the others and, as it is applied equally to all nodes, it does not interfere with 
the distance between nodes, and only prevents the nodes from dispersing in the canvas.

By default, the musical key nodes are positioned by the force-directed layout, depending on 
their relations with the other tracks. This causes the key nodes to have different positions at every 
run, which can create some user fatigue while searching for a specific musical key and its connected 
tracks. To facilitate this search, a mechanism that positions the key nodes according to the Camelot 
Wheel or circle of fifths representation was implemented (Figure 6). With this mechanism, all musical 
keys have a fixed position in the canvas, and only the track nodes are influenced by the attraction and 
repulsion forces of the algorithm.

Figure 5. Scheme of the forces representing outer and inner nodes of a cluster. The forces between clusters and nodes (b) are 
computed through the average force between the inner and outer nodes (a). The lines depict compatible nodes.
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Graphic Variables and Audiovisual Mappings
The visual representation of data elements strongly impacts the visualisation of large amounts of 
data. In this section, the adopted visual representation of musical concepts is discussed in light of a 
carefully designed interactive visualisation.

The development of the visualisation model complies with the following guidelines and 
subsequent challenges: (i) to each track there is a corresponding visual representation based on 
its musical attributes, creating a consistent visual feedback between similar tracks; (ii) perceptual 
foundations are used to guide the aesthetical choices concerning visual representation of tracks; (iii) a 
natural and intuitive interaction with the tool is promoted allowing the user to easily navigate among 
tracks to create his/her mashup.

For each track, the spectral region, Bi, onset density, Oi, and timbral similarity, Ci,p, are mapped 
to a corresponding visual variable. Additionally, both spectral region, Bi, and onset density, Oi, are 
subdivided into three levels of magnitude, allowing a more accurate interpretation and analysis of 
musical data.

The spectral region attribute, Bi, is split into high, medium, and low regions, and its corresponding 
visual representation is primarily characterised by shape. Although there is a tendency to associate 
colour with pitch levels in similar audiovisual mapping problems (McDonnell, 2007; Mudge, 
1920; Ward, Huckstep, & Tsakanikos, 2006), it has also been proposed that the use of shape or 
monochrome colour is more efficient than hue to distinguish several layers of information for the 
human eye (Arnheim, 1974; Chatterjee, 2013). Based on such studies (Arnheim, 1974; Chatterjee, 
2013; Ramachandran 2003; Spence, 2011), high-frequency regions of the spectrum are associated 
with sharp contours (triangle), low frequencies were associated with rounded contours (circle), and 
medium frequencies are associated with neutral contours, achieved through the use of straight lines 
of the rectangle (Figure 7a). Colour hue, is used to reinforce these associations. Higher frequencies 
are related to a cold colour (blue and low frequencies to a warm colour (orange; see Figure 7c).

Figure 6. Fixing the keys in the circle of fifths. By clicking on the Fix Tones button, all nodes that represent a key are fixed on the 
canvas according to their positioning in the circle of fifths.
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Onset density, Oi, is split into high, medium and low-density levels, and then conveyed in the 
visual domain as a parameter of shape-filling, as it relates to the number of notes in a track. Low 
density corresponds to an empty shape (only contours visible), medium density to a half-filled shape, 
and high density to a completely filled shape (Figure 7b).

Timbre is often referred to in the literature as the colour of instruments (Mudge, 1920; Ward et 
al., 2006). Inspired by this definition, timbral similarity, Ci,p, is conveyed in the visual domain through 
coloured circles in the top side of the nodes, which are only visible when a certain node is selected. The 
choice of colours does not rely on any type of association, and for this reason, are randomly selected 
from a predefined set of colours. They simply aim to provide a clear distinction between different 
timbres when multiple timbres are selected. By selecting one track node, a coloured circle and a line 
connecting the former to the node are drawn (Figure 8a). Then, all tracks with similar timbres will 
also gain a circle coloured with the same colour code as the clicked one (Figure 8b). If a track node 
is similar to multiple timbres, multiple coloured circles will be drawn over the node (Figure 8c).

The visual distinction between nodes representing musical audio tracks and keys is highlighted 
by the coloured outline of the key nodes. The latter has a red outline and include the typographic 
representation of the key’s tonic pitch, which allows the direct reading of the key (Figure 4).

The visual representation of a cluster is defined by the respective inner nodes to avoid the use of 
additional (and potentially, more complex) visual elements. More specifically, all nodes that belong to 
a cluster are represented and positioned within a circular shape outlined with black dots. The size of 
the circular shape depends on the number of elements within the cluster (Figure 9). As such, the user 
can differentiate the clusters from the nodes, and, simultaneously, get an overview of their inner nodes.

Figure 7. Audiovisual mappings: (a) Shape—Spectrum Frequency from low frequencies (circle) to higher ones (triangle); (b) Object 
Fill—Onset Density. Empty shapes correspond to low density, half-filled shapes to normal/mid density, and full shape corresponds 
to high density; (c) Colour—Spectrum Frequency from low frequencies (orange) to higher ones (blue).

Figure 8. Timbre representations. (a) One track is selected and there are no other tracks with similar timbres. (b) One track is 
connected timbre wise to the selected track. (c) The track can have more than one timbre similarities (d) The track is not related 
to any of the selected tracks.
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Interface Design and Interaction
MixMash enables the user to explore the graph by allowing him/her to (i) listen and select individual 
node tracks of interest (Figures 10a, 10b, 10c); (ii) highlight nodes within clusters (Figure 10d) or 
according to their sound characteristics (Figure 11); (iii) modify its organisation (e.g., fixing the keys 
according to the circle of fifths) (Figures 10e, 10f); (iv) change how the track nodes connect to the 
key nodes (Figures 10g, 10h); (v) change the connection threshold between nodes; and (vi) adjust 
the forces of attraction and repulsion. This is all accessible through an interactive panel on the left 
side of the interface (Figure 4) and through mouse interactions. A video regarding these interactions 
and possibilities can be accessed at https://vimeo.com/270076175.

Once the system has been initialised, the user will see the nodes and clusters establishing their 
position in the centre of the canvas. In addition to the functionalities present in the left panel, the user 
can interact with the visualisation through mouse interactions. The user can zoom and pan the graph 
to view more details. Then, the user can interact with the tracks individually. To listen to the tracks, 
the user has to move the mouse over each node. To select a node, the user needs to left-click. With this 
action, he/she will listen again to the track sound. To view the compatible timbres of a certain track, 
the user has to right-click. By doing so, the closest tracks (in terms of timbre) are complemented with 
a coloured circle as explained in subsection Graphic Variables and Audiovisual Mappings. Interactions 
with the clusters were also implemented. To expand a cluster, the user has to left-click over it. All 
nodes inside the cluster will be affected by the forces according to the ForceAtlas2 algorithm, and 
a doughnut shape figure will be made visible. The doughnut shape, positioned in the centre of all 
corresponding nodes, behaves like a button and, when clicked, it closes the cluster. If the user does 
mouseover on this latter shape, all the nodes belonging to the cluster will be highlighted through a 
magenta stroke (Figure 10d). Finally, all the tracks that have no similarity to others will be placed at 
the bottom right side of the window.

Figure 9. Representation of two clusters with different sizes

https://vimeo.com/270076175
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Additional keyboard interactions were implemented. When listening to an audio track, the user 
can click the S key on the keyboard, and the music will stop playing. By continuously selecting nodes, 
the user is saving the tracks, which can be heard at the same time by using the space key.

Overall, this set of interaction techniques are important to achieve an intuitive and meaningful 
interactive visualisation tool in the context of musical mashup creation. With this, the authors aim to 
enhance the understanding of the track’s harmonic compatibility and foster user creativity, by allowing 
the user to efficiently explore a large musical audio collection towards specific composition goals.

Figure 10. Visual representation of the interactions with the model: (a) no selection, (b) mouse over, (c) mouse click, (d) clusters’ 
nodes highlight, (e) force-directed layout, (f) circle of fifths layout, (g) connections to all compatible keys, (h) connection to the 
most compatible key (1st tone option)
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CONCLUSION

The authors proposed a novel visualisation system which relies on forces of attraction and repulsion 
to position the tracks depending on their harmonic compatibility. The visualisation development was 
guided by a methodology proposed by Hevner (2007), which consists of three cycles and lead to 
clear and consistent interactions between the music mashup and the information visualisation model.

Regarding the force-directed algorithm, controlled levels of attraction and repulsion allow the 
reduction of clutter in the visualization of large music collections (of roughly 50 musical audio tracks 
or more). Clutter was also minimized by the adoption of clustering techniques, which enhance the 
visualization of combined hierarchical levels of harmonic compatibility in the same representation 
and the user-control over clustering quality (i.e., distance threshold).

A fluid re-organization of the visualization was achieved by dragging connected elements in the 
interface, thereby enhancing highly dense areas of particular interest to the user. On the other hand, 
the Fix Tones strategy explores a static visualization of the musical audio collection by fixing the 
location of keys in the Tonal Interval Space. The resulting representation is one of the most familiar 
maps of tonal regions in Western music.

The authors were able to expand the number of content-based musical audio attributes under 
consideration to cover both rhythmic, harmonic, spectral, and timbral attributes. The development 
of a specific graphic representation supported the music visualisation by providing a perceptual 
association, and therefore, the intuitive association between visual and musical attributes. In general, 
the presented visual solution was able to promote a more fluid visualisation. However, it still has 
some limitations due to the high number of samples that are being displayed in real time to the user.

As future work, the authors intend to improve the clustering algorithm by giving the user the 
possibility to cluster nodes according to different audio content-based attributes, e.g., key, onset 
density, spectral region or timbral similarity. To improve readability, different solutions to the nodes’ 
size depending on their compatibility will be studied, e.g., nodes with higher compatibility, grow 
in size, emphasising highly compatible tracks. As the number of tracks can increase depending on 
the user, a fish-eye zoom technique will be implemented so the user can have detail in certain areas 

Figure 11. Frequency highlight by color
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without losing context of the surrounding tracks. Finally, a timeline will be designed, so that users 
can arrange selected tracks in time, thus enabling the composition of musical mashups with complex 
temporal structures.
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ENDNOTE

1 	 In the audio domain, 12-element chroma vectors report the energy of the twelve pitch classes, i.e., all 
chromatic notes of the equal-tempered scale, by wrapping the spectral energy content of an audio signal 
into a single octave.
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