
+PÌP /VOP (POÎBMWFT $PTUB $BWBMFJSP $PSSFJB

&WP MV U JPOBS Z $PNQVUBU JPO
GPS $ MBT T JmFS "T TFT TNFOU

BOE *NQSPWFNFOU

%PDUPSBM UIFTJT TVCNJUUFE UP UIF %PDUPSBM 1SPHSBN JO *OGPSNBUJPO 4DJFODF BOE 5FDIOPMPHZ
TVQFSWJTFE CZ "TTJTUBOU 1SPGFTTPS 'FSOBOEP +PSHF 1FOPVTBM .BSUJOT .BDIBEP

BOE QSFTFOUFE UP UIF %FQBSUNFOU PG *OGPSNBUJDT &OHJOFFSJOH PG UIF
'BDVMUZ PG 4DJFODFT BOE 5FDIOPMPHZ PG UIF 6OJWFSTJUZ PG $PJNCSB�

.BZ ����





&WPMVUJPOBSZ $PNQVUBUJPO GPS $MBTTJmFS
"TTFTTNFOU BOE *NQSPWFNFOU

" UIFTJT TVCNJUUFE UP UIF 6OJWFSTJUZ PG $PJNCSB
JO QBSUJBM GVMmMNFOU PG UIF SFRVJSFNFOUT GPS UIF

%PDUPSBM 1SPHSBN JO *OGPSNBUJPO 4DJFODF BOE 5FDIOPMPHZ

CZ

+PÌP /VOP (POÎBMWFT $PTUB $BWBMFJSP $PSSFJB
DM+Q`!/2BXm+XTi

%FQBSUNFOU PG *OGPSNBUJDT &OHJOFFSJOH
'BDVMUZ PG 4DJFODFT BOE 5FDIOPMPHZ

6ćĂďþċČĂčĒ Ĉÿ $ĈĂĆûċú

$PJNCSB .BZ ����



'JOBODJBM TVQQPSU CZ 'VOEBÎÌP QBSB B $JÑODJB F B 5FDOPMPHJB
4'3)�#%������������
&WPMVUJPOBSZ $PNQVUBUJPO
GPS $MBTTJmFS "TTFTTNFOU BOE *NQSPWFNFOU
¥���� +PÌP /VOP (POÎBMWFT $PTUB $BWBMFJSP $PSSFJB

!



5IJT EJTTFSUBUJPO XBT QSFQBSFE VOEFS UIF TVQFSWJTJPO PG

'FSOBOEP +PSHF 1FOPVTBM .BSUJOT .BDIBEP
"TTJTUBOU 1SPGFTTPS PG UIF %FQBSUNFOU PG *OGPSNBUJDT &OHJOFFSJOH

PG UIF 'BDVMUZ PG 4DJFODFT BOE 5FDIOPMPHZ
PG UIF 6OJWFSTJUZ PG $PJNCSB





“Where there’s a will, there’s a way.”

TB, nani o towazu Inês.

Aos meus Pais.





A B S T R A C T

Typical Machine Learning (ML) approaches rely on a dataset and a model to solve prob-
lems. For most problems, optimisation of ML approaches is crucial to attain competitive
performances. Most of the effort goes towards optimising the model by exploring new
algorithms and tuning the parameters. Nevertheless, the dataset is also a key part for
ML performance. Gathering, constructing and optimising a representative dataset is
a hard task and a time-consuming endeavour, with no well-established guidelines to
follow. In this thesis, we attest the use of Evolutionary Computation (EC) to assess and
improve classifiers via synthesis of new instances.

An analysis of the state of the art on dataset construction is performed. The quality
of the dataset is tied to the availability of data, which in most cases is hard to control. A
throughout analysis is made about Instance Selection (IS) and Instance Generation (IG),
which sheds light on relevant points for the development of our framework.

The Evolutionary FramEwork for Classifier assessmenT and ImproVemEnt (EFECTIVE)
is introduced and explored. The key parts of the framework are identified: the Classifier
System (CS) module, which holds the ML model that is going to be assessed and im-
proved; the EC module responsible for generating the new instances using the CS mod-
ule for fitness assignment; and the Supervisor, a module responsible for managing the
instances that are generated. The approach comes together in an iterative process of
automatic assessment and improvement of classifiers.

In a first phase, EFECTIVE is tested as a generator, creating instances of a particu-
lar class. Without loss of generality, we apply the framework in the domain of image
generation. The problem that motivated the approach is presented first: frontal face
generation. In this case, the framework relies on the combination of an EC engine and
a CS module, i. e., a frontal face detector, to generate images of frontal faces. The re-
sults were revealing in two different ways. On the one hand, the approach was able
to generate images that from a subjective standpoint resemble faces and are classified
as such by the classifier. On the other hand, most of the images did not resemble
faces, although they were classified as such by the classifier module. Based on the
results, we extended the approach to generate other types of object, attaining similar
results. We also combined several classifiers to study the evolution of ambiguous im-
ages, i. e. images that induce multistable perception. Overall, the results suggest that
the framework is viable as a generator of instances and also that these instances are
often misclassified by the CS module.

Building on these results, in a second phase, a study of EFECTIVE for improving
the performance of classifiers is performed. The core idea is to use the evolved in-
stances that are generated by the EC engine to augment the training dataset. In this
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phase, the framework uses the Supervisor module to select and filter the instances
that will be added to the dataset. The retraining of the classifier with these instances
completes an iteration of the framework. We tested this pipeline in a face detection
problem evolving instances to: (i) expand the negative dataset; (ii) expand the positive
dataset; and (iii) expand both datasets in the same iteration. Overall, the results show
that: expanding the negative dataset, by adding misclassified instances, reduces the
number of false alarms; expanding the positive dataset increases the number of hits;
expanding positive and negative datasets allows the simultaneous reduction of false
alarms and increase of hits. After demonstrating the adequacy of EFECTIVE in face de-
tection, we tested the framework in a Computational Creativity (CC) context to create
an image generation system that promotes style change, obtaining results that further
demonstrate the potential of the framework.
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R E S U M O

As abordagens típicas de Aprendizagem de Máquina (AM) dependem de um conjunto
de instâncias e de um modelo para resolver problemas. Para a maioria dos problemas,
a otimização das abordagens AM é crucial para obter desempenhos competitivos. A
maior parte do esforço vai no sentido de otimizar o modelo através da exploração de
novos algoritmos e do ajuste de parâmetros. No entanto, o conjunto de instâncias é
também parte fundamental no desempenho de abordagens de AM. Reunir, construir
e otimizar um conjunto de instâncias representativo é uma tarefa difícil e morosa, sem
diretrizes bem estabelecidas. Nesta tese, atestamos o uso de Computação Evolucio-
nária (CE) para avaliação e aperfeiçoamento de classificadores através da síntese de
novas instâncias.

Efetuou-se uma análise do estado da arte sobre construção de conjunto de instâncias.
A qualidade do conjunto de instâncias está ligada à disponibilidade de dados que, na
maioria dos casos, é difícil de controlar. Uma análise completa é feita sobre a seleção
e geração de instâncias, o que esclarece pontos relevantes para o desenvolvimento do
nosso sistema.

O EFECTIVE (Sistema Evolucionário para a Avaliação e Melhoria de Classificadores) é
introduzido e explorado. Os componentes principais do sistema são: o módulo sistema
de classificação (SC), que contém o modelo de AM que será avaliado e melhorado; o
módulo de CE responsável por gerar as novas instâncias usando o módulo SC para
atribuição da aptidão; e o Supervisor, um módulo responsável por gerir as instâncias
geradas. A abordagem consiste num processo iterativo de avaliação automática e apri-
moramento de classificadores.

Numa primeira fase, o EFECTIVE é testado como gerador, criando instâncias de uma
classe em particular. Sem perda de generalidade, aplicamos o sistema no domínio
da geração de imagens. O problema que motivou a abordagem é apresentado em
primeiro lugar: geração de imagens de faces frontais. Neste caso, o sistema depende
da combinação de um motor de CE e de um módulo SC, i. e., um detector de faces
frontais, para gerar imagens de faces frontais. Os resultados foram reveladores de
duas maneiras distintas. Por um lado, a abordagem foi capaz de gerar imagens que,
de um ponto de vista subjectivo, se assemelham a faces e são classificadas como tal
pelo classificador. Por outro lado, a maior parte das imagens não se parecem com faces,
muito embora tenham sido classificadas como tal por parte do classificador. Com base
nos resultados estendemos a abordagem para gerar outro tipo de objectos, obtendo
resultados similares. Também se combinaram vários classificadores num estudo sobre
evolução de imagens ambíguas, i. e., imagens que induzem perceção multiestável. De
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um modo geral, os resultados sugerem que o sistema é viável como um gerador de
instâncias e que essas instâncias são muitas vezes mal classificadas pelo SC.

Com base nos resultados obtidos, numa segunda fase, efectuámos o estudo sobre
o EFECTIVE para aprimoramento da performance de classificadores. A ideia central é
utilizar as instâncias geradas pelo motor de CE para aumentar o conjunto de dados
de treino do classificador. Nesta fase, o sistema usa o módulo Supervisor para seleci-
onar e filtrar as instâncias que serão adicionadas ao conjunto de treino. O re-treinar
do classificador com essas instâncias completa uma iteração do sistema. Testou-se este
processo num problema de deteção de faces, evoluindo instâncias para: (i) expandir o
conjunto dos negativos; (ii) expandir o conjunto dos positivos; e (iii) expandir ambos
os conjuntos na mesma iteração. De um modo geral, os resultados mostram que: ex-
pandindo o conjunto dos negativos, adicionando instâncias mal classificadas, reduz o
número de falsos alarmes; expandindo o conjunto dos positivos aumenta o número de
caras bem detetadas; expandindo o conjunto dos positivos e dos negativos ao mesmo
tempo resulta na redução de falsos alarmes e no aumento de caras bem detetadas.
Após demonstrar a adequação do EFECTIVE na deteção de faces, testamos o sistema
num contexto de Criatividade Computacional para criar um sistema de geração de
imagens que promove mudança de estilo, obtendo resultados que demonstram o po-
tencial do sistema.
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1
I N T R O D U C T I O N

Machine Learning (ML) research deals with the question of how to construct computer
programs that automatically improve with experience. Broadly defining, we can say
that a computer program is said to learn from experience E with respect to some class
of task T and performance measure P, if its performance at task T, as measured by
P, improves with experience E (Mitchell, 1997). For example, when the performance
of a speech recognition machine improves after hearing several samples of a person’s
speech, we feel quite justified in that case to say that the machine has learned. The tasks
associated with ML include classification, regression, detection, recognition, among oth-
ers. Usually, ML involves two important components: a training dataset and a model,
encoded, e. g., by a function or a set of rules. Most of the effort in ML research goes to
the model part, creating new theories, approaches, algorithms, operators, parameters,
which attempt to maximise the performance while making use of training data. Never-
theless, designing and optimising a training dataset is a complex and time-consuming
process and also a crucial one for the success of ML algorithms (Bishop, 2006; Sung
and Poggio, 1995; Wang et al., 2005b).

Although there are some aspects that we should account for, guidelines or rules
are not always applicable to create a training dataset. For instance, in a face detection
problem, an approach to create a face dataset could be to search images that contain
faces with a certain diversity: male, female, race, illumination, pose, rotation, among
others. However, regarding the non-face dataset, any image that does not contain a
face can be considered as a non-face image. Therefore, it is hard to create a suitable
non-face dataset. These issues pertaining the design of a dataset can lead to severe
shortcomings that limit the performance of classifiers and its applicability.

1.1 the hypothesis

Evolutionary Computation (EC) is a field of Artificial Intelligence (AI), inspired by the
Darwinian (Darwin, 1859) principles of the natural process of evolution, for problem
solving purposes. These computational models are usually referred to as Evolutionary
Algorithms (EAs). Even though there are different types of EAs they all share some key
aspects: (i) Selection – individuals that are better adapted to their environment have
a higher probability of surviving and reproducing; (ii) Inheritance – the descendants
inherit characteristics from the progenitors; (iii) Variation – attained by the recombina-
tion of the genetic code of the progenitors and by the introduction of random changes
in the genetic code, i. e. mutations. In practical terms, if we define a problem as a triple

1
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of: input, model and output; EC is usually applied to one (or more) of these types of
problems: (i) optimization – the objective is to find the inputs used by a defined model
that produce a desired output or a description of it; (ii) modelling – we want to dis-
cover a model that maps the inputs to the outputs; (iii) simulation – we know the
inputs and the model but we want to explore the outputs (Back et al., 1997; Eiben and
Smith, 2003). In the ML context, EAs have been used to evolve solutions for classifiers
parameters, thresholds, features, feature selection for classification, the classifier itself,
among others.

In a previous work (Machado et al., 2012b), we introduced a framework that com-
bines a Genetic Programming (GP) image generation system (Machado and Cardoso,
2002) with a state of the art Face Detection (FD) approach (Viola and Jones, 2001). The
GP engine evolved images that were incorrectly identified as faces by the FD. Later,
these images were added to the negative dataset, and the classifier was retrained. The
experimental results obtained by the classifiers trained with a negative dataset aug-
mented through the addition of images evolved in a single evolutionary run, indicated
that statistically significant performance improvements could be accomplished.

The working hypothesis is that EC can be used to assess and improve the perfor-
mance of classifiers by evolving new training instances. Without loss of generality,
we resort to image classification problems to illustrate how this may be achieved. In
simple terms, the framework we propose proceeds as follows:

1. Selection of a starting dataset;

2. N framework iterations start; C classifiers from the Classifier System (CS) module
are trained based on the available instances; each classifier can be trained with
a different order of training instances, different parameters, or with different ML
algorithms;

3. For each C, E independent EC runs are executed to generate instances of a pre-
defined class; each C classifies each evolved instance; the fitness of the instances
depends on the results of the classification task;

4. The EC runs stop when a termination criterion is met (e. g. achieving a predefined
number of generations or attain a certain fitness value);

5. A Supervisor selects and filters instances gathered from all EC runs, updating the
training dataset;

6. The process is repeated from step 2 until the termination criterion is met (e. g.
attaining a predefined number of framework iterations, a number of instances,
or a certain performance value).

The EC runs tend to evolve images that do not resemble the target class and are
classified incorrectly. Thus, the evolved images explore shortcomings of the classifier.
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The proposed framework could arguably allow to: (i) dynamically assess the classi-
fier; (ii) and improve its performance by automatically adjusting the dataset with new
generated instances. This way, several research questions arise:

• How to create a suitable fitness function? The framework relies on an auto-
matic fitness assignment scheme based on values from the CS. In some classifi-
cation tasks, such as FD, the outputs are binary and, consequently, insufficient
to provide suitable information to create a smooth fitness landscape and prop-
erly guide evolution. How to design a proper fitness function capable of guiding
evolution and exploit the CS’s shortcomings?

• How should the Supervisor select and filter individuals per EC run? An EC run
can yield a considerable number of individuals to be added to the dataset. How
to select suitable individuals? After selecting the suitable ones, should we accept
all of them? Should we create a limit per EC run? A limit per framework iteration?
Should we discard equal or similar individuals? How to determine the similarity
between examples (e. g. images)? How should we merge the individuals from
multiple EC runs?

• How to compensate the unbalance that will be created? The proposed frame-
work generates instances for different classes, but it can generate more for one
class than for the other, which can lead to class unbalance. Is there a way to
overcome this potential problem?

• What are the necessary conditions for the framework to succeed? The approach
improves the performance of the CS by evolving instances that are misclassified,
adding them to the dataset, and retraining the classifier. An immediate condi-
tion for the success of this process is that the EC run has to be able to evolve
instances that are misclassified by the CS. However, how can we guarantee that
those examples will improve the performance? What other components, such as
the Supervisor module or even the CS, can interfere?

1.2 objectives

To answer the research questions we attend to several objectives:

• Acquire knowledge regarding the state of the art in instance gathering, selection
and generation, in order to support the development of the framework and its
analysis;

• Propose and develop a framework that uses EC to assess and improve a classifier
performance via synthesis of new instances;

• Develop fitness functions suitable for the EC module of the framework;
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• Provide methods and models to manage the instances that are generated by the
framework;

• Assess the viability of the framework as an Instance Generation (IG) approach;

• Assess whether the framework is able to generate instances that improve the
classifier’s performance;

• Evaluate the framework with test datasets;

• Assess the generalisation of the framework by instantiating and applying it to
different classification scenarios with different classifiers.

The creation of novel ML approaches and evolutionary paradigms is outside the
scope of this thesis. Exhausting every possible parameter for each approach chosen
is also out of the scope. Additionally, the starting point of this research is image clas-
sification tasks. We will resort to image generation engines based on GP or Genetic
Algorithms (GAs), which will be integrated with image classifiers adapted, namely
concerning fitness assignment, to pursue the thesis’ goals.

1.3 contributions

We highlight the following contributions resulting from the work done in the context
of this thesis:

Literature review: A review of the state of the art on the topics of dataset con-
struction, instance gathering, Instance Selection (IS), IG for supervised ML approaches
(Chapter 2).

An evolutionary framework capable of assessing and improving classifiers: Cre-
ation of a fully functional framework suitable to fulfil the objectives of this thesis
(Chapter 3). The framework uses EC to exploit vulnerabilities of the classifier, gener-
ating instances that are incorrectly classified. These instances are used to expand the
dataset in order to improve the performance of the classifiers (Chapters 5, 6 and 7).

Automatic fitness assignment schemes: For the process to be automatic, with no
user in the loop, the fitness of the individuals needs to be assigned automatically. For
each problem addressed in this thesis (see Chapters 4, 5, 6 and 7) automatic fitness
functions were developed.

Evolutionary engines: Different EC engines, described in Section 4.1.2, were devel-
oped and used in several works presented along Chapters 4, 5, 6 and 7. We started
by using a well-established GP engine, the Neuro Evolutionary Art (NEvAr), for the
evolution of populations of images. Afterwards, we implemented a new one, geNeral
purpOse expRession Based Evolutionary aRt Tool (NORBERT), with different features
such as novelty search and hybrid tournament selection (Chapter 7). A photorealistic
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face generator based on a conventional GA, named X-faces (eXploit faces), was also
developed.

Image annotator: The freely available solutions for image annotation for the purpose
object detection are scarce or have some limitations. A tool to assist the annotation of
the face dataset in Section 4.5 was created to provide extra functionalities and interface
improvements in comparison to the available tools.

Application to different classification scenarios: The approach was tested in object
detection, and distinguishing paintings from computer generated images.

Sampling algorithms: The process of selecting a good representative set from a
collection of instances is an open research topic in ML. In the proposed approach,
the selection of instances is also important, as such, sampling algorithms allowed us
to evaluate and cluster the instances more efficiently. We defined different sampling
strategies and tested them in Chapters 4, 5, 6 and 7.

Synthesis of novel examples: Since this approach synthesises instances by using
EAs, the entire instance distribution is converted to a search space that can be explored.
Nevertheless, as concluded in Chapter 4, when the EA finds solutions suitable for the
problem, the tendency is to generate several similar instances. We used the Supervisor
module to deal this issue (Chapters 4 and 5, 6). In Chapter 7, we resorted to a different
approach: an archive algorithm was used with a multi-objective tournament selection,
which provided a way to switch between fitness search and novelty search (see Chapter
7).

1.4 outline

We start with the state of the art in Chapter 2. Starting with concepts and definitions
concerning ML and datasets. Next, we address aspects concerning dataset construction.
Then, we survey techniques that can improve the dataset, such as IS and IG.

In Chapter 3 we present our framework, named Evolutionary FramEwork for Clas-
sifier assessmenT and ImproVemEnt (EFECTIVE). Every aspect related to its definition,
algorithm, parameters and pipeline are described in this Chapter.

Preliminary tests were conducted to test its viability as a generator of instances.
These are analysed at the beginning of Chapter 4. The Chapter continues with several
follow-up works, where we use EFECTIVE to generate images of a particular type.

Based on the results attained in Chapter 4 and information from Chapter 2, tests are
performed to verify if the framework could be used to improve a classifier’s perfor-
mance iteratively and automatically. This is covered in Chapter 5, where we analyse
the contribution of the instances generated to the improvement of classifiers for FD.

In Chapter 6 we further explore the framework by instantiating EFECTIVE in a set
of three experiments. First, we explore the generation of false positives to expand
the negative dataset. Then we explore the generation of false negatives to expand
the positive dataset. In a last set of experiments we expand the positive and negative
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datasets simultaneously. For all the instantiations we analyse the performance of the
classifiers in three different test datasets.

In Chapter 7, we deploy the framework in a different classification scenario, in a
Computational Creativity (CC) context, where a classifier is trained to distinguish from
instances generated by an EC engine and real paintings. The framework is used to
generate instances and improve the dataset during multiple iterations, leading to the
generation of instances of different styles on each iteration.

Finally, in Chapter 8 we perform a summary of the work done, highlighting the
main contributions, drawing overall conclusions and indicating future work.



2
S TAT E O F T H E A RT

Typical ML approaches involve two components of the utmost importance: a dataset
and a model. Most of the effort in ML research concerns the model. However, design-
ing and optimising a training dataset is a complex and time-consuming process, which
is crucial to the success of ML algorithms. In this thesis, it is essential to analyse the
construction of a dataset and understand the gathering, selection and generation pro-
cesses. Since it is a vast topic in ML, this Chapter focuses on supervised classification
problems. In Section 2.1 we provide an overview of the definitions and mathematical
notation related to datasets used throughout this thesis. We also introduce concepts
and models of ML approaches mentioned in this survey of the state of the art, in Section
2.1.1. The following Sections concern the construction of datasets: Instance Gathering
(Section 2.2), IS (Section 2.3) and IG (Section 2.4).

2.1 overview and definitions

As we analyse the state of the art, we noticed that there is no universally accepted
terminology. As such, we introduce the terms and definitions that we use in this thesis.

A dataset consists of a collection of observations that relate to a particular subject.
In ML, dataset is the most frequent word to describe a set of observations also named
as instances (Mitchell, 1997). Conversely, an instance is a single observation which can
be learned or used by a model, and instances are grouped as a set to form the dataset
(Provost and Kohavi, 1998). Furthermore, instances are often described as a vector
of features. A feature is considered a prominent description or aspect of a particular
observation of a given domain (categorical/discrete or continuous/quantitative). A
model, function, or classifier, is the structure and corresponding interpretation that
partially or entirely summarises a dataset for description or prediction purposes.

Based on the literature, the aforementioned terms and concepts are usually framed
with different mathematical notations. We consider that a standard supervised learn-
ing problem is defined by a dataset D of the form D = {< x0, y0 >, ...,< xm, ym >}, i.
e., a set of pairs instance/class, (< xm, ym >), where xm is an instance m and ym is
the output of a function c, i. e. ym = c(xm), for the input instance xm. The output ym

maps or corresponds to a certain finite set Y of K classes (Y 2 {0, ...,K}). xm is a vector
of the form {xm0, xm1, ..., xmn} whose components are discrete or real-valued numbers
that hold information. These are also called the features of xm, where the notation xmn

refers to the nth feature of mth instance x from the dataset D. Figure 2.1 illustrates
these definitions.

7
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x0,0 y0x0,1 x0,2 x0,n

x1,0 x1,1 x1,2 x1,n

x2,0 x2,1 x2,2 x2,n

xm,0 xm,1 xm,2 xm,n

y1

y2

ym

D

Figure 2.1: Description of a dataset D, a set of instances xm composed of xmn features and the
corresponding ym class.

2.1.1 Machine Learning Concepts and Models

This Section describes concepts and models related to ML approaches of the state of the
art presented in the next Sections. We start by covering the definitions of supervised
and unsupervised learning, and discriminative and generative approaches. Then, we
present an overview of different ML models that are mentioned in the next Sections.

In supervised learning, as defined in Section 2.1, we have x instances as our dataset
D, each labelled with an y class. The objective is to learn a function that map x to y. In
unsupervised learning we only have the dataset, i. e. the instances have no class asso-
ciated. Unsupervised learning approaches learn the hidden structure of the dataset.

In supervised learning, we can have discriminative and generative ML approaches (Y.
Ng and I. Jordan, 2002). A discriminative approach learns P(y|x), the posterior proba-
bility of an instance x belonging to class y. Based on the observation of a dataset D it
creates a decision boundary that separates the different instances x based on their class
y. To perform a prediction for a new instance, it checks on which side of the boundary
it falls and assigns the class accordingly. On the other hand, generative approaches
model p(x|y) by learning the joint probability P(x,y) and then make predictions by us-
ing the Bayes rule. These algorithms model each class, and to classify a new instance, it
checks to which modelled class it relates best. Ultimately, the objective is to train mod-
els that create x ⇠ pmodel(x) where pmodel ⇡ pdata. An example follows: if y indicate
whether an instance is a dog (1) or a cat (0), then P(x|y = 1) models the distribution of
a dog’s features and P(x|y = 0) models the distribution of a cat’s features. This feature
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space is called the latent space, typically denoted as Z, composed of latent variables
(z), variables that we have to infer rather than directly observe. Learn based on latent
features can be beneficial. The latent features can be general features for other learn-
ing tasks or be incorporated in another model. Some examples include Autoencoders,
Variational AutoEncoders (VAEs), Generative Adversarial Networks (GANs) and Deep
Belief Networks (DBNs). After modelling P(y), i. e. the class prior or the odds of be-
longing to class y, we can use the Bayes rule using the following formula to calculate
the posterior probability: arg maxyP(y|x) = arg maxyP(x|y).P(y)/P(x).

For every problem that involves a dataset, there are different ML approaches that
can be used. From approaches such as K-Nearest Neighbour (KNN) or Classification
And Regression Tree (CART), which are simple and computationally inexpensive for
low dimensionality problems (Mitchell, 1997). If we have a high dimensionality prob-
lem, i. e. a lot of features (xmn) with several instances (x) to be processed, we can
resort to Random Forest (RF), Support Vector Machine (SVM) or Multi-Layer Percep-
tron Network (MLP). In more complex scenarios where we need to understand the
representation dynamically, and when there are large amounts of instances to process,
we may need to resort to Deep Learning (DL) approaches.

The KNN is a lazy learner, an approach that generalises based on the training dataset
at the prediction time. Given a new input x and the instances in D it identifies the
k nearest instances of x regardless of the class, using a pre-defined distance function.
After collecting all k nearest neighbours, it checks what is the class from that collection
that is in majority and assigns that class to the new input. As we will see in Section
2.3 this classifier is used in many IS approaches.

RFs are a collection of CARTs (Breiman, 2001), which are Decision Trees (DTs) algo-
rithms that can be used for classification or regression. Based on the features (xmn) of
the dataset instances, a tree is built where each node is a decision based on the value
of a given feature (e. g. x0,0 < 0.5). In classification, a leaf-node represents a class. In
order to construct the optimal decision tree we need to compute and minimise a cost
function (e. g. the Gini impurity formula: Gini(t) = 1-

PY-1
i=0 P2

i ), where Y is the set
of classes and Pi is the probability of an instance with label i being chosen. This index
indicates how many instances are split by the decision. The closest to 0, the best it
splits the data. We can construct the decision tree by recursively splitting it according
to selected attributes as conditions. Nevertheless, if we only use a single DT for the
whole dataset, the model can overfit. RF creates random subsets of features to build
smaller DTs and combines them in a committee of subtrees which can, e. g., rule the
decision based on the majority voting of the class.

Artificial Neural Networks (ANNs) are another popular model. Before defining an
ANN we need to define the basic unit, i. e., the perceptron. A perceptron takes an
input vector x, multiplies by some weights w, sums the result and applies a non-
linear function to obtain an output (Van Der Malsburg, 1986). This process, known as
forward pass can be defined by output = a(

PN
i=0 (xi ⇤wi)+b) which can be redefined
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in the form of matrixes as output = a(WX + b) with X = {x0, x1, . . . xn} and W =
{w0,w1, . . . wn}. The non-linearity is made by an activation function a. The activation
function is important because most of the real-world problems datasets are non-linear
and in order to make a decision boundary on such data it becomes necessary to be
able to operate in non-linear spaces. Typical activation functions include the Sigmoid,
Tanh and Rectified Linear Unit (ReLU).

We can combine multiple perceptrons to form a multi-output perceptron which has
several perceptrons connected, where the inputs are linked to the outputs directly.
If we stack layers of multi-output perceptrons, we create a MLP, which has an input
layer, at least a hidden layer and an output layer (e. g. see Figure 2.2). The MLP falls
into the category of feedforward network, where the input instances are fed to the
network and are transformed into an output (Mitchell, 1997). In order to train a neural
network we need to define a loss function, which in the case of a MLP can be defined
as: loss := J(�) = 1

#D
PD

i loss(f(xi;�),yi) with � = W0,W1, . . .Wn and xi,yi a pair
of the training dataset. Thus, we need to minimise the loss function by updating the
weights (�) for the objective (J(�)), which can be accomplished using gradient descent
by calculating the loss at each step and moving towards the maximum descent, until it
converges. In Stochastic Gradient Descent (SGD) the weights are initialised randomly,
for each training instance the loss gradient is computed and the weights are updated
with the rule � := �- ↵��J(�; xi,yi) where ↵ is the learning rate (Rumelhart et al.,
1986). To calculate the gradient we can use backpropagation which calculates the error
between the target and the output using the chain rule. The chain rule provides a
way for calculating the derivative of the composition of two or more functions as the
product of functions, i. e. (f � g) 0 = (f 0 � g) · g 0. The goal with backpropagation is
to update each of the weights in the network, making the actual output to be closer
to the target, and minimising the error for each output neuron and for the network
as a whole. Thus, with backpropagation we optimise the weights so that the neural
network can learn how to map arbitrary inputs to outputs correctly.

Similar to an ANN, a Sparse Network of Winnows (SNoW) (Carlson et al., 2004) is
a sparse network of linear units with two layers, the input layer and n target nodes.
The layers are linked through weighted edges as shown in Figure 2.3. The learning is
performed by the Winnow’s update rule, which is a multiplicative one which contrasts
with the perceptron update rule which is an additive one (Carlson et al., 2004). Each
update is performed using a promotion and demotion parameter as follows: (i) let
Ai = i1, . . . , im be the set of active features (input nodes) in a given example linked to
the target node t, and let si be the strength associated with feature i in the example;
(ii) if the algorithm predicts negative, i. e.,

P
i2At

wt,isi < ✓t, and the groundtruth
label is positive, the weights of active features in the current example are promoted:
8i 2 At,wt,i  wt,i ·↵si

t ; (iii) if the algorithm predicts positive, i. e.,
P

i2At
wt,isi 6 ✓t;

and the groundtruth label is negative, the weights of active features in the current
example are demoted: 8i 2 At,wt,i  wt,i · �si

t . To perform prediction, a weighted
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Figure 2.2: Overview of an ANN with 2 hidden layers.

Figure 2.3: Overview of a SNoW classifier.

sum of activation functions of the target nodes is used. Thus, the target node with the
highest predictive value for a given instance is selected as the final prediction.

In the generalisation of a ML approach, a decision boundary is created, which sep-
arates the different classes in the instance’s space. This decision boundary can be de-
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Figure 2.4: Example of different decision boundaries between two different classes represented
in blue and green (image from http://doditsuprianto.blogspot.com/2018/06/
support-vector-machine.html).

fined in various ways, e. g. we can see different decision boundaries in Figure 2.4 in
a 2D feature space with two classes. If we maximise and optimise the margin, we are
increasing the likelihood of a new instance x to fall into its correct class. Cortes and
Vapnik (1995) created an approach that maximises this boundary at training time, the
SVM.

An example of such boundary is shown in Figure 2.5. The points that define the
margin and are close to the opposing class are called support vectors. We define the
decision boundary as the hyperplane in the midpoint between the support vectors, i.
e. the middle of margin. So the underlying idea is that the best split between the data
is found by maximising the distance between the support vectors and the hyperplane.
The SVMs maximise the margin by solving a constrained optimisation problem. The
formulation for the SVM is the following: w · x+ b > 0, where w are the weights, x the
instance’s vector of features and b a constant. The objective is to find an hyperplane
� that separates the classes and maximises the distance between the support vectors

http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html
http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html
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Figure 2.5: Maximised margin using SVM, instances of the different classes are in blue and
green. Orange points are the support vectors, the line is the hyperplane and the
distance between the support vectors of opposite classes is the margin (image from
http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html).

and that hyperplane, i. e., maxw,�� that 8i,yi(w.xi + b) > �. If the dataset is not
linearly separable SVMs address this problem by defining a function that transforms
the data into a high dimensional space and finds the hyperplane that separates the
classes (see Figure 2.6). Furthermore, to avoid computation in an higher dimensional
space, it resorts to the kernel trick. Using the kernel trick, we take the inputs vectors x

in the original space without feature transformation (Cortes and Vapnik, 1995).
Adaboost was created based on the idea that simple learners combined can build

a robust classifier (Freund and Schapire, 1997). The algorithm starts by assigning a
weight of equal value to all the instances of the dataset. Next, it creates simple clas-
sifiers for training and testing on the training dataset (second image of the first row
of Figure 2.7). It selects the classifier with the lowest weight error and updates the
instances’ weights (third image of the first row of Figure 2.7). Instances misclassified
have their weights increased whereas the ones correctly classified have their weights
diminished. The process iteratively and similarly adds simple classifiers until a termi-
nation criterion is met. The final classifier is a weighted combination of the simple
classifiers selected along iterations (last image of the second row of Figure 2.7).

The quality of the instances in the dataset impacts this approach and this simple
version can underperform if we train with a noisy dataset. One way to overcome this

http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html
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Figure 2.6: Mapping from the input space to the feature space in order to find the op-
timal hyperplane (image from http://doditsuprianto.blogspot.com/2018/06/
support-vector-machine.html).

Figure 2.7: Illustration of the training of an Adaboost classifier with linear classifiers. In this
case, 2D instances of two different classes are shown with different colours. The
process is shown from top left to bottom right.

http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html
http://doditsuprianto.blogspot.com/2018/06/support-vector-machine.html
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Figure 2.8: Example of the distribution of instances when using a stage classifier. Each circle
groups the instances that are used for training at each stage.

is to use decision trees with a stage mechanism where each of the stages is trained
with a part of the instances as shown in Figure 2.8 (Breiman, 2001; Viola and Jones,
2001).

Deep Learning (DL) models have recently received a lot of attention, due to tech-
nology advancement in terms of computational power, namely Graphics Processing
Unit (GPU) power. The deep architectures contrast with shallow models regarding the
number of layers it uses, typically more than two (Hinton, 2006). An essential aspect
of DL models is the ability to provide mechanisms for feature extraction and learning
since shallow approaches usually rely on feature engineering.

Convolutional Neural Networks (CNNs) are a type of ANNs, i. e., Deep Neural Net-
works (DNNs), that have been used successfully in different classification and recog-
nition tasks (LeCun et al., 1998). The main characteristic of a CNN is the usage of
special layers, such as convolutional and pooling layers, which provide feature ex-
traction and dimensionality reduction in training (Fukushima, 1980). The convolution
layers perform convolution of matrixes and act as filters applied to the inputs. After
the convolution layers, it is usual to apply an activation layer, i. e., layers that apply
non-linear activations typically using ReLU. The max-pooling layers extract values, i. e.,
in this case, the maximum values of a given region of the previous layers, and reduce
the dimensionality of the matrix that comes from the previous layer. Dropout is a reg-
ularisation layer that adds a probability of certain weights connected to the neurons
of being deactivated during training, making the network explore different paths for
generalisation. These types of layers function as feature extraction operations. After
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Figure 2.9: Example of a CNN. The input instance in this case is an image and the out-
put is the class to which it belongs. The image is processed by the convolu-
tional layers, activation layers and max pooling layers in the feature learning
phase, and afterwards fully connected layers perform classification (image from
https://www.mathworks.com/discovery/convolutional-neural-network.html).

the feature learning layers, the final layers are normally fully connected. Figure 2.9
shows an example of such architecture. It is also a feed-forward network so it can be
optimised using backpropagation. In recent years, it has consistently attained good
results in several supervised image related classification tasks (Krizhevsky et al., 2012;
Szegedy et al., 2015).

Recurrent Neural Networks (RNNs) are also feedforward networks that offer a com-
pact, shared parametrisation of a series of conditional distributions. These types of
networks are suitable to deal with time series or sequences. As shown in Figure 2.10,
each hidden layer is connected to other hidden layers. We can loop over a sequence of
hidden layers each with a certain state, meaning that the state of the hidden layer of
step t- 1 is the input of the hidden layer at time t. Figure 2.11 displays an expansion
of the RNN that illustrates that behaviour. The parameters are shared among the layers
and in that way we can compute a function of n time steps. This architecture also
enables the use of backpropagation to train and optimise all the weights. Nevertheless,
it has a problem of the vanishing gradient, where the backpropagation of the error in
the RNNs gets smaller as we increase the number of steps to model (Hochreiter and
Schmidhuber, 1997).

To solve the problems of RNNs, a new type of networks called Long Short Term
Memory networks (LSTMs) were introduced by Hochreiter and Schmidhuber (1997).
The architecture of the network is different from a RNN, using different gates to process
inputs and deal with changes over time: the input gate, the forget gate and output gate
(as shown in Figure 2.12). The input gate protects the unit from irrelevant input events.
The forget gate is used to forget previous calculated steps. The output gate controls
what should be exposed to the next unit. This way, the network implements a selective

https://www.mathworks.com/discovery/convolutional-neural-network.html
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Figure 2.10: Example of a RNN where each hidden layer has recurrent connections (image from
https://deeplearning4j.org/lstm.html).

Figure 2.11: Example of an expanded RNN. Each hidden layer t is connected with the t + 1
hidden layer (image from https://deeplearning4j.org/lstm.html).

https://deeplearning4j.org/lstm.html
https://deeplearning4j.org/lstm.html
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Figure 2.12: LSTM overview with the different connections and gates (image from https://
deeplearning4j.org/lstm.html).

and conditional memory mechanism, capturing dependencies throughout the different
time steps.

Hinton and Zemel (1994) introduced the Autoencoders, networks with a structure
as depicted in Figure 2.13. It is an unsupervised generative ML approach. Hence, it
learns a lower-dimensional feature representation from unlabelled instances. The net-
work is composed of two phases: encoding and decoding. In the encoding phase the
input instance x is processed and compressed into a lower dimensional space, which is
commonly called latent space, denoted as Z. This Z should be of a lower dimension so
that the encoder captures the hidden structure of the inputs, i. e., the significant factors
of variation in the data. By manipulating the z values of the Z space, in the decoding
phase, we can generate an output x 0 of the same size of the input x. This network is
also feed-forward, and the objective is to minimise the error between the input x and
x 0 (e. g., using a least squared error loss function). After training the Autoencoder, the
learned latent space can be used by a discriminative model. This can be achieved by
discarding the decoder phase and use the latent variables as inputs for a discrimina-
tive model. Since a generative model learns to model data first, we can achieve with
few examples a strong set of features. In certain cases the strong features can be more
suitable for prediction than training a discriminative approach on the same training
dataset.

https://deeplearning4j.org/lstm.html
https://deeplearning4j.org/lstm.html
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Figure 2.13: Autoencoder overview. The inputs x are encoded to latent variables z and, in a

feedforward fashion, decoded to x 0 output values.
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Figure 2.14: GAN overview.

Based on the way that an Autoencoder works, researchers posed the question “how
can we generate new instances from the training dataset distribution?”. To do it, we
need to model the density distribution of the training dataset explicitly. Moreover, the
problem is that even if we sample from Z to generate x, we do not know the distri-
bution to which it belongs without modelling: p↵(x) =

R
p↵(z)p↵(x|z)dz, which is

considered intractable. Kingma and Welling (2013) address this modelling problem
and present means that allow optimising a lower bound for the density function, pro-
viding a way to train a generative model known has VAE. The approach is to train two
networks, one for encoding and another for decoding. The idea is to reconstruct the
sample of the encoder network but following the distribution of the decoder. The en-
coder models p(z|x) and outputs the mean and the diagonal covariance of (z|x), where
z is obtained by a Gaussian distribution and x is an input instance. The latent factors
z of the encoder are sampled for the input x. Then, the latent factors pass through the
decoder network which outputs the mean and diagonal covariance of (x|z). Based on
the decoder output, it is possible to sample x 0 and see if it maximises the likelihood
lower bound. Backpropagation is used to optimise this process (Kingma and Welling,
2013).

In VAE, the idea is to explicitly model the density distribution to generate new sam-
ples from that distribution. Goodfellow et al. (2014) present GAN, an approach that
does not need to model the density function explicitly. The overall concept is to train
two networks: a generator and discriminator (as shown in Figure 2.14). The generator
uses a generative approach, e. g., a decoder network, that samples from a distribution
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Figure 2.15: Overview of a RBM with one layer, a symmetrical bipartite and bidirectional graph.
vn are inputs and constitute the visible layer. hk are the hidden values of the RBM
to which vs are connected via weighted and bi-directional connections.

Z and generates instances x that are considered fake, i. e., not real instances from the
training dataset. The discriminator network follows a discriminative approach as it is
trained to distinguish between instances from the training dataset and instances gen-
erated by the generator. The whole process comes together as a min-max game, where
the discriminator has to correctly distinguish the real instances from the instances
generated by the generator, and on the other hand, the generator has to trick the dis-
criminator network, i. e., generating instances that are similar to the distribution of the
real dataset. This process of using a model that learns to generate instances that ex-
ploit vulnerabilities in another model is also called adversarial learning. The instances
generated by this process are called adversarial instances.

The Restricted Boltzmann Machine (RBM) (David E. Rumelhart, 1986) is a type of
unsupervised learning model with two layers: the visible layer and the hidden layer
(as shown in Figure 2.15). Each node in the visible layer is connected to every node
of the hidden layer. It is restricted because no two nodes in the same layer share a
connection. In a forward pass, the hidden layer models the hidden structure of input
features and in the backward pass it reconstructs the input. RBMs can learn high-level
features with unsupervised training. These are the building blocks for the Deep Belief
Networks (DBNs).

DBNs are composed of layers of RBMs (Bengio et al., 2007; Hinton, 2006). Structurally,
this means that per each layer of RBM the hidden layer serves as the visible layer to
the next hidden layer (as shown in Figure 2.16) allowing to learn more complex rep-
resentations of the input dataset. These networks have two phases: pre-training and
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Figure 2.16: Overview of a DBN with three hidden layers. The vn nodes are the visible layer,

the input layer. The h, h 0 and h 00 are hidden nodes. This is equivalent of stacking
three RBMs, where the visible nodes for the h 0 nodes are the h nodes and the visible
nods of h 00 are the h 0 nodes.

fine-tuning. In pre-training, instances are provided to the DBN in an unsupervised way,
to learn patterns and model the structure of the data. After pre-training, a discrimina-
tor feed-forward network uses the layers of features as weights, and with few labelled
examples, it learns how to classify the classes for a given task.

The remainder of the Chapter is divided into three Sections: instance gathering,
selection and generation. The idea is to provide some guidelines for instance gathering
and then survey instance selection, and instance generation approaches. The set of
works presented in the following Sections is organised chronologically and grouped
by common aspects. Furthermore, in each Section, we separate evolutionary and bio-
inspired approaches from other methods. When a surveyed work fits several Sections,
we assign it to a specific one based on its most distinguishable aspect.

2.2 instance gathering

Constructing a dataset depends on the data that we plan to analyse and the problem
at hands. In the literature it is possible to find some guidelines about what kind of
data is suitable to analyse or to solve a given problem. Most researchers resort to
the same datasets for specific problems to compare the performance of the different
available approaches. On the other hand, some problems require getting a dataset to
train models that can perform well in a real-world scenario, with time and resources
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constraints, and with reasonable and reliable performance. Considering all constraints,
designing and optimising a training dataset is a complex and time-consuming process,
but also a crucial one for the success of ML algorithms (Bishop, 2006; Sung and Poggio,
1995). A well-constructed dataset has an impact on the performance of the classifier.
Therefore, when constructing a dataset, there are some aspects to take into account:

1. Correctness – correct labelling of the training instances;

2. Representativeness – include in the dataset, instances that are representative of
each assigned class;

3. Completeness – cover the solution space for each class as much as possible.

An obvious recommendation is to do a literature survey about the problem that
we have to solve, to ensure that our dataset copes with the characteristics mentioned
above. In theory, our dataset should have the specified characteristics, but in practice,
it is hard to ensure and control them. Possibly, the aspect that is more controllable is
the correctness. That is, assuring that the instances that we gather have their class/la-
bel correctly assigned. One must avoid using a biased subset of training examples to
train a classifier because the resulting classifier will probably perform poorly on the
rest of the input space, i. e., it will likely result in a classifier with low generalisation.
Even if we gather the most representative instances, one should include more data and
cover as much solution space as possible. The amount of data needed depends on the
complexity of the data that we are trying to learn. Thus, we should use a pre-labelled
set of data of suitable size. If this is not possible, the next approach would be to gather
and label data. For example, for handwriting classification, one could take many sam-
ples of handwritten text and have a human labelling them. The obvious downside of
this approach is that it is time-consuming and requires human intervention and su-
pervision. Nowadays, one could outsource this task to a Mechanical Turk-like service or
build a service that produces labelled training examples, as some benchmarks nowa-
days do (Deng et al., 2009). Ultimately one could try to harness all the data and aim
for full completeness, but engaging in such task is time-consuming, impractical and
impossible for most problems. Another possibility is the generation of additional in-
stances based on the data and knowledge of the problem that we have, i. e., perform
IG. But even if we manage to gather or create all instances or a subset of them, we
should try to minimise the number of instances and create an efficient way to learn
and generalise from the available data, i. e., perform IS. Summarily, when building a
dataset, we should take into account the characteristics mentioned earlier for gather-
ing the instances, and then attempt selection and generation techniques to assess and
improve them.
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2.3 instance selection

After gathering the instances for our dataset, we should analyse them, and decide
whether we need all or only a subset of them. Just as some features are more use-
ful than others, so may some instances better aid the learning process than others
(Blum and Langley, 1997). Most work assumes the presence of a benevolent tutor,
us users, who gives informative instances or provides ideal training datasets (Settles,
2010). However, a more robust approach involves letting the learning model select or
focus on training instances by itself. Researchers have pointed out at least three reasons
for selecting examples used during training. The first reason is when the ML algorithm
is computationally intensive, thus making sense to learn from a smaller sample of in-
stances for computational efficiency. The second reason is when the cost of labelling is
high (e. g., when labels must be obtained from experts) but many unlabelled examples
are available or are easy to create. The third reason is to increase the rate of learning
by focusing the attention on the most useful examples, thus aiding search through the
space of hypotheses, which has a lot to do with the representativeness aspect of the
dataset mentioned in Section 2.2. The notion of representativeness can take two sides:
(i) instances that are relevant due to the information and knowledge they provide
about the task/problem; and (ii) instances that are relevant for the learning algorithm
used for the construction of a model.

IS is based on the principles of sampling from statistics. The underlying idea in
statistics is to choose a representative sample and use it to understand something
about the whole population. In ML, the baseline idea is to select a part of the available
dataset to construct a suitable model for a particular task. With the constraints imposed
by computational resources, the central point of IS is the approximation, that is, the
focus of IS is to achieve the best possible results with a selection of instances instead
of using all the instances available.

An IS algorithm follows the idea of picking a subset of data from the full dataset
to create a particular model for a specific task/problem. As such, IS is commonly
associated with Feature Selection (FS) approaches (Blum and Langley, 1997). Some ap-
proaches combine both IS and FS, or even IS via FS (Olvera-López et al., 2010). Methods
of undersampling to change the datasets by sampling from the majority class, or over-
sampling to repeat instances in the minority class in the training dataset, are straight-
forward to implement and often explored in problems with unbalanced datasets (Liu
et al., 2009; Meyliana and Budiardjo, 2014).

Furthermore, besides sampling, there are links with other areas such as boosting
and Active Learning (AL). Most boosting algorithms have some methods that either
weight instances or select them from the available dataset to create weak learners
that, when combined, create a strong learner (Freund and Schapire, 1997). An early
work by Drucker et al. (1994) that investigated boosting observe that the training error
curve of the original boosting algorithm has negative slope until it asymptotes to some
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Algorithm 2.1 Boosting selection algorithm.
1: procedure Boosting Selection
2: wi  1/N . Initialise wi based on N instances of D
3: S 0  D,m = 0
4: while m < M do . M is the number of rounds
5: S instanceSelection(S 0)
6: V  updateSelected(S) . Register selected instances updating a set of

votes V
7: wi  update(wi,KNN(S)) . Update wi using KNN over S
8: S 0  sample(D,wi) . Sample S 0 from D based on wi

9: m m+ 1
10: end while

11: D 0  instanceSelection(D,V) . Perform instance selection based on the
votes V

12: return D 0 . Return the updated dataset
13: end procedure

value of training error. In their work, the authors make three conjectures. Firstly, the
capacity of the learning algorithm increases with the increase of the training dataset
size until it reaches an asymptotic value. Secondly, good algorithms will have the same
negative slope characteristic, meaning that the difference between the test and training
error rate should converge to zero as we increase the size of the training dataset. It is
desirable that the training error curve has this negative slope so that the test error rate
follows the training error rate to some small value. The same negative slop is observed
in: additive algorithms, e. g. cascade architectures, that build networks incrementally;
and algorithms that use queries, filters, hierarchical structures that in general adapt
to the structure of the learning classifier. These factors contributed to research on the
topic. For instance, García-Pedrajas and De Haro-García (2014) created a generalised
version of boosting combined with an IS algorithm, as depicted in Algorithm 2.1.

In AL, the key idea is that a ML algorithm can achieve better results if it can pick
the set of instances from which it learns (Settles, 2010). Thus, an AL approach requires
a starting set of labelled instances to train a model and an oracle (e. g., a user that
annotates data). The AL approach performs queries to the oracle, typically in the form
of unlabelled instances. Based on the query results, the knowledge base is updated,
the model is retrained, and the next set of queries are generated until a termination
criterion is met (e. g., when a specific value of performance is achieved). The approach
relates with IS since selecting the starting set of instances is an essential part of the
algorithm which can minimise the number of queries to be performed to achieve a
particular performance value or generate a better model using fewer resources (Fu et
al., 2013; Settles, 2010).
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Figure 2.17: Overview of filter and wrapper IS methods. D is the starting dataset and f(x) is
the filter function of the filter IS method. In the wrapper IS method, s(x) is the
function that selects a subset of D, i. e. D 0, which is evaluated by a model in the
function w(x). In both methods, the resulting subset D 0 is used in the model c as
the training dataset.

Similar to the categorisation found in feature selection, we can distinguish two major
classes of algorithms for IS: filter and wrapper. In filter IS, the instances of a given
dataset Dx are selected without the intervention of the model to be trained, typically
using statistical methods or other functions (f(Dx)). In wrapper IS, the selection of
the instances to create the subset is considered as a search problem with at least one
evaluator (w(Dx)), usually, the model to be trained, searching iteratively for a subset
until some criterion is met, e. g., number of iterations, the performance achieved by
the model, or size of the subset. An overview is given in Figure 2.17. In the next
Subsections, we survey filter and wrapper methods.

2.3.1 Filter

Filter methods are less common in the ML literature than wrappers but have received
a lot of attention over the years (Blum and Langley, 1997; Jankowski and Grochowski,
2004; Olvera-López et al., 2010).

A simple filter approach is random sampling, which consists of the random selection
of a pre-defined number of instances of the whole dataset as the training dataset.
This method is frequently used as a baseline approach for comparison with other IS
approaches.
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Figure 2.18: Examples of the mapping of instances using Voronoi Editing (left), Gabriel Edit-
ing (centre) and Relative Neighbourhood Graph Editing (right). Different instances
are represented with dots and squares. In the left and centre images, circled in-
stances are instances that have a neighbour instance of a different class and are
therefore selected by the algorithm. In the right image, only linked instances of
different classes are selected (images from Bhattacharya et al., 1992).

Most of the filter algorithms focus on selecting boundary instances based on the
instances’ class. Boundary instances are the instances that are closer to the decision
boundary of a given model. These algorithms attain competitive performance when
compared with wrapper methods (Olvera-López et al., 2010). One advantage is that,
in most cases, the resulting set of instances works for different classifiers. A downside
of these algorithms is the scaling up for large datasets, since most require processing
each instance of the dataset more than once. Some strategies for subset stratification of
the dataset try to minimise this kind of problem rather than using the whole dataset
(Cano et al., 2005; García-Pedrajas et al., 2013; García and Herrera, 2009). Nevertheless,
there is a trade-off between the classifier’s performance and the computational cost
associated with the stratification strategy.

The first algorithms based on boundary instances map all the instances and manipu-
late them to get a clear boundary between instances of different classes. Bhattacharya
et al. (1992) use Voronoi diagrams to select relevant instances based on the rule of
a 1-Nearest Neighbour where instances that have neighbours of the same class are
discarded (see the left image on Figure 2.18). Since the time complexity of building
Voronoi diagrams in the worst case scenario is O(Nd/2), where N is the number of in-
stances of the dataset and d the number of dimensions, the authors concluded that it is
computationally expensive for datasets with a high number of instances. Bhattacharya
et al. continued working on the topic using graph theory and ended up using Gabriel
graphs, resulting on the algorithm Gabriel Editing, which maps the instances as pre-
sented in the centre image of Figure 2.18. The idea is similar to the Voronoi diagram
based approaches, but it limits the nodes’ connections to a circular range. The authors
expanded their work and tested the Relative Neighbourhood Graph Editing (RNGE),
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Figure 2.19: Example of boundary data, represented by the double circles (image from Hara
and Nakayama, 2000).

a subset of Gabriel graphs where the distance among nodes is relative and instances
have a maximum range to be connected (refer to the right image in Figure 2.18). These
approaches considerably reduce the number of instances of the final dataset for train-
ing, but with the trade-off in performance degradation.

Lewis and Catlett (1994) describe an approach of heterogeneous uncertainty sam-
pling, which filters instances based on the outcome of several probabilistic classifiers
trained with small subsets of the instances of the whole dataset. The probabilistic clas-
sifiers evaluate the instances and those that have a borderline classification around
50% chance of belonging to either class are selected. The selected instances are used to
train another type of classifier, in the particular case of the authors’ work, a C4.5 classi-
fier. The authors stated that the classifier trained with the selected subset of instances
was more accurate than the one trained with ten times the number of instances using
random sampling.

Hara and Nakayama (2000) introduce a method to select boundary instances to train
MLPs. The algorithm processes all instances, picking those that are close to an instance
that belongs to another class (see Figure 2.19). The analysis of the results revealed that
using only boundary data results in low convergence during training. The authors
combined the boundary selection with random selection, improving the classifier’s
performance and reducing the training time of the MLP when compared with the pre-
vious version. Riquelme et al. (2003) introduce the Pattern by Ordered Projection (POP)
method, which selects boundary instances and discards the interior ones. It is based on
the concept of the weakness of instances, defined as the distance, in terms of attributes,
between each instances and a boundary instance. Thus, instances farth from the bound-
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ary instances have a higher weakness value. A threshold for the maximum value of
weakness is defined, and instances with a weakness value higher than the threshold
are discarded from the selection. This method leads to the selection of boundary in-
stances. Raicharoen and Lursinsap (2005) also pursue the idea of selecting boundary
instances with the Pair Opposite Class-Nearest Neighbour (POC-NN) algorithm. The
selection is based on the mean instance of each class. A mean instance is an instance
calculated using the mean of every instances’ features of the same class. An instance is
selected if it belongs to a certain class but is close to the mean instance of another class.
With a different rationale, Vishwanathan and Murty (2002) use a linear Multi-category
SVM to iteratively perform dataset reduction and outlier elimination to select instances
to train a KNN classifier. The approach reduces the size of the dataset by removing
boundary instances and removing instances of the class which are far from the bound-
ary. Thus, it promotes the selection of interior instances to form subsets that maximise
the decision boundary between classes.

Several authors resort to clustering to aid in the task of selecting instances. Mollineda
et al. (2002) introduce the Generalised-Modified Chang Algorithm (GMCA), which
merges clusters of instances of the same class that are close to each other, selecting
the instances near the centroids of the newly merged clusters. Sánchez (2004) presents
the Reduction by Space Partitioning (RSP) algorithms, which constitute a popular set
of three abstraction algorithms known as RSP1, RSP2 and RSP3. They are extensions of
the Chen and Jozwik Algorithm (CJA) (Chen and Jóźwik, 1996). In CJA, the algorithm is
initialised by searching the most pair-wise distant instances of the different classes in
D. Then, the algorithm divides D into N subsets, depending on the number of classes.
Each subset includes items closer to each of the instances selected in the initialisation.
CJA continues by dividing the subset by the largest diameter. It repeats this process un-
til the number of subsets is equal to threshold predefined by the user. Finally, it selects
a mean instance (centroid) for each created subset. The class label of each centroid
is the most common class in the corresponding subset. In contrast, RSP1 computes as
many centroids as the number of different classes in the subset. For each split, RSP1
ensures that each class is represented on the final subset of instances. RSP1 and RSP2
differ in the split of the subsets. RSP2 follows the idea that instances from the same
class should be near each other and instances belonging to other classes should be
far. The split is performed on the subset with the highest overlapping degree among
instances from other classes. The rationale of RSP3 is to promote class homogeneity.
A cluster satisfies homogeneity if all its sub-clusters contain only instances which be-
long to a single class. The algorithm continuously splits the non-homogeneous subsets
until they become homogeneous. Being a non-parametric algorithm is an advantage
of RSP3 since it automatically determines the size of the dataset with the selected in-
stances. The Object Selection by Clustering (OSC) by Olvera-López et al. (2008) selects
boundary instances and a few interior ones. OSC divides D into clusters; the subset
is constructed with boundary instances picked from non-homogeneous clusters and
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interior ones from homogeneous clusters. Ougiaroglou and Evangelidis (2012) present
the Reduction through Homogeneous Clusters (RHC) algorithm, a fast non-parametric
algorithm for data reduction. It works by using the k-means algorithm to cluster the
training dataset into homogeneous clusters recursively. The subset consists of the cen-
troids of the final clusters. The work by Ougiaroglou and Evangelidis (2012) reports
that RHC achieved a better performance than RSP3.

There is also the concept of prototype instances, i. e., instances that are created to
represent a group of instances. The work by Chang (1974) is an example of this type
of approach. It repeatedly merges the two nearest neighbours of the same class into
an average prototype instance, as long as this merge does not increase the error rate
of the training dataset. One drawback of Chang’s method is that it may yield proto-
types that do not characterise well the training set regarding generalisation. Paredes
and Vidal (2000) presented the Weighting Prototypes (WP) method that uses gradient
descent for computing weights for each instance, where the nearest neighbours have a
higher weight, discarding instances that have weights higher than a certain threshold.
Salzberg et al. (1995) proposed a novel and more extreme version of the above methods,
which focuses on the decision boundary and ignore the training set. To accomplish
this, a small set of prototypes is designed to perform the desired decision boundary
by synthesising best-case prototypes. Olvera-López et al. (2008) created Prototype Se-
lection by Relevance (PSR), which computes the relevance of each instance based on
its average similarity, i. e., the most similar instance, in terms of features, among those
of the same class. PSR selects a percentage of relevant instances, pre-determined by
the user, and, based on those choices, the algorithm selects the boundary instances.
Furthermore, instances that are similar but belong to different classes are also selected.
A combination of prototype instances and clustering was explored by Ougiaroglou
and Evangelidis (2016), who further developed their approach, RHC, to remove noise
and mislabelled data, as well as to smooth the decision boundaries between classes.
First, the authors propose an editing algorithm called Editing through Homogeneous
Clusters (EHC). Then, they extend the idea by introducing a prototype abstraction algo-
rithm that integrates the EHC mechanism, and is capable of creating a small noise-free
representative dataset of the initial training instances. The algorithm is called Editing
and Reduction through Homogeneous Clusters (ERHC). EHC and ERHC are based on a
fast and parameter-free iterative execution of the k-means clustering algorithm, which
is used to create homogeneous clusters. Clusters with a single item are removed. ERHC
summarises the instances of the remaining clusters by selecting the mean instance per
each representative dataset. EHC and ERHC were tested on several datasets and the re-
sults show that both are fast algorithms and without underperformance. In the results
reported, ERHC selects fewer instances than EHC.
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2.3.2 Wrapper

The main idea of an IS wrapper method is to use a selection criterion based on the
accuracy obtained by a model, with focus on the notion that instances that do not
contribute to our model should be discarded. This type of algorithms uses an iterative
process and are normally composed of an evaluator and a selection strategy. Wrapper
methods received a lot of attention from the research community over the years. In
this Section we review some of the prominent approaches and explore their connec-
tions with other topics such as boosting methods, unbalanced dataset problems and
classifiers.

Incremental and lazy learners require that the instances present in the dataset are
meaningful and not noisy. Most of the research reported in this Section uses KNN as
its classifier, since its lazy learning methodology makes it easy to set up and scale up
with reasonable performance, making it a good classifier to evaluate the generalisa-
tion boundary (Toussaint, 2002). The work by Hart (1968) is one of the first to address
IS with the Condensed Nearest Neighbour Rule (CNNR), an algorithm that starts the
selection of the training dataset with one randomly selected instance per class. Next,
the classifier is trained and tested iteratively, the test instances that are misclassified
are added to the training dataset. Wilson (1972) focuses on discarding noisy instances
from the training dataset. An instance is discarded when its class is different from
the class of majority its neighbour’s instances’ (based on KNN, with k = 3). Later, the
author also proposed the Repeated Edited Nearest Neighbour (RENN) which repeated
the process of Edited Nearest Neighbour (ENN) while changes are made in the se-
lected dataset. The work of Tomek (1976) builds upon the idea of ENN with different
ks, where the misclassified instances are discarded if selected by the different KNNs.
Edited Normalised Radial Basis Function (ENRBF) is a more sophisticated extension of
ENN where the instances are discarded based on the probability of given an instance
x belonging to the kth class from the training dataset D (p(y|x,D)) (Jankowski and
Grochowski, 2004). In a similar way Vázquez et al. (2005), apply ENN but using the
probability of belonging to a class instead of using the KNN rule.

Wilson and Martinez (2000) explore the idea of associate and proposes five methods,
named Decremental Reduction Optimization Procedure (DROP)1- 5, that make use of
this concept. The associates of an instance x are those instances such that x is one of
their k nearest neighbours. DROP1 discards instance x from D if the associates of x in
the subset D 0 are correctly classified without using x to train the model. DROP1 has
the problem of not being effective in discarding noisy instances. DROP2 was thought
to fix this issue by extending DROP1 and testing not only the associates of x in subset
D 0 but for the whole dataset D. DROP3 and 4 use a combination of ENN and DROP2.
DROP3 uses a noise-filtering pass using ENN without constraints. In DROP4, an instance
considered noisy is only removed if it is misclassified by its KNNs and if the removal
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of the instance does not degrade the performance. DROP5 is based on the same idea as
DROP2, but discards instances with a different class, to smooth the decision boundaries.

Based on the definitions, the SVM (Cortes and Vapnik, 1995) is not only a classifier
but also an IS method since among the elements in D, only the support vectors (V)
are used to discriminate between classes, meaning that D 0 = V (Olvera-López et al.,
2010). Based on this idea, Li et al. (2005) present a wrapper method based on SVM that
works by performing a two-step selection: in the first step it uses a SVM to obtain V

and afterwards uses DROP2 over the dataset V . Another method related to instance
selection based on SVM is Support Vector k-Nearest Neighbour Clustering (SV-kNNC)
proposed by Srisawat et al. (2006), which after applying SVM over D uses k-Means
clustering V , retains only instances belonging to homogeneous clusters. When the
cluster is not homogeneous, the algorithm preserves the instances from the majority
class.

The primary use of IS is to tackle the problem of unbalanced data. The most straight-
forward resampling methods are random oversampling and random undersampling
(Drummond and Holte, 2003). The former augments the minority class by exactly
duplicating the examples of the minority class, while the latter randomly removes in-
stances of the majority class until the classes are balanced. One of the shortcomings is
that random oversampling may make the decision regions of the learner smaller and
more specific, thus causing the learner to overfit. Random undersampling can remove
some useful information from the data sets. The work by Drummond and Holte (2003)
compares this type of approaches and concludes that undersampling produces reason-
able sensitivity to misclassification costs and class distribution, whereas oversampling
is ineffective, producing little or no change regarding performance. Nevertheless, this
is still an active research area, and divergent opinions exist regarding which algorithms
work better.

The most commonly accepted approaches for unbalanced datasets are Synthetic Mi-
nority Over-sampling Technique (SMOTE) by Chawla and Bowyer (2002) and ADAptive
SYNthetic sampling (ADASYN) by He et al. (2008). SMOTE is a standard boosting proce-
dure, improving the prediction of the minority class while not sacrificing the perfor-
mance of the whole testing dataset. The algorithm generates new synthetic instances
via feature interpolation between the minority instances and the nearest neighbours.
A clear advantage of SMOTE is that it makes the decision regions larger and less spe-
cific. ADASYN also uses feature interpolation to generate synthetic instances. The dif-
ference is that instead of applying a uniform distribution for IS like SMOTE, ADASYN
uses a density distribution as a criterion to automatically decide the number of syn-
thetic instances to generate for each minority class. Other researchers explore several
improvements and extensions of SMOTE. Recent advancements include the work by
Han et al. (2005) who presented BorderLine-SMOTE, based on the idea that to achieve
better prediction performance, most of the classification algorithms learn the bound-
ary of each class as exactly as possible in the training process (Olvera-López et al.,
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2010; Toussaint, 2002). The authors state that the instances on the boundary and the
ones nearby are more prone to be misclassified than the ones far from the boundary,
and thus are more important for classification. Based on this analysis, the authors
propose and test oversampling borderline instances of the minority class. Alejo et al.
(2015) introduced a dynamic oversampling method, a hybrid method that combines
SMOTE with a sequential backpropagation algorithm. The oversampling rate is based
on the error of the backpropagation Mean Square Error (MSE). The algorithm only se-
lects the training instances necessary to deal with the class unbalance problem while
avoiding an increase of the training time. Almogahed and Kakadiaris (2015) worked
on an algorithm called filteriNg of ovEr-sampled dAta using non-cooperaTive gamE
theoRy (NEATER). The classification problem is formulated as a non-cooperative game,
where all the instances are players and the goal is to uniformly and consistently label
all of the synthetic data created by oversampling techniques. It uses mainly SMOTE and
ADASYN algorithms to generate instances. The authors report that the algorithm does
not require any prior assumptions and selects representative synthetic instances while
generating a minimal number of noisy instances.

There is a connection among IS, AL and boosting approaches. The work by Sung
(1996) explores this connection. The main contributions are two-fold. First, the cre-
ation of a general distribution based model to accurately map the instances into feature
space, where the model learns from the instances a similarity measure for matching
new patterns against the distribution based model. Since the authors worked on object
and pattern detection problems that are based on learning, the system’s performance
depends heavily on the quality of the training instances it receives. For that reason,
they worked on the selection of high-quality instances for the learning task. The sec-
ond contribution was the successful application of an AL formulation for function
approximation. Based on the work with three specific approximation function classes,
Sung (1996) shows that the active IS strategy learns its target with fewer instances than
random sampling. Afterwards, the authors simplify the original AL formulation and
show how it leads to a tractable IS paradigm suitable for use in object and pattern
detection problems. The work by Freund and Schapire (1997) on boosting is described
as a wrapper method, which takes a generic learning algorithm and adjusts the distri-
bution given to it by removing some training data based on the algorithm’s behaviour.
The basic idea is that, as learning progresses, the booster selects instances from the
distribution to keep the accuracy of the learner’s current hypothesis near to that of
random guessing. The consequence is that the learning process focuses on the distri-
bution of instances that are currently hard to learn. Boosting under default conditions
reduces the number of instances required for the algorithm to learn. Drucker et al.
(1994) have shown that boosting can improve the accuracy of ANN methods on tasks
involving Optical Character Recognition (OCR). Boosting approaches seem especially
appropriate for algorithms that use optimisation techniques, e. g., back-propagation,
where training is more computationally expensive than testing.
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2.3.3 Evolutionary and Bio-Inspired

The calculation of a consistent training subset with a minimal cardinality for the KNN
rule is an NP-hard problem (Hart, 1968). Like many other combinatorial problems, IS
may require an exhaustive search to obtain an optimal solution. Since we can frame
the problem of finding the best group of instances as a search and optimisation prob-
lem, approaches that use metaheuristics for IS are widespread. Tsai et al. (2013) report
several optimisation techniques to find the training subset of small size. Such methods
include tabu search, gradient descent and simulated annealing.

One of the first approaches was proposed by Cameron-Jones (1995), who uses hill
climbing algorithms to find the instance subset with the best accuracy based on dif-
ference heuristics. Gathercole and Ross (1994) use GP for IS. Nevertheless, the authors
argued that GP on a difficult problem with a large training dataset, a large popula-
tion size is needed and a significant number of evaluations must be carried out. The
authors worked to reduce the number of such evaluations by stratifying the training
dataset on which to carry out the GP algorithm, attaining promising results.

Cano et al. (2003) use EAs for knowledge discovery data reduction. The authors com-
pare conventional GAs with different parameter configurations, with non-evolutionary
IS algorithms. The results show that the evolutionary instance selection algorithms
consistently outperform the non-evolutionary ones. They report the following advan-
tages: better instance reduction rates; higher classification accuracy; and models that
are easier to interpret.

Derrac et al. (2012) explore an approach integrating IS, instance weighting, and fea-
ture weighting, in the scope of a Co-Evolutionary Algorithm (CA) model framework.
To accomplish these tasks, three populations are defined within a cooperative frame-
work. The first performs IS, aiming to select a suitable subset of instances to enhance
the classification performance of the KNN classifier. To increase the speed of the fi-
nal classification process, it tries to reduce the size of the subset as much as possible.
The second and third populations perform feature weighting and instance weighting,
respectively. Both are used to select the best possible weights to further increase the
performance of the KNN classifier. Their search processes are guided by a Steady-State
Genetic Algorithm (SSGA) with a crossover operator with multiple descendants. This
operator is used to increase the convergence capabilities of the standard SSGA, which
is a necessary improvement in the global behaviour of the CA. The authors compare
it with a wide range of evolutionary and non-evolutionary related methods, showing
the benefits of their co-evolutionary approach.

Miloud-Aouidate and Baba-Ali (2013) perform IS based on Ant Colony Optimization
(ACO) principles, called Ant Instance Selection (Ant-IS) algorithm. The objective is to
optimise the number of instances to be selected from a dataset to train a KNN with the
best accuracy. The experimental results on several validation datasets are compared to
other IS approaches. The results provide evidence that: (i) Ant-IS is competitive with
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the approaches based on KNN; and (ii) the datasets created with Ant-IS offer better
classification accuracy than those obtained with other algorithms considered in the
study.

Triguero et al. (2015) explore the use of classification techniques in a Big Data (BD)
scenario. The authors argue that the huge quantities of instances available for evalua-
tion and learning may limit the applicability of most of the standard techniques. This
problem becomes even more difficult when the class distribution is skewed, an issue
known as unbalanced big data classification. Evolutionary undersampling techniques
have shown to be a promising solution to deal with the class unbalance problem. How-
ever, according to Triguero et al. (2015), typically, their practical application is limited
to problems with no more than tens of thousands of instances. To overcome this limita-
tion, they propose a parallel model to enable evolutionary undersampling methods to
deal with large-scale problems. For this purpose, they resort to Map Reduce schemes
that distribute the algorithm’s execution in a cluster environment. Furthermore, they
developed a windowing approach for class unbalance data to speed up the under-
sampling process without losing accuracy. They tested their algorithms with several
datasets with up to 4 million instances. The overall results reported promising scala-
bility abilities.
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2.4 instance generation

Creating or obtaining representative examples to include in a training dataset is a
hard task. IG approaches, or more recently referred to as Data Augmentation (DA) ap-
proaches, address these issues. They are often part of bootstrap sampling techniques,
a process for creating a distribution of datasets out of a single dataset with the ob-
jective of iteratively improving a classifier’s performance (Davison and Hinkley, 1997;
Sammut and Webb, 2010). The term DA refers to methods for constructing iterative
optimisation processes or sampling algorithms, with the generation and introduction
of unobserved data or latent variables (Dyk and Meng, 2001). Historically, for deter-
ministic algorithms, DA was popularised in the general statistical community by the
seminal article by Dempster et al. (1977), regarding the usage of Earth Mover’s (EM)
algorithm for maximising a likelihood function or, more generally, a posterior density.
For stochastic algorithms, DA was popularised in the statistical literature by Tanner
and Wong’s (2009) DA algorithm for posterior sampling.

Transposing the idea of DA to ML, the general approach is to generate instances that
can be used for training the model and changing its behaviour, changing the shape of
the decision boundary, or simply improving the structure that models the distribution
of data. There are two main types of approaches for IG: (i) adding noise or variations to
the existing examples; and (ii) creating a model capable of generating new instances.
We survey approaches that focus on the domain of IG in general and, in particular,
image generation approaches since it is a dominant topic in this thesis. Similarly to
the previous Section, the approaches that use evolutionary techniques are analysed in
a separate Subsection.

2.4.1 Modification of Instances

The core idea of this kind of IG approach is to modify existing instances from the
dataset, creating new ones using a model or function to do so. The overall process is
illustrated in Figure 2.20, where an instance is modified on one of its features, leading
to a new instance. Obviously, one may modify more than one feature.

Sung and Poggio (1995) present a commonly used method for bootstrapping in im-
age classification problems that implies the synthesis of instances. In a face detection
problem, the authors present a bootstrapping method for augmenting the non-face
instances composed of the following steps: (i) selecting a starting set of instances of

xm = {xm0, xm1, ... , xmn} x’m = {xm0, x’m1, ... , xmn}f(x)

Figure 2.20: IG using a function f(x) to modify, e. g., the feature xm1 to create a new instance.
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Figure 2.21: The SVM boundary for faces (circles) and non-faces instances (squares) (image from
Osuna et al., 1997).

non-face images; (ii) training a classifier (a MLP) with the current dataset of images
(face and non-face); (iii) randomly selecting parts of non-face images, classifying them,
and adding the misclassified image parts to the current dataset of images; (iv) repeat-
ing this process from step (ii) until a certain criterion is met (e.g. performance degrades
or a predetermined number of iterations or samples added is reached). These new im-
ages are considered as variations of the existing ones. To augment the positive set
of images, the authors introduce variations to the existing instances of faces by rotat-
ing, changing contrast and lightning, and mirroring the images. Due to their value
for improving the performance of the classifiers, these techniques became popular in
face detection approaches (Rowley et al., 1998a; Viola and Jones, 2001; Yang et al.,
2000, 2002). Osuna et al. (1997) use the same approach as Sung and Poggio (1995) to
train SVM to distinguish faces from non-faces. The authors analyse the SVM’s decision
boundary, concluding that some of the images of the non-face dataset near the deci-
sion boundary resemble faces and that these images are arguably similar to the face
instances near the boundary (as shown in Figure 2.21).

Niyogi et al. (1998) use prior knowledge to create new instances, thereby expanding
a training dataset. At first, they perform an overview of the supervised learning formu-
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lation, analysing the complexity of the learning problem. They discuss the complexity
of these issues and why in the absence of prior knowledge a vast number of instances
may be required to achieve adequate performances. The authors describe specific non-
trivial transformations based on prior knowledge, which allow them to generate new
instances for pattern recognition problems. In the context of face recognition, they
create different virtual views from a single instance by using prior knowledge about
linear object classes, 3D views, 2D projections and rotations (Beymer and Poggio, 1995).
A model for face recognition is trained using 1 real view and 14 virtual samples per
person, achieving 85% correct classification rate. Nevertheless, it does not achieve the
performance of a model trained with 15 real views, which attained 99% correct clas-
sification rate. Both systems perform better than the initial system, with only 1 real
view, which attained 32%, showing the potential of synthesised instances to improve
performance.

In a speech recognition problem, Stahl et al. (2001) propose a method for synthet-
ically generating more training instances, covering the maximum types of instances
and thus improving performance on test data. The authors state that the mismatch be-
tween the training and test set recording conditions is an issue and that one solution
is to enlarge the speech collections by conducting records in many different environ-
ments and conditions. Since it is hard to do cover all the possible conditions, they
propose an approach to generate training data synthetically by filtering clean speech
with impulse responses and adding noise signals from the target domain. The authors
experiment several types of variations to create new instances for training their mod-
els. The results attained in a test dataset suggest that the new instances significantly
improve the performance.

Simard et al. (2003) propose a simple technique for vastly expanding the training
set based on elastic distortions (see Figure 2.22), creating different training instances
for the Modified National Institute of Standards and Technology (MNIST) dataset. They
argue that simple distortions such as translations, rotations, and skewing can be gen-
erated by applying affine displacement fields to images. Their model trained with
instances generated with affine distortions significantly improved their results on the
MNIST test dataset.

2.4.2 Generative Machine Learning

As analysed in Section 2.1, in generative approaches, a ML model is used to model
a dataset distribution. These models can be used to generate new instances that can
be used to improve ML approaches. Other types of approaches use additional mod-
els to generate new instances and add them to the training dataset to improve the
performance of another model.

Melville and Mooney (2004) present a new meta-learner called Diverse Ensem-
ble Creation by Oppositional Relabelling of Artificial Training Examples (DECORATE),
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Figure 2.22: On the top left, the original image. On the right and bottom, the pairs of displace-
ment fields applied to the original image and the resulting images (image from
Simard et al., 2003).

which uses strong learners to build an effective and diverse committee. The approach
relies on adding different randomly constructed instances to the training set when
building new committee members. Melville and Mooney (2004) assume that the fea-
tures are independent, and generate new instances by randomly picking instances
from an approximation of the training dataset distribution. In other words, for a nu-
meric attribute, a new feature is defined with values from the Gaussian distribution
defined by mean and standard deviation of the feature values in the training dataset.
In case of a nominal feature, the authors compute the probability of occurrence of each
distinct value in its domain and generate values based on this distribution. Classes are
assigned based on the predictions of the current ensemble. Thus, a prediction from
the ensemble is made. If the probability of belonging to a class is 0, a small constant
value is assigned. The classes are then selected, so that the probability of selection is
inversely proportional to the current ensemble’s predictions. The authors state that
this process directly increases the diversity of the committee when a new classifier is
trained on the augmented data. Furthermore, they argue that ensembles of classifiers
are often more accurate than their component classifiers if the errors made by the
ensemble members are uncorrelated, suggesting that their opposite labelling method
enforces that. The approach was compared to state of the art approaches, such as
boosting, bagging and RFs, obtaining results that are statistically significantly better in
15 representative datasets from the UCI repository1 (Frank and Asuncion, 2010).

Wang et al. (2005b) propose a manifold-based method to select a face detection train-
ing dataset. They apply a subsampling algorithm based on manifold called Isomap
(Isometric feature mapping (Tenenbaum et al., 2000)). Isomap maps the face dataset

1 UCI Machine Learning Repository — http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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into a 2-dimensional space that the authors use to calculate distances among the in-
stances. The subsampling of the dataset is performed by excluding instances that are
closer to each other more than a given threshold. This is done by calculating the gaps
between the instances in the manifold space and creating synthetic instances to fill
them. The synthetic instances are variations of the ones surrounding the gaps. These
instances are generated through a method that the authors named interweaving, using
the following algorithm: (i) apply Principal Component Analysis (PCA) and compute
the coefficients e for all faces in the current dataset; (ii) calculate the nearest instances
to the gap, based on a predefined maximum distance; (iii) calculate the weights for
the nearest instances based on the distance to the gap; (iv) construct the new instance
using a weighted linear combination of the coefficients e of the nearest instances (see,
e. g., Figure 2.23). This approach allowed Wang et al. to develop classifiers that per-
form better in the benchmark dataset (MIT-CMU (Rowley et al., 1998a)) than random
sampling methods similar to the ones adopted by Sung and Poggio (1995).

Chen et al. (2007) also used a manifold with the objective of creating a dataset to
train a robust face detector. Building on Wang et al.’s work (2005), the authors use
Isomap to estimate the distance between instances. Next, the authors resort to Local
Linear Embedding (LLE) – a non-linear dimensionality reduction algorithm – to com-
pute weights of the instances in the low dimensional space. Using the distance and
weights information, a threshold is defined, and neighbouring instances below the
threshold are removed from the dataset. Possible gaps in the low dimensional space
are filled through the generation of new instances by using the same method by Wang
et al. (2005b). The combination of Isomap and LLE is applied to the positive and nega-
tive datasets, and the resulting datasets are used to train an AdaBoost classifier. After
using the AdaBoost classifier on a large dataset, they collect the false positives and use
them to train a one-class SVM. The final detector is the combination of the Adaboost
classifier and the SVM. Their results in the MIT-CMU dataset outperformed state of
the art approaches at that time (93.5% correct detection rate). The work by Wang and
Chen indicates that, in this specific context, generating a large set of positives and neg-
atives instances based on a starting dataset can significantly improve the performance
of classifiers.

Sapp et al. (2008) worked with synthetic instances to gather a large dataset for real
image object recognition. The idea consists in capturing images of a few example ob-
jects in a green screen, and then synthesise a new, larger dataset by perturbing the
foreground, background and shadow of the images using a probabilistic model. To
learn the probabilistic model they used the groundtruth information about the fore-
ground, the background, the object and the texture. The key insight of this approach
is that it can model the true distribution of an object class roughly as well as real data,
by using synthetic data derived from real images.

Similarly, Jaderberg et al. (2014) create a real text image generator. Jaderberg et al.
(2014) argue that the available datasets are very limited regarding the existing text
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Figure 2.23: Instances generated by the interweaving algorithm. (image from Wang et al.,
2005b)

vocabulary, i. e., the text that appears in natural images. Therefore, to overcome this
issue they developed an offline process to synthesise instances. It randomly renders
typefaces (fonts) under different randomly parameterised conditions. These include
border and shadow rendering, base colouring, projective distortion, and adding noise.
At the final step, the font is blended into an existing image of the starting dataset. The
whole process is shown in Figure 2.24. The results obtained are highly realistic and
can replace real-world instances of training datasets in a problem of text recognition
in natural images, i. e., scene text recognition. The authors conducted experiments
where they replaced the real instances with the synthetic data to train different CNNs
and obtained state of the art performance in several datasets such as ICDAR 2003,
ICDAR 2013 benchmark, Street View Text, and IIT5k.

The following works described in this Section are relevant as IG approaches but they
were not used to improve the performance of classifiers.

Both VAEs and GANs (defined in Subsection 2.1.1) are able to generate instances
(see Figures 2.25 and 2.26). Larsen et al. (2015) perform a study comparing these ap-
proaches to synthesise new instances evaluating only the generation process. It also
proposes two more approaches, a combination of both, VAEGAN and a VAE that uses
a GAN to measure similarity of the outputs and improve the VAE training process
(VAEDisl). In this work, the idea is to learn a generative model for face images condi-
tioned on facial attributes. At test time, the authors use the different models to generate
face images by retrieval from chosen attribute configurations. A separately trained re-
gressor model predicts the attributes from the generated images. They argue that a
good generative model should be able to produce visual attributes that are correctly
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Figure 2.24: On the top row, the text generation process. It involves text generation, font ren-
dering, creating and colouring the image layers, applying projective distortions,
and finally image blending. On the bottom, some randomly sampled data created
by the synthetic text engine (image from Jaderberg et al., 2014).

Figure 2.25: Images generated with a VAE on CIFAR-10 (image from Goodfellow, 2016).
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Figure 2.26: Images generated with a GAN. The images from the training dataset are high-
lighted in yellow (image from Goodfellow et al., 2014).
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Figure 2.27: Comparison of instances generated using VAE, VAEDisl , VAE/GAN and GAN (image
from Larsen et al., 2015).

recognised by the regression model. Therefore, they proposed a method to evaluate the
reconstruction of the instances, arguing that the VAE/GAN reconstructs the instances
with less error (see Figure 2.27).

GANs are hard to scale when using CNNs. Radford et al. (2015) introduced the Deep
Convolutional Generative Adversarial Network (DCGAN) as a stable set of architectures
for training GANs that give evidence that they learn good representations of images for
supervised learning and generative modelling. The authors altered the architecture
of the networks that allowed them to train robust convolutional discriminator and
generator networks. Their work revealed that the latent space of these networks could
be traversed via the representation space and that vector operations showed consistent
and stable generations with semantic relevance. Thus, the generator holds arithmetic
properties based on the vectors of the latent space; e. g. averaging the z vectors of
the latent space that generates a smiling woman minus the average vector that creates
a neutral woman plus the average vector that generates a neutral man is going to
generate a vector z that creates smiling men as shown in Figure 2.28.

Gregor et al. (2015) argue that most approaches for image generation aim to generate
entire, complex images in one step. The authors suggest that when a person is drawing,
a sequential and iterative process takes place, refining and evaluating the drawing at
each step until the drawing is finished. The authors aim to replicate such process
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Figure 2.28: Examples of DCGAN arithmetic using latent space vectors. Averaging z vectors of
a type of instances and performing arithmetic operations with them yield a new
average vector, and by sampling from it we get a different type of instances (image
from Radford et al., 2015).
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Figure 2.29: On the left a VAE and on the right a DRAW network (image from Gregor et al.,
2015).

by introducing the Deep Recurrent Attentive Writer (DRAW) network. Using DRAW,
each part of the scene is generated independently. The network consists of pairs of
RNNs (definition in Subsection 2.1.1) encoders and decoders. The encoder network
compresses the real images presented during training and a decoder that reconstitutes
images to the canvas space. It is considered a type of VAE, extending them with a
progressive refinement mechanism and spatial attention algorithm (see Figure 2.29).
Based on the RNN idea of connecting the hidden layers of the t with t- 1, using DRAW,
the hidden layer of the t + 1 encoder is connected to the t - 1 layer of the decoder.
Furthermore, for each t, the decoded images are successively added to form the final
image. Another important characteristic is the existence of canvas matrix, i. e., where
the pixels of the final scene are drawn. The canvas matrix (c in Figure 2.29) takes part
of the generation process. The network at each time t must decide what part of the
image is going to serve as input, where it is going to generate the output and what
it is going to generate (depicted as read and write boxes in Figure 2.29). The system
is trained end-to-end with stochastic gradient descent, where the loss function is a
variational upper bound on the log-likelihood of the data. These two points greatly
reduce the complexity of the information that the Autoencoder needs to learn, thereby
allowing its generative capabilities to handle larger, more complex distributions, like
natural images. To generate an image, we sample from zt space running the decoder
at each time step t, adding each image result until all steps t of the network are
processed. This approach improves the generative modelling capabilities by splitting
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Figure 2.30: Example of the DRAW network generation process. It shows the generated images
throughout the different time steps (image from Gregor et al., 2015).

the complexity of the task across the temporal and spatial domains, refining the output
in each time step as shown in Figure 2.30. The approach was used to generate images
for the MNIST, MNIST with two digits, Street View House Numbers dataset and CIFAR
(see Figure 2.31).

Oord et al. (2016) introduced the Pixel RNN. It uses autoregressive LSTMs to model the
explicit density of the dataset. It is based on the chain rule that allows to calculate any
member of the joint distribution of a set of random variables using only conditional
probabilities. Thus, to define the likelihood of an image x, it computes the probability
of the ith pixel given all previous pixels. The approach must generate one pixel first,
then, based on the first pixel generated, it generates the second until it produces the
whole image. Examples of the generated images are shown in Figure 2.32. The authors
also present Pixel CNN an alteration to the previous model where CNNs are used to
model a portion of the image and not only one pixel. Consequently, each previously
evaluated pixels are dependent on the modelling of a CNN over some region. The
results attained are comparable with the GAN’s results with a simple way to calculate
the likelihood, but the approach is computationally more expensive.
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Figure 2.31: Instances generated with DRAW networks for different image datasets: on the top
left MNIST; on the top right the Street View House Numbers; on the bottom left
CIFAR-10; and on the bottom right the MNIST with two digits. All images, except
the MNIST with two digits, have in the rightmost column the closest (in terms of
RMSE) groundtruth instance from the training dataset.
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Figure 2.32: Synthetic images generated using Pixel RNN. On the left, images generated with
models trained with the CIFAR-10 dataset and, on the right, images generated
with models trained with the ImageNet dataset (image from Oord et al., 2016).

2.4.3 Evolutionary

EC has been used in the improvement of ML models; e. g., EAs have been used in ML
to evolve hyper-parameters, features, the model’s weights, among others. In IG, EAs
are involved in the generative process. That is, EAs are used to create, from scratch or
based on the parametrisation of a pre-defined model, new instances to improve the
ML approach. To the best of our knowledge, while surveying the work done in this
particular area, we concluded that few examples use EC for IG.

In the seminal work by Baluja et al. (1994), a system for automatic image generation
is presented. The system employs a GP engine with an ANN to automate the production
of images based on the user’s preference. The training dataset is composed of images
generated through interactive evolution. The user assigns a score to each of images of
the training dataset. Then, an ANN was trained using backpropagation on the dataset.
The GP engine uses the ANN to assign fitness. Several experiments were conducted
with different configurations of ANN and datasets. The authors state that some of the
evolutionary runs quickly converged to plain images with a high activation but did
not match the user’s preference. The propensity for EA to find shortcuts on the fitness
landscape and exploit shortcomings of the classifier, at that time, was also exposed in
other works, e. g., by Spector and Alpern (1994) and Teller and Veloso (1995).

Machado et al. (2007a,b) present an approach for the production of images based
on the promotion of an arms race between an ANN and an EC system. The system is
comprised of three components: a Feature Extractor (FE), a GP engine, and an ANN. The
FE extracts features from the input images, mainly based on complexity metrics. The
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Figure 2.33: Overview of the process of image generation using an EA and a DNN (image from
Nguyen et al., 2015).

GP engine, called NEvAr (Machado and Cardoso, 2002), allows the generation of popu-
lations of images (see Section 4.1.2.1). The ANN is a MLP that receives the FE features
as input and is trained to discriminate among images created by NEvAr (internal) and
famous paintings (external). The ANN is used to assign fitness to the images generated
along the populations. The system evolves populations of images and tries to find
images classified as external by the ANN. After NEvAr finishes the evolutionary run,
the images created and classified as external are added to the internal set of images.
An ANN is retrained to distinguish between the two sets. The process is repeated for
several iterations and based on the experimental results of training, test and validation
datasets, the authors concluded that the classifier improved its performance along the
iterative process. Furthermore, the evolutionary process also explores different paths,
generating different types of images. Among the generated images, there were atypical
images that explored shortcomings of the classifier.

Also related with the work by Machado et al. (2007a), more recently, Nguyen et
al. (2015) worked on EAs to generate images using DNNs to assign fitness. Figure 2.33
shows an overview of the process and results attained. They tested EAs with two differ-
ent representations: a direct encoding, where the individual is a pixel based represen-
tation with operators that change the values by polynomial mutation operators; and
a Compositional Pattern Producing Network (CPPN) that can evolve complex images,
based on Picbreeder (Secretan et al., 2008). Although some of the evolved instances are
recognisable by humans as being the target object, the authors also conclude that state
of the art DNNs for object recognition show high confidence when evaluating noisy and
unrecognisable images/instances that come from the CPPN. They reported that these
images did not significantly improve the performance of classifiers on the Imagenet
dataset. This work is related but preceded by this thesis’s work and publications, start-
ing with the work in face detection (Machado et al., 2012a,b), object detection (Correia
et al., 2013a), production of aesthetically pleasing images (Correia et al., 2013b, 2017)
that are going to be discussed in Chapters 5, 6 and 7.
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Chen et al. (2004) propose a self-adaptive GA to improve face detection systems. The
approach relies on sampling the face training dataset. The initial population of the
GA is composed of positive instances of a training dataset, i. e. faces. Therefore, each
individual is an image, encoded as an integer vector representing the intensity values
of each pixel. The recombination operator is based on an image segmentation process
that divides the image into regions (forehead, eye, nose, mouth) and exchanges the
segments between individuals. Mutation consists in changing certain aspects of the
image, such as illumination, position and angle of the selected segmented parts. The
fitness of the individuals is determined by the output of a SNoW classifier (Yang et
al., 2000). At each generation, the individuals that were classified as faces are added
to the training dataset, and the SNoW classifier is retrained with the augmented set.
Adding more variations to the positive dataset led to performance improvement when
compared with the initial classifier. Furthermore, this approach is combined with the
approach by Chen et al. (2007) (already described in the previous Section) into a sin-
gle framework for IG by Chen et al. (2009). It uses the described self-adaptive GA to
generate positive instances. The negative instances are generated using the method
introduced by Sung and Poggio (1995) (see Subsection 2.4.1). The resampling is per-
formed by using Isomap and LLE from the work by Chen et al. (2007). A SNoW classifier
is trained with the resulting dataset, which obtains a 90.7% correct detection rate with
no false alarms on the MIT-CMU dataset. This work is relevant for this thesis for a cou-
ple of reasons. First, it shares the same classification problem that will be described in
Chapter 5. Second, it uses a classifier to assign fitness in the evolutionary process sim-
ilar to the approach that we propose in Chapter 3. Last, it is an approach that evolves
photorealistic faces, which is related to the work of Section 4.5.





3
E V O L U T I O N A RY F R A M E W O R K F O R C L A S S I F I E R A S S E S S M E N T
A N D I M P R O V E M E N T

Based on the survey presented in the previous Chapter we propose a framework that
uses EC to generate instances to improve the dataset and consequently the performance
of classifiers. We started with the idea for a generative framework that evolved into an
IS and DA framework. We saw an opportunity to explore the potential of EC to create
new instances of a particular class, i. e., a generative approach, that combines EC with
a classifier (Machado et al., 2012b). After the first experiments, we observed that our
approach was generating instances from the target class, which explored shortcomings
of the classifier. We thought that these instances could be included in the training
dataset and that training with these new instances should minimise the shortcomings
of the classifier and this way improve its performance. We were also motivated by the
fact that, at that time, most IS approaches relied on the starting base dataset to generate
new instances. With our approach, we rely on the quality of the classifier.

Note that, at the start of our work (Machado et al., 2012a,b), some of the works
mentioned in the state of the art were not published: Goodfellow et al. (2014), Nguyen
et al. (2015), and Radford et al. (2015). We were motived by the ideas by Romero et al.
(2003), Machado et al., 2007a and preliminary results (described in Section 4.2), which
led us to create and explore the framework proposed in this Chapter. The framework
built during this thesis makes use of new and existing ideas and algorithms, expand-
ing upon the current state of the art by: (i) using EC to generate new dataset instances,
i. e., perform IG; (ii) using classifiers to assign fitness to the instances generated in the
evolutionary process; (iii) resorting to sampling algorithms to select suitable instances;
(iv) creating an autonomous and dynamic method for IG, which, based on the classi-
fier’s shortcomings, iteratively generates instances that are used to retrain the classifier,
minimise the shortcomings, and increase its performance.

In the remainder of this Chapter, we present the framework. This Chapter is divided
into five Sections: first an overview of the generalised version of the framework (Sec-
tion 3.1), afterwards, each relevant component is analysed individually (Sections 3.2,
3.3, 3.4 and 3.5).

3.1 overview

EFECTIVE is composed of three main modules: EC engine, CS and Supervisor. The frame-
work relies on promoting a competition between the EC engine and the CS. The EC
engine is responsible for evolving new training instances. The CS classifies the evolved
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Figure 3.1: Overview of EFECTIVE.

instances; the results of this classification are used as fitness to guide the evolutionary
process. The Supervisor manages the instances that were generated by the EC module,
deciding which should be added to the dataset. These modules come together to cre-
ate an iterative process for improvement of classifiers. That is, when the evolutionary
runs are over, the classifiers are retrained using an expanded version of the dataset,
which includes the evolved instances, and the process is repeated. Figure 3.1 shows an
overview of the framework. The approach involves the following steps:

1. Selection of a starting dataset;

2. N framework iterations start; C classifiers are trained based on the available in-
stances, forming the CS module;

3. E independent EC runs are executed to generate instances; the output of each c

in C is used to assign fitness to the evolved instances of the EC run (e) assigned
to it; the fitness of the instances depends on the results of the classification task;

4. The EC runs stop when a termination criterion is met (e. g., a predefined number
of generations, or attaining a certain fitness value);

5. The Supervisor selects and filters instances gathered from all EC runs, updating
the training dataset;

6. The process is repeated from step 2 until the termination criterion is met (e. g., a
defined number of framework iterations, attaining a certain number of instances,
or reaching a certain performance value).

While these steps provide a high level overview of the process, Algorithm 3.1 pro-
vides a more detailed insight of the framework’s behaviour.
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Algorithm 3.1 The EFECTIVE algorithm.
1: procedure EFECTIVE
2: D [< x0, y0 >, ...,< xm, ym >] . define a baseline dataset
3: C [c0, ..., ci] . set of CSs
4: E [ec0, ..., eci] . set of ECs
5: nec . define the number of EC runs with different random seeds
6: while criterion not met do

7: D 0  [] . create an empty temporary dataset
8: for all ci 2 C do

9: ci  train(ci(D)) . train the classifier with the current dataset
10: for all eci 2 E do

11: for s < nec do . each run has its s seed
12: I evolve(t, eci, s, ci) . using eci with s seed and classifier ci,

evolve instances classified by ci as belonging to a particular class t
13: D 0  [D 0, I] . add them to a temporary dataset
14: end for

15: end for

16: end for

17: D supervise(D 0,C,E) . Supervisor updates the dataset
18: end while

19: return D . return the updated dataset
20: end procedure
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In each framework iteration, the evolutionary engine must evolve instances of a pre-
determined class that are misclassified by the CS, otherwise no progress is achieved.
After gathering the evolved instances, the Supervisor decides which instances should
be used to update the dataset at each framework iteration. Finally, EFECTIVE requires
the definition of an appropriate termination criterion (step 6). This depends, mainly,
on the task at hand and on the existing computational resources. In the next Sections,
we analyse the details of each module that compose the framework.

3.2 classifier system module

In theory, EFECTIVE can use any classification algorithm, as long as it is possible to
extract information from the classification task that allows the construction of a fitness
function able to guide the evolutionary process.

This module is obviously a key part of the framework since we are trying to improve
the dataset based on the performance of the CS. When looking at Algorithm 3.1, we
can see that it is used in three key points: (i) in the training phase, where the classifiers
can be trained under different conditions (step 9); (ii) in the evolution phase to assign
fitness (step 12); and (iii) in the supervise phase (step 17), the information on the clas-
sification of each classifier (ci) can be used for the Supervisor algorithm as described
in Section 3.4.

3.3 evolutionary computation module

The EC engine is a key module of this framework, assuming the task of generator
of new instances. In ML, the generative approach learns how to model the model’s
distribution of instances of each individual classes. It learns how the instances can be
generated by learning to model the joint probability p(x,y), where x is an input and
y is the class, generating instances from the model’s distribution of instances (p(x)) (Y.
Ng and I. Jordan, 2002). To generate suitable instances with an EC engine we need to
search for instances in the model’s distribution of instances (p(x)). EA algorithms are
suitable for search problems as they are well-known for the ability to find and optimise
solutions by navigating judiciously in the solution space (Eiben and Smith, 2003).

The EC engine should generate instances of a given class. One way of doing so is to
use the CS module to assign fitness to the individuals (candidate instances) evolved by
the EC module. The overview of this particular interaction is shown in Figure 3.2.

Based on the evaluation that comes from the output and internal values of the clas-
sifier, the EC algorithm ranks the individuals in the evolutionary process. Individuals
with higher fitness values have more chance to survive and reproduce. With a proper
EC engine we are able to generate instances that come from the distribution (p(x)) of
the CS. However, during the generation process we can have two scenarios: either the
instance generated is a true positive or a false positive. When designing the EC engine,
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one should choose a representation that can easily generate instances of the target
class but hard to generate for the other class.

Similarly to the concept of adversarial learning from GANs (Goodfellow et al., 2014),
this module must synthesise instances that the CS does not classify correctly or no
progress is achieved. There are differences between using the EC model as the gen-
erator and using a network (a ML model), as it is the case in GANs (as described in
Goodfellow et al. (2014)). With an EC algorithm the search is controllable and unre-
stricted through hyper-parameters, representation and fitness assignment. In contrast,
with the search on the latent space (z space) of the ML generative approach which is
more restrictive and typically controlled with a vector of numerical values in the latent
space or a random noise input (Goodfellow, 2016; Kingma and Welling, 2013).

The EC engine is a key module that is used in the following parts of the Algorithm
3.1: (i) definition of different EC engines with different parameters (in step 4) (ii) the
control of how many different evolutionary searches we want to perform, which we
refer to as EC runs, to promote the exploration of different areas of the search space
(step 5); (iii) generation of instances (x) of a pre-determined class (t) through evolution,
a key step of the EFECTIVE algorithm (step 12); and (iv) extract information for the
Supervisor module (step 17).

3.4 supervisor module

The EFECTIVE framework relies on the ability of the EC engine to find and exploit the
weaknesses of the classifiers to increase the quality of the dataset. The ability of the
EA to find shortcuts that exploit weaknesses of the fitness assignment scheme is well-
known (Baluja et al., 1994; Machado et al., 2007a; Spector and Alpern, 1994; Teller and
Veloso, 1995). Adding these instances to the training dataset and re-training the clas-
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sifier could promote the correction of its exploitable flaws. However, blindly adding
new instances could hinder performance. For instance, assuming the EC algorithm
converges towards a given instance, generating thousands of exact copies or small
variations. Adding all these instances to the dataset is likely to be harmful. With this
in mind, after completing all the EC runs, the resulting instances are submitted to the
Supervisor module, which is responsible for choosing the instances that are going to
be added to the training dataset. The Supervisor may be a human observer, or an
automatic method able to filter and select instances (Machado et al., 2012a,b). Using
a human observer is time-consuming and prone to errors and biases (Correia et al.,
2012). However, in some scenarios, human supervision is required, due to the absence
of a better solution. Using an automatic supervision method, such as another classifier,
implies that the approach is limited by the performance of the Supervisor’s classifier.
Nevertheless, the Supervisor’s classifier is not subjected to evolutionary pressure and,
therefore, its weaknesses are less likely to be exploited by the EC engine.

The Supervisor’s task is performed through the use of a filtering and selection
modes. For instance, one may randomly select instances to be added, or use sampling
techniques and similarity measures to select and filter the instances. We generalised
the selection and filter modes in the following way: (i) during the selection step, a
subset of the instances synthesised during the EC runs is selected according to a cer-
tain criteria and (ii) during filtering, some of the instances of this subset are discarded
based on the comparison with other instances of the subset.

One of the goals of the selection stage is to discriminate between the true positives
and false positives. We consider the following selection modes: Aggregator, Majority
and External.

The most straightforward selection mode is the Aggregator, where all the instances
generated throughout the EC runs identified as containing a pre-determined class are
selected.

The idea of the Majority mode is to explore the fact that we have several classifiers
to estimate if an instance classified as belonging to a pre-determined class is a true or
false positive. If the classifier guiding evolution, and as such subjected to evolutionary
pressure, classifies an instance as belonging to the positive class while the majority
classifies it as belonging to the negative one, then the instance is likely to be a false
positive, and, as such, should be selected in order to prevent such kind of errors in the
future. Conversely, if the majority agrees with the classification, the instance is likely
to be a true positive, and no action is required.

The External mode relies on the feedback of an external classifier to select the in-
stances. The rationale is that the external classifier is not subjected, directly or indi-
rectly, to evolutionary pressure, in the sense that its flaws are not exploitable by the
EC engine. Furthermore, the external classifier was trained using a different dataset,
and as such is likely to have different weaknesses. For these reasons, the classifications
performed on the evolved instances by this external classifier are prone to be more ac-
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curate. In fact, even if the external classifier is weaker in general, it is prone to be more
accurate in these specific circumstances since its weaknesses are not being exploited
by evolution.

After selecting the instances, the Supervisor performs a filtering step. We consider
two filtering modes: Unequal and RMSE. The first discardes instances that are dupli-
cated. The RMSE mode, it calculates the root mean square error between all pairs of
instances of the sub-set, discarding instances that are bellow a given RMSE threshold
(i. e., instances that are similar yet not equal). The contribution of this mode is twofold:
promote the scalability of the approach by removing similar and redundant instances;
eliminate instances that could bias the training process.

3.5 setup and parametrisation

The EFECTIVE algorithm is modular and was designed to be generic and scalable. The
algorithm assumes a simple, straightforward pipeline: train a classifier using a base
training dataset; evolve new instances for a pre-determined class using the trained
classifier; select and filter instances to update the training dataset; and repeat. Never-
theless, this pipeline can have dependencies and conditions relate to the problem that
we are solving, as it will be presented for the several framework instantiations and all
the experiments conducted during this thesis.

We define the modules as single units participating in the algorithm. Nevertheless,
both EC engine and the CS can be a committee composed of more than one unit or
one type of algorithm. As such, we conduct experiments where two different EC en-
gines operate, one for expanding the positive class and another for the expanding the
negative class, using different EAs.

The algorithm has several control parameters, including: the stopping criterion, clas-
sifiers trained per iteration, and the number of evolutionary runs per classifier. Never-
theless, the framework is modular, and these parameters can be dynamically changed
when required. To evaluate the framework’s performance, we use pre-determined val-
ues, which we adopt for all the experiments made during this thesis.
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E V O LV I N G I M A G E S O F A PA RT I C U L A R T Y P E

In this Chapter we describe a set of experiments using EFECTIVE to generate images.
As seen in the previous Chapter, the framework must act as a generator of useful
instances. Since we are focusing on the image domain, before getting to useful we
first must address the question: “How can we generate images of a particular type?”.
From the literature about Evolutionary Art systems, we know that with the appropri-
ate representation it is possible to generate any image (Machado et al., 2007a; McCor-
mack, 2007). However, in practice, Evolutionary Art systems that use expression-based
schemes tend to generate abstract images. Nevertheless, this did not stop the efforts
of authors to evolve images of a particular type and figurative ones (see, e. g., Lewis
(2007) and World (1996)).

This question has been mainly addressed by two main types of approach: (i) develop
tailor made Evolutionary Art systems which resort to representations that promote
the discovery of figurative images, usually of a particular type; and (ii) use general
purpose Evolutionary Art systems and develop fitness assignment schemes that guide
them towards images of a particular type. We are particularly interested in the second
approach.

Thus, we address the question posed at the start of this Chapter by expanding the
idea of Romero et al. (2003): combining a general purpose evolutionary art system
with an image classifier trained to recognise faces, or other types of objects, to evolve
images of a particular type. With this idea as the starting point, we developed the first
experiments with a prototype system and pipeline of what would become EFECTIVE.

We describe the work done with EFECTIVE at an early stage showing its potential
by applying it in different image generation tasks: (i) evolution of faces (Section 4.2)
(Machado et al., 2012a); (ii) evolution of figurative images (Section 4.3) (Correia et al.,
2013a); (iii) evolution of ambiguous images (Section 4.4) (Machado et al., 2015b); and
(iv) evolution of photorealistic faces (Section 4.5) (Correia et al., 2016). All share at least
one of the following aspects: either following the EFECTIVE pipeline or using the same
CS module(s) or the same EC engine. Each Section describes the instantiation, setup
differences, results, and overall analysis.

4.1 instantiation

In the work that is described in the next Sections, the framework operates in the fol-
lowing manner: a classifier is selected to represent the CS module, several EC runs are
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D CS EC E

Figure 4.1: Overview of EFECTIVE workflow with one CS trained with a dataset D, and multiple
EC runs that yield different instances E.

deployed and the results are analysed. This process is schematically summed up in
Figure 4.1.

As we will describe in the following Sections, the framework instantiation was
thought to generate different instances (images) of a particular class. It represents the
base version of EFECTIVE algorithm. We need to ascertain if we can generate images of
a particular type; therefore, in the first experiments we used an off-the-shelf classifier
for the role of CS. As such, for the first experiments, we did not have to define a dataset
(D) as the schematic shows. As it will be discussed, after showing its potential in the
following works, we define our own datasets to train our own classifiers.

In the following Subsections, we present the CS and EC engines used in the experi-
ments.

4.1.1 Classifier System(s)

The CS module is key for the evaluation of the instances. As defined in Section 3.2, it
can be any ML approach. In this Section, we describe the CSs used during this thesis: a
cascade classifier and an ANN.

In the first experiments, the CS module classifier is the cascade classifier trained
to detect objects in images. We used this classifier with different feature sets used
separately (see Viola and Jones (2001)). It was chosen because of its fast detection
algorithm, easy distribution of the algorithm and for being a well-established approach.
The code and executables used are included in the OpenCV API1. The approach uses
a set of small features in combination with a variant of the Adaboost (Freund and
Schapire, 1997), which can attain efficient classifiers. The classifiers assume the form
of a cascade of small and simple classifiers that use single features as the decision rule
similar to the description in Section 2.1.1.

The training algorithm for each stage of the cascade classifier can be summarised in
these steps:

1. Define the negative and positive datasets, and the desired false alarm and hit
rate for the stage;

1 OpenCV — http://opencv.willowgarage.com/wiki/

http://opencv.willowgarage.com/wiki/
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Figure 4.2: Sample of sub-windows of size 20x20 extracted using Sung and Poggio’s (1995)
sampling algorithm during the training of one stage of the cascade classifier.

2. Initialise the weights for each example, in such a way that the sum of all weights
equals 1;

3. Add and train a classifier with only one feature until it achieves the lowest error
possible;

4. Update the weights (the wrongly classified instances receive a greater weight);

5. Repeat from step 2 until the desired false alarm, and hit rate are achieved.

The final cascade is the combination of all simple classifiers trained with a desired
number of stages. Note that in the OpenCV’s implementation the definition of the
negative dataset is performed using the subsampling algorithm by Sung and Poggio
(1995) on the starting dataset. This means that, in each training stage, an exhaustive
search for misclassified sub-windows in the negative image dataset is performed. A
sample of these subsamples selected during the training of one stage using this method
is presented in Figure 4.2.
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Figure 4.3: Overview of the object detection process with a Cascade Classifier.

The object detection algorithm is a sliding window algorithm and operates in the
following manner (for further details see Viola and Jones (2001)):

1. Define w and h as the width and height, respectively, of the input image;

2. Define a window of size w 0 ⇥ h 0, e.g. 20⇥ 20;

3. Define a scale factor s greater than 1. For instance, a scale factor of 1.1 means
that the window will be enlarged by 10%;

4. Calculate all windows with size w 0 ⇥ h 0 from the position (0, 0) to (w-w 0,h-
h 0) with 1 pixel increments of the upper left corner;

5. Apply the cascade classifier for each window. The cascade has a group of stage
classifiers, as represented in Figure 4.3. Each stage is composed of a group of
low-level features that are applied to the window. If the resulting overall value
is lower than the stage threshold, the classifier considers that the window does
not contain an object and for this reason terminates the search. If it is higher, it
continues to the next stage. If all stages are passed, the window is classified as
containing the object;

6. Apply s to w 0 and h 0, and go to step 4 until w 0 exceeds w or h 0 exceeds h.

Among these low level features we have worked with the Haar (Figure 4.4) and
Local Binary Pattern (LBP) (Figure 4.4) which are included in OpenCV. Briefly describ-
ing, Haar features are convolutional kernels where each feature is the result of the
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Figure 4.4: Haar features (image from Viola and Jones, 2001).

Figure 4.5: Local Binary Pattern features (image from Ahonen et al., 2006).
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Figure 4.6: Output of the detection’s grouping algorithm, with minimum neighbours = 3. On
the left we have the input image, in the middle the result after the detection al-
gorithm at different scales and on the right the output image after the grouping
algorithm.

computation of subtracting the sum of pixel values under the white rectangle with
the sum of pixels belonging to the black rectangle (Viola and Jones, 2001). LBP are tex-
ture descriptors that compute local representations by comparing each pixel with its
surrounding neighbourhood of pixels (Ojala et al., 1996) . As it will be described in
the following Sections, both sets of features resulted in different experimental results.
These features were considered due to their efficiency and simplicity. There are others,
but an exhaustive study on this topic is out of scope for the objectives of this thesis.

Another important part of the detection phase, more precisely in the sliding win-
dow process, is the algorithm that groups the different detections at different scales.
The built-in algorithm from OpenCV was used for that effect. The different detections
windows are combined into single detection by clustering detections with similar size
and locations up to a threshold. Small clusters with less than or equal to that threshold
are discarded. This is controlled by the parameter “minimum neighbours” presented
in the experimental setups of the works that used an object detector as the classifier.
For each cluster that remains after the filtering, the average detection rectangle is com-
puted and considered as one detection. An example can be seen in Figure 4.6.

The cascade classifiers were used in all the Chapters that involved object detection,
i. e., Chapters 4, 5 and 6. In Chapter 7 we use ANNs. In particular, the ANN is a feed-
forward network, with one hidden layer and two output neurons. It is trained with
standard backpropagation as described in Section 2.1.1. The classifier was built using
WEKA’s2 FastNeuralNetwork. WEKA is a workbench for machine learning with a
significant number of algorithms and tools available (Hall et al., 2009).

2 http://www.cs.waikato.ac.nz/ml/weka/WEKA 3: Data Mining Software in Java

http://www.cs.waikato.ac.nz/ml/weka/
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Figure 4.7: Example of an individual with the expression-tree cos(x+ y) rendered at the size
of 64 by 64 pixels.

4.1.2 Evolutionary Engine(s)

The EC engine is a core part of the framework as described in Section 3.3. Along
the several experiments performed with the framework, most of the work was done
using a GP expression based approach. In the first set of experiments, we used NEvAr
(Machado and Cardoso, 2002) and in the last experiments we used NORBERT (Vinhas,
2015). Both of them are expression-based evolutionary engines that are described in
Section 4.1.2.1. We also created a tailor made solution using a GA described in Section
4.1.2.2.

4.1.2.1 Expression-Based

The expression-based engines used in this thesis operate similarly and have common
features. NORBERT was inspired in NEvAr which in turn is inspired by the work of Sims
(1991). Both are general purpose, expression-based, GP engines that allow the evolution
of a population of images. A thorough description of each engine is out of this thesis’
scope but can be found in Vinhas (2015) and Machado et al. (2007a), respectively. Their
core functionality is described in this Section.

As stated, both NEvAr and NORBERT allow the evolution of population of images.
The individual’s genotypes are expression-trees composed of functions and terminals.
The function set includes mathematical and logical operations; the terminal set is com-
posed of two variables, x and y, and constant values. The phenotypes are images, ren-
dered by evaluating the expression-trees for different values of x and y, which serve
both as terminal values and image coordinates. In concrete, to calculate the value of
the pixel in the top left corner of an image (the (0,0) coordinates), one assigns zero
to x and y and evaluates the expression-tree; a similar procedure is performed for all
the other pixel coordinates. Figure 4.7 presents an example of the phenotype for the
individual of the following genotype: cos(x+ y).

NORBERT has particular functionalities and configurations available that are going
to be described in Chapter 7. Furthermore, due to the multiplicity and particularities
of each experiment, the fitness function(s) and parameters are detailed in their corre-
sponding Sections.
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Genotype Phenotype

193 145 94 140 163122 86

Figure 4.8: Genotype and phenotype of an individual. The genotype consists in the tuple of
integers (face, left eye, right eye, nose, mouth, left eyebrow, right eyebrow). Each integer
encodes an index of an annotated example (image under each integer encoded in
the genotype). The phenotype consists in a composite of the face parts encoded in
the genotype.

4.1.2.2 eXploit-Faces Engine

Unlike the previous EC engines, this one was created with a particular purpose. Since
it is used in three experiments along this thesis, the general description is done in this
Section. The idea behind this particular approach is to evolve combinations of items
guided by a proper fitness function. It was developed as an experiment for generating
photorealistic images of faces from parts of existing images of faces (Section 4.5).

For this particular purpose, we developed a tool capable of recombining parts of
pre-annotated face parts. Each image has an identifier, an index, and each annotated
part shares that same index. e. g., for an image with an index = 10 with the follow-
ing annotations: face, left eye, right eye, nose, mouth, left eyebrow and right eyebrow;
will have the following set of indexes: {10, 10, 10, 10, 10, 10, 10}. This representation al-
lowed us to explore combinations of different indexes to generate different faces. With
this representation we have #Dn different possible faces to generate, where #D is the
number of instances in the image dataset, n is the number of parts. For this particular
application involving faces, we would have n = 7 (or n = 5 as it will be described later
when we performed tests pairing eyes and eyebrows). As the number of #D grows the
number of different faces that we can generate grow at a polynomial rate. We need a
way to explore and choose interesting individuals from the different possibilities. To
traverse such space, we choose a conventional GA using a proper fitness function to
evolve populations of sets of indexes later to be translated to a composite face, i. e., a
face made from other faces’ parts.

Thus, this EC engine is a conventional GA where the individuals are faces constructed
from parts of different faces. Figure 4.8 explains the genotype of each individual and
the corresponding phenotype. Each genotype is mapped into a phenotype by creating
a composite face, i. e., the parts of faces encoded in the genotype are placed over a
base face that is also encoded in the genotype. This process is accomplished by using
a clone algorithm that allows the seamless placement of an image upon another (Pérez
et al., 2003).
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4.2 evolution of faces

As the first proof of concept of the approach as a generator, we tested it on a frontal
face generation problem. Following Romero et al. (2003) idea, we use a general pur-
pose art system to generate images that contain faces. This Section revolves around
the work done in Machado et al. (2012a) and part of Correia et al. (2013a). We choose
face generation because face detection is a topic of interest and research, where appli-
cations that employ this kind of systems are becoming widespread in an almost “plug
and play” fashion. For instance, they can be found in search engines, social networks,
incorporated in cameras, or in applications on smartphones.

Our approach was mainly informed by previous research, e. g. Baluja et al. (1994),
Machado et al. (2007a), and Saunders and Gero (2001), where classifier systems, namely
ANN, are used to guide the evolutionary runs. However, among others, our approach
operates these experiments with the following discriminating characteristics:

• Using an off-the-shelf classifier instead of developed one to guide evolution;

• The goal is to evolve specific figurative images, i. e., faces, while the mentioned
classifiers try to assess aesthetics, style or novelty;

• A Haar cascade classifier is used instead of ANNs.

We have already discussed most of these details in the previous Section. Thus, in
the following Sections we describe the experimental setup, we present the fitness as-
signment scheme, and afterwards we discuss the results.

4.2.1 Experimental Setup

In this work, we performed 30 independent runs of the framework described in the
previous chapter. The framework proposes the use E independent evolutionary runs.
However, we are primarily interested in assessing the contributions that each EC run
may bring. Thus, for the scope of this Section, we set E = 1 and perform 30 indepen-
dent runs.

In order to conduct the experiments, three pre-trained off-the-shelf classifiers were
used. These were obtained from Lienhart’s (Lienhart and Maydt, 2002) website3 and
will be named C1 4; C2 5; C3 6. Documentation reports that these classifiers were
trained with 2000 positive and 3000 negative samples. C1 is a stump cascade classifier
trained with a 20⇥ 20 window size; C2 is a tree cascade classifier (i. e., similar to a

3 Haar Cascades – http://alereimondo.no-ip.org/OpenCV/34
4 “haarcascade_frontalface_alt.xml”
5 “haarcascade_frontalface_alt2.xml”
6 “haarcascade_frontalface_default.xml”

http://alereimondo.no-ip.org/OpenCV/34
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Table 4.1: Parameters of the GP engine. See Machado et al. (2007a) for a detailed description.

Parameter Setting

Population size 50
Number of generations 100
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap, sub-tree replacement, node insertion,

node deletion, node mutation
Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, ⇥ , /, min, max, abs, neg, warp, sign, sqrt, pow,

mdist, sin, cos, if
Terminal set x, y, random constants

decision tree that is applied per stage) with a 20⇥ 20 window size; and C3 is a stump
cascade classifier but with a 24⇥ 24 window size.

For these experiments we use NEvAr as the EC engine. The settings presented in
Table 4.1 are similar to those used in previous experimentation in different problems.
Since the used classifiers only deal with greyscale information, the GP engine was also
limited to the generation of greyscale images.

The goal of the EC engine is to evolve instances that the CS classifies as containing
faces. In Figure 4.9 an overview of an EC run in the context of the face detection
problem is presented. The fitness of an individual depends on the results of submitting
it to the CS, i. e., the fitness is a product of the outcome of the classification task.

4.2.1.1 Fitness Assignment

Fitness assignment is crucial for any EA, and therefore it holds large importance for
the success of the described system. The goal is to evolve images that the face detector
classifies as faces. However, the face detector returns a binary output per input, which
is inappropriate to guide evolution. A binary function gives no information of how
close an individual is to be a valid solution to the problem and, as such, the fitness
landscape would be deceptive.

At this point, we concluded that it is necessary to extract additional information
from the face detection process to build a suitable fitness function. This is achieved
by accessing internal results of the classification task that give an indication of the
degree of certainty in the classification. In several informal experiments, we focused
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Figure 4.9: Overview of an EC run.

on developing an appropriate fitness function, by analysing the results of several runs,
by trial and error, and by incremental improvements and refinements. We eventually
settled on the following formula, which takes advantage of the cascade structure of
the classifier:

fitness(x) =
nstagesxX

i

stagedifx(i) ⇤ i+nstagesx ⇤ 10 (4.1)

In a nutshell, images that go through several classification stages, and that may be
closer to be classified as a face, have higher fitness than those rejected in early stages.
Variables nstagesx and stagedifx(i) are extracted from the face detection algorithm.
Variable nstagesx, holds the number of stages that the image x has successfully passed
in the cascade. The rationale is the following: an image that passes several stages is
likely to be closer to being recognised as having a face than one that passes fewer
stages. In other words, passing several stages is a pre-condition to being identified
as an image that contains a face. Variable stagedifx(i) holds the maximum difference
between the threshold necessary to overcome stage i and the value attained by the
image at the ith stage. Images that are clearly above the thresholds are preferred over
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ones that are only slightly above them. Obviously, this fitness function is only one of
the several possible ones.

4.2.2 Experimental Results

Figure 4.10 summarises the results achieved regarding mean fitness and maximum
fitness per run. Since the fitness values attained by different classifiers are not compa-
rable, the values are normalised by dividing the raw fitness by the mean’s maximum
achieved in each classifier’s test. Each chart displays the fitness attained by the clas-
sifier used to guide fitness and also the fitness that would be assigned by the two
classifiers that had no interference in the run.

An analysis of these charts reveals interesting aspects concerning similarity among
classifiers. As it can be observed, the curves of classifiers C1 and C2 vary in similar
ways, particularly regarding maximum average fitness, independently of which classi-
fier is guiding the run, which indicates that these classifiers are strongly correlated. In
contrast, fitness according to classifier C3 only reaches high values when C3 is used to
guide the evolutionary runs. As a whole, these results suggest that classifier C3 is more
robust than C1 and C2, in the sense that it is less likely to classify non-face images as
faces. Viola and Jones (2001) arrive at a similar conclusion based on experiments done
in a non-evolutionary context.

The EC engine was able to find images classified as faces in all of the 90 performed
runs. However, and somewhat surprisingly, from a human perspective, most of the
runs did not evolve images that look like faces (obviously this statement has a degree
of subjectivity). Thus, in most evolutionary runs the GP engine exploited the limita-
tions of the classifier and found “shortcuts” that allowed it to improve fitness and
evolve images that are classified as faces, without evolving images that look like faces
(see Figure 4.11). The ability of EC to find such shortcuts and exploit weaknesses of
the fitness assignment scheme has been reported in previous studies (see, e. g., Baluja
et al. (1994), Machado et al. (2007a), Spector and Alpern (1994), and Teller and Veloso
(1995)). These results open a series of possibilities, including the use of this approach
to assess the robustness of face detection systems, and also the use of evolved images
as part of the training set of these classifiers to overcome some of their shortcomings.
This line of research was explored and is presented in Chapter 5.

According to our subjective assessment, some of the runs were able to find images
that resemble a frontal human face (5 using C1, 4 using C2, and 5 using C3). Figure 4.12
shows the evolution of the best individual, per generation, during the course one of
those runs. We rendered the fittest individual in the last generation from the same
run and its corresponding expression tree, as can be seen in Figure 4.13. The tree was
created using EvoLutIonary Computation vIsualizaTion (ELICIT), a tool that allows the
visual exploration of EC algorithms (Cruz et al., 2015).
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Figure 4.10: Evolution of the average and maximum fitness when using C1 (top), C2 (middle),
and C3 (bottom) to assign fitness. Results are averages of 30 independent runs.
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Figure 4.11: Examples of evolved images identified as faces by the classifiers that do not resem-
ble faces from a human perspective.

In Figure 4.14 we show some of the most, from a subjective perspective, interesting
evolved images. These results show the ability of the GP engine to create figurative
images, which are reminiscent of human faces. Several of these images are evocative
of faces of cartoon characters (e. g., the first image of the first row of Figure 4.14, which
has been described by several of our co-workers as Wolverine’s face) and African
masks (e. g., the last image of the first row of Figure 4.14). This result may reveal
a tendency towards the exaggeration of facial features, and hence caricature, which
is consistent with the fitness assignment scheme, in the sense that the presence of
distinguishable facial features may promote face detection.

We could say that some of these images provoke pareidolia (as shown in Figure 4.15),
a psychological phenomenon in which the mind responds to a stimulus perceiving a
familiar pattern where none exists. Nevertheless, some of the main features of a typical
face (e. g., eyes, nose, face outline) are present in the images.

4.2.2.1 Exploration using Local Binary Pattern features

As mentioned in Section 4.1.1, the cascade classifier can be combined with another
type of features, namely the LBP features. Based on the promising results attained
while using Haar features, in this Section we explore the use of LBP for the same
purpose. We expect to minimise some of the known limitations of the Haar features
and improve our results. LBP features are very robust regarding greyscale variations,
(which can be caused, e. g., by changes in illumination) intensity since the operator is,
by definition, invariant against any monotonic transformation of the greyscale. This
aspect is very attractive in situations where nonuniform illumination conditions are a
concern, e. g., in face detection.
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Figure 4.12: Fittest individual per generation. From the first generation (top left) to the last
generation (bottom right).
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Figure 4.13: On the left, a rendering of the fittest individual of the last generation rendered.
On the right, the genotype of the individual.
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Figure 4.14: Examples of some of the most interesting images that have been evolved, consid-
ered to be faces by the classifier.

In order to conduct the tests we resort to the available off-the-shelf classifiers from
OpenCV (“LBP1” from file “lbpcascade_frontalface.xml”) and from Vision-ary7 (“LBP2’).
As reported by the documentation, LBP1 was trained with 3000 positive samples and
1500 negative samples per cascade stage, whereas LBP2 was trained with 5000 positive
samples and 7000 negative samples. In theory, since it was trained with more samples
per stage, LBP2 should be more robust than LBP1.

The EC engine used was NORBERT with the same parameters used in the previous
experiment. In terms of evolutionary process, as we can see in Figure 4.16 and Fig-
ure 4.17, using either LBP classifier results on a similar evolutionary curve. As previ-
ously the results are normalised by the maximum fitness observed by its correspond-
ing classifier and concern 30 independent evolutionary runs.

7 Vision-Ary cascades– http://www.vision-ary.net/2015/03/boost-the-world-face-detection/

http://www.vision-ary.net/2015/03/boost-the-world-face-detection/
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Figure 4.15: Examples of pareidolia phenomenon in everyday objects.
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Figure 4.16: Evolution of the average and maximum fitness using LBP1.
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Figure 4.17: Evolution of the average and maximum fitness using LBP2.

From a subjective perspective, we can say that some of the runs were also able to
generate images that resemble frontal human faces: 6 from LBP1 and 11 from LBP2. Re-
garding visuals, there are some differences when comparing with the Haar. Figure 4.18
show some of the most interesting individuals generated along the runs. The fact that
LBP2 was trained with more examples and yields more interesting runs points to the
fact that it is indeed more robust, pushing the EC engine to generate images that con-
tain more frontal facial features so it can be detected as face. Most of the presented ex-
amples have face resembling features, e. g., eyes and mouth; almost like smiles/emojis
(third row in Figure 4.18). Similar to the Haar results these features are exaggerated
and bigger overall.

On the other hand, we also have some examples that do not resemble faces at all.
As Figure 4.19 shows, these appear to be less noisy than Haar. Furthermore, some of
the runs that have been detected as faces but do not resemble one, the images tended
to be blurry, oval-shaped and vertically symmetrical as shown in Figure 4.20. Some of
them resemble blurry frontal face outlines (third and fourth image from the bottom
row of Figure 4.20). Similar to the observation in the experiment with Haar features,
these images also explore shortcomings of the classifier.

4.2.3 Summary

The goal of the current Section was to generate images by evolutionary means, with-
out resorting to representations specifically tailored to promote the evolution of images
of a certain kind. We explored EFECTIVE idea by using a general-purpose expression-
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Figure 4.18: Example of images detected as faces by LBP classifiers that resemble faces.

Figure 4.19: Example of images detected as faces by LBP classifiers which do not resemble faces.
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Figure 4.20: Example of images detected as faces by LBP classifiers which are mainly blurred
images.

based GP image generation engine and off-the-shelf face detector system. Internal re-
sults of the classification task are employed to build a fitness function.

We did experiments with two types of features: Haar and LBP. Thus, the first ex-
perimental results attained in 90 independent evolutionary runs show the ability of
a GP engine to find and exploit shortcomings of the classifier. They also demonstrate
the ability of the framework to evolve images that are evocative of human faces and
masks. The other set of experiments with LBP features revealed similar results. The im-
ages that are evocative of human frontal faces presented larger and sharper features.
The examples that were not evocative also show the existence of symmetrical objects
or blurry images that we can consider as blurry face outlines.

The images evolved in different runs can be combined, refined and explored for artis-
tic purposes by using user-guided evolution or automatic fitness assignment schemes,
which take into account aesthetic or stylistic properties. In this regard, the plasticity of
the expression-based representation may be a valuable asset.

Finally, based on the results attained, the ability of EC to find shortcomings of the
classifier led us to think that, the instances could be used to improve classifier perfor-
mance. This idea will be discussed further in Chapter 5.

4.3 evolution of figurative images

In the previous Section, we presented a system that allowed the evolution of images re-
sembling human faces by combining a general-purpose, expression-based, Evolution-
ary Art system with an off-the-shelf face detector. The internal values of the detection
task were used for fitness assignment. The results showed that it was possible to guide
evolution and evolve images evocative of human faces. This Section intends to explore
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Table 4.2: Haar cascade classifier training parameters.

Parameter Setting
Number of stages 30
Min True Positive rate per stage 99.9%
Max False Positive rate per stage 50%
Object Width 20 or 40 (breasts, leaf)
Object Height 20 or 40 (leaf)
Haar Features ALL
Number of splits 1
Adaboost Algorithm GentleAdaboost

such approach further and is related to the work done in Correia et al. (2013a). The
work presented in this Section expands the work in two aspects:

• Using both off-the-shelf classifiers and purpose-built detectors;

• Evolving other kind of objects such as lips, breasts and leaves.

4.3.1 Experimental Setup

The objects that we are interested in evolving are the following: lips, breasts and leaves.
For the first one, we used an off-the-shelf classifier that was already trained and used
by other researchers in different lines of investigation (Lienhart and Maydt, 2002; Lien-
hart et al., 2002; Santana et al., 2008). For the last two we created our own classifiers,
by choosing suitable datasets and training the respective object detector.

In order to construct an object detector we need to design two datasets: (i) positive
– examples of images that contain the object we want to detect and; (ii) negative –
images that do not contain the object (Figure 4.21). Furthermore, we must crop the
location of the object in the images (Figure 4.22) in order to build the ground truth file
that will be used for training. For these experiments, the negative dataset was attained
by picking images from a random search using image search engines, and from the
Caltech-256 Object Category dataset (Fei-Fei et al., 2004). In what concerns the positive
datasets: the breast object detector was built by searching images on the web; and the
leaf dataset was obtained from the Caltech-256 Object Category dataset and from web
searches.

After choosing datasets, we must also define the training parameters. Table 4.2
presents the parameters used for training of the cascade classifier. The parameters
were selected from the work by Lienhart et al. (2002). By defining a high number of
stages we are creating several stages that the images must overcome to be considered a
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Figure 4.21: Negatives instances used for training the cascade classifiers.
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Figure 4.22: Instances used to train a cascade classifier for leaf detection. On the top row the
original image and on the bottom row the clipped instance used for training. (Im-
age from (Fei-Fei et al., 2004))
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Table 4.3: Parameters of the EC engine.

Parameter Setting

Population size 100
Number of generations 100
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap, sub-tree

replacement, node insertion,
node deletion, node mutation

Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, ⇥ , /, min, max, abs,

neg, warp, sign, sqrt,
pow, mdist, sin, cos, if

Terminal set x, y, random constants

positive example. The high true positive rate ensures that almost every positive example
is learned per stage. The max false positive rate creates some margin for error, allowing
the training to achieve the minimum true positive rate per stage and a low positive rate
at the end of the cascade.

Once the classifiers are obtained, they are used to assign fitness in the course of the
evolutionary runs in an attempt to find images that are recognised as lips, breasts and
leaves. We performed 30 independent evolutionary runs for each of these classes. In
summary, we have 3 classifiers, with 30 independent EC runs, totalling 90 EC runs.

The settings of the EC engine, presented in table 4.3, are similar to those used in
previous experimentation in different problem domains. Since the used classifiers only
deal with greyscale information, the EC engine is limited to the generation of greyscale
images. The population size used is 100 while in previous experiments we used a
population size of 50 (Machado et al., 2012a). This allows us to sample a larger portion
of the search space, contributing to the discovery of images that fit the positive class.

In all evolutionary runs, the EC engine was able to evolve images classified as the
respective objects. Similarly to the behaviour reported by Machado et al. (2012a), the
EC engine was able to exploit weaknesses of the classifier, that is, the evolved images
are classified as the object, but, from a human perspective, they often fail to resemble
the object. In Figure 4.23 we present examples of such failures. As it can be observed,
it is hard to recognise breasts, leaves or lips in the presented images.
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Figure 4.23: Evolved images identified as objects by the classifiers that do not resemble the
corresponding objects from a human perspective. From left to right, these images
were detected as breasts, leaves and lips.

According to our subjective assessment, some runs were able to find images that
resemble the object that we are trying to evolve. These add up to 5 for the lip detector,
4 for the breast detector and 4 for the leaf detector.

In Figures 4.24, 4.25 and 4.26 we show, according to our subjective assessment, some
of the most interesting images evolved. These results allow us to state that, at least
in some instances, the EC engine was able to create figurative images evocative of the
objects that the object detector was designed to recognise as belonging to the positive
class.

In what concerns the images resulting from the runs where a lip detector was used
to assign fitness, we consider that their resemblance with lips, caricatures of lips, or
lip logos, is self-evident. The iconic nature of the images of the last row is particularly
appealing to us.

The results obtained with the breast detector reveal images with well-defined or
exaggerated features. We found little variety in these runs, with changes occurring
mostly at the pixel intensity and contrast level. Most of the runs resulted in unrecog-
nisable images (see Figure 4.23), which is surprising since the nature of the function
set would lead us to believe that it should be relatively easy to evolve such images.
Nevertheless, the successful runs present images that are clearly evocative of breasts.

Finally, the images from the leaf detector, vary in type and shape. They share how-
ever a common feature: they tend to be minimalist, resembling logos. In each of the
images of the first row, the detector identified two leaf shapes. On the others, a single
leaf shape was detected.

In general, when the runs successfully evolve images that actually resemble the
desired object, they tend to generate images that exaggerate the key features of the
class. This is entirely consistent with the fitness assignment scheme that values images
that are recognised with a high degree of certainty. This constitutes a valuable side
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Figure 4.24: Selection of images evolved using a detector of lips to assign fitness.
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Figure 4.25: Selection of images evolved using a detector of breasts to assign fitness.
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Figure 4.26: Selection of images evolved using a detector of leaves to assign fitness.
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effect of the approach, since the evolution of caricatures and logos fits our intention to
further explore these images from an artistic and design perspective.

The results obtained using the off-the-shelf classifier tend to be worse than those
obtained with the ones we trained. An explanation for this fact follows. When one
builds a leaf detector, for instance, one is typically interested in building one that
recognises leaves of all types, sizes, colours, in different lighting conditions, against
clear and cluttered backgrounds, etc. Although the inclusion of all these examples may
lead to a classifier that is able to detect all leaves present in an image, it also mean that
this classifier will be prone to recognise leaves even when only relatively few features
are present. In contrast, when we built our classifiers we selected as positive examples,
clear and iconic images. Our classifiers probably fail to identify a large portion of
real-world images containing breasts or leafs. However, they are selective and, as such,
when the runs succeed they tend to present images that are also iconic and clear.

4.3.2 Summary

The goal of this Section was to further explore EFECTIVE to evolve different figurative
images by using different object detectors. We further explore and try to address some
of the challenges that were stated in this research.

Several object detectors were used to evolve images that resemble: lips, breasts and
leaves. The results from 30 independent runs per each classifier have shown that it is
possible to evolve images that are detected as the corresponding objects, and that also
resemble that object from a human perspective. The images tend to depict an exagger-
ation of the key features of the associated object, which is explainable by the fitness
assignment scheme and constitutes a valuable characteristic, allowing the exploration
of these images in design and artistic contexts. This will probably imply the further
refinement of the evolved images by means of interactive evolution.

4.4 evolution of ambiguous images

In the previous two sections, we described the work done evolving faces and other
objects. The work described here resulted from extended collaboration with MSc Adri-
ano Vinhas and with Dr. Aniko Ekárt which resulted in two publications (Machado et
al., 2015b,c). Parts of this section come from those articles. This work builds upon the
findings of Correia et al. (2013a) and Machado et al. (2012a) expanding the approach
to evolve ambiguous images. In other words, our goal is to evolve images that induce
multistable perception, which occurs when the brain (or the computer in our case)
is confronted with a visual stimulus that can be interpreted in multiple ways. Some
famous examples of ambiguous images are duck/rabbit; Rubin’s vase, which can be
perceived as a vase or two opposing faces; “My Wife and My Mother-in-Law”, which
may be interpreted as a young or an old woman (see Figure 4.27).
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Figure 4.27: Well-known examples of ambiguous images, from left to right: duck/rabbit; Ru-
bin’s vase; “My Wife and My Mother-in-Law”.

We consider ambiguous images and multistable perception fascinating phenomena,
worth studying for both scientific and artistic purposes. Some of the questions that
motivate the research reported here are: (i) Can ambiguous images be created by fully
automated computational means? (ii) Can this be done from scratch (i. e., without
resorting to collages or morphing of pre-existent images)? (iii) How do computational
ambiguous images look like? (iv) How do they relate to human ambiguous images? (v)
How can the dichotomy between human and computational ambiguity be explored for
artistic purposes? (vi) Can one explore computer vs human creativity and perception
scientifically via ambiguous images?

To evolve ambiguous images, an incremental approach is followed. First, we evolve
images containing a single object. Following in the work presented in the previous
sections (Correia et al., 2013a; Machado et al., 2012a) we use an object detector to guide
evolution, assigning fitness based on the internal values of the object detection process.
Then, using object detectors trained to identify different types of objects, we evolve
images containing two distinct objects. Finally, we focus on the evolution of ambiguous
images, which is achieved by evolving images containing two distinct objects in the
same window of the image.

4.4.1 Experimental Setup

Table 4.4 describes the parameters used in the GP engine while Table 4.5 contains the
parameters of the object detection algorithm.
Regarding the general object detection parameters, there are some differences from the
approach of Correia et al. (2013a). The size of the individuals rendering, in pixels, for
evaluation is substantially increased from 64⇥ 64 to 128⇥ 128. This forces the evolved
individuals to contain larger objects, and be more robust and less noisy. The minimum
object size, was also increased to promote the appearance of objects at the centre of the
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Table 4.4: Parameters of the GP engine.

Parameter Setting
Population size 100
Number of generations 1000
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap,

sub-tree replacement,
node insertion, node deletion
and mutation

Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, ⇥ , /, min, max, abs,

neg, warp, sign, sqrt, pow,
mdist, sin, cos, if

Terminal set x, y, random constants

Table 4.5: Detection parameters.

Parameter Setting
Min. window width 90
Min. window height 90
Image Width 128
Image Height 128
Scale Factor 1.1
Image pre-processing Otsu’s Binarisation

image. Another relevant difference is that the images are all pre-processed, for training
or detection, with a binarisation algorithm. We used Otsu’s binarisation algorithm
(Otsu, 1979) to transform the images.

We conducted tests with and without binarisation of the output of the GP system8.
Overall, we found that binarised images tended to be clearer to humans. This is likely
to be related to the image equalisation and “normalisation” operations performed by

8 We are binarising the output of a floating point GP system. Using a binary GP approach would avoid
this intermediate step.
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Figure 4.28: Sample of the binarised flowers dataset.

the object detectors before classification, which may highlight features that are hard to
see in the original images.

Three different experimental environments were prepared for this work. In the first
one, we used the two classifiers – faces and flowers (samples in Figure 4.28) – indi-
vidually to guide evolution. We then focused on the evolution of images that could
simultaneously evoke faces and flowers. In the second experimental setting, we as-
signed fitness based on the results of the face and flower detectors, and we reduced
the minimum window size parameter to (40⇥ 40). This promoted the evolution of im-
ages containing both objects, but it did not require the faces and the flowers to overlap.
Finally, in the third experimental setting, we used both classifiers to assign fitness and
a minimum window size of (90⇥ 90), which forced an overlap between the windows
detecting both objects. For each combination of parameters, we performed 30 inde-
pendent evolutionary runs using different random seeds. To promote readability, we
normalised all fitness values by dividing the raw value by the maximum value found
in the course of the experiments. The values used for the plots are averages of 30 runs.

4.4.2 Experimental Results

The results obtained when evolving images containing single objects confirm previous
work in this field (Correia et al., 2013a; Machado et al., 2012a). In all runs and for all
classifiers, evolution was able to produce images where the object was detected. In
most situations, this was accomplished in fewer than 50 generations.

Figure 4.29 depicts the evolution of the fitness of the best individual when evolving
flowers, as well as the percentage of those individuals where a flower was detected.
As can be observed, by the 70th generation all runs had already produced individuals
containing flowers. Also confirming previous results in the area, although all runs
evolved images where the object in question was detected, the visibility of these objects
to a human observer is questionable in some of the cases. Figure 4.30 presents some
examples of the evolved images. As can be observed, while the flowers are easy to
identify, seeing the faces is not obvious in all the cases. This can be explained by the
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Figure 4.29: Evolution of the fitness of the best individual across generations and of the percent-
age of best individuals in which a flower was detected. The results are averages of
30 runs.
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Figure 4.30: Examples of evolved images containing flowers (top row) and faces (bottom row).

Figure 4.31: Examples of images containing non overlapping faces and flowers.

fact that the detection of flowers relies heavily on the contour of the shape, while
the detection of faces relies on the presence of a combination of features that can be
identified as eyes, eyebrows, lips, nose, chin, face contour,9 which may be obfuscated
by other image artifacts.

We then focused on the evolution of images containing faces and flowers simulta-
neously, without enforcing the overlap between the regions where these objects were
identified. Figure4.31 depicts examples of the results obtained in this setting. In all
of the examples presented, the system was able to evolve images where the object
detectors found faces and flowers. Interestingly, some of the evolved images (e. g.,
the ones presented in the bottom row of Figure4.31) depict the same type of optical
illusion as Rubin’s vase (see Figure4.27). In this case, although we do not promote

9 Simultaneous presence of all of these features is not necessary.
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the overlap between the detection windows and although these could be completely
non-overlapping, the solutions found by the EC engine often take advantage of the
similarities between visual features of the objects. This is particularly evident in the
bottom leftmost image of Figure4.31 where the eyes of the faces serve as petals for the
flowers, and vice-versa. As such, we can state that in some of the evolutionary runs the
algorithm evolved images that are ambiguous both from a computational and human
perspective, in the sense that both computer and human can recognise a face and a
flower in the same region simultaneously. As a side-note, it is also interesting to note
that some of these images constitute tiling patterns, which is an unexpected outcome.

In our third experimental setting the overlap between the regions where faces and
flowers are detected becomes a requirement. Figure4.32 shows the evolution of the
fitness of the best individual. In addition to the combined fitness value, we also present
the fitness scores according to each classifier. As previously, these results have been
normalised by dividing by the highest corresponding value found in the course of
all the experiments. The percentage of the best individuals where faces and flowers
were simultaneously detected in overlapping regions is also depicted, as well as the
percentage of the best individuals where faces and flowers were detected. All results
are averages of 30 runs.

4.4.2.1 Visualising the Evolved Instances

As can be observed, although there is an abrupt increase of fitness during the first
generations, improving fitness beyond that point is extremely difficult. Moreover, max-
imising the response of the face detector is harder than maximising the response of the
flower detector. This outcome was expected since the same behaviour was observed
when evolving images containing a single object. In 76.6% of the runs, the algorithm
was able to evolve images where overlapping faces and flowers were detected. How-
ever, when we compare the fitness values obtained by each of the two object detectors
with those obtained when evolving single objects, we arrive at the conclusion that the
components of the combined fitness are far from their maximum values. This can be
observed by contrasting the value reached by the fitness component regarding flowers
of Figure4.32, with the value attained when evolving flowers only, which is depicted in
Figure4.29. Therefore, although overlapping faces and flowers were detected in 76.6%
of the runs, the difficulties found in maximising the individual fitness components
indicate that these detections are probably not robust.

An analysis of the resulting images reveals that although the majority of the runs
evolved images where both objects were detected in the same window, which can, as
such, be considered computationally ambiguous, most of the images found are not
evocative of both objects (see Figure4.33). Thus, in most cases they do not induce a
multistable interpretation. Nevertheless, in some cases, images that are also ambigu-
ous from a human perspective were evolved. Figure4.34 depicts some of these excep-
tions to the norm. For instance, looking at the leftmost image of Figure4.34 we can
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Figure 4.32: Fitness of the best individual and percentage of the best individuals containing
an overlap between a face and a flower. In addiction to the overall fitness and
detection ratios, the partial fitness and the ratios of each of the detectors is also
presented. The results are averages of 30 runs.
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Figure 4.33: Evolved images that are computationally ambiguous, but fail to induce, in our
opinion, multistable interpretation in humans.

Figure 4.34: Evolved images considered ambiguous by both humans and computers.

identify eyebrows, the white oval shapes create the illusion of eyes, while the remain-
ing symmetrical black shapes create the illusion of a face contour. Simultaneously, the
white regions can be interpreted as petals of flowers. Looking at the rightmost image,
one can recognise a flowery pattern, but one can also interpret the top two “petals” as
eyebrows and the middle shapes as eyes, which immediately evoke a face, and then
one will probably interpret the bottom petals as a beard or moustache.

Humans have evolved to quickly recognise faces, which is simultaneously advanta-
geous and problematic in this context. On the one hand, our ability to recognise faces
even when only a subset of the features is present makes the task more feasible. On
the other hand, the same ability makes the analysis of the experimental results more
subjective. The shared left-right symmetry of faces and flowers also plays an important
role in the evolution of ambiguous images. We are currently conducting experiments
using other objects, some of which are not symmetric (e. g., profile faces). Although we
can evolve computational ambiguous images, it is hard for humans to see both objects,
particularly the non-symmetric one. Our tentative explanation is that since detection
of symmetry plays an important role in human image perception, humans tend to be
drawn towards the symmetric object overlooking the non-symmetric one.
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4.4.3 Summary

In this section, we explored the generation of ambiguous images by evolutionary
means. We used NORBERT and several object detectors. The fitness is assigned by utilis-
ing values from the detection phase. The experimental results highlight the differences
between human and computational ambiguous images.
At first, several object detectors were used to assign fitness and evolve images that
resemble faces and flowers. The results from 30 runs per classifier showed that it is
possible to evolve images that are detected and resemble, from a human perspective,
the object. Next, we focused on the combination of flower and face detectors and
evolved images that contained both objects. The results showed the ability of the sys-
tem to evolve images where both object detectors found their respective object. Some
of the evolved images depicted optical illusions, with shared visual features and tiling
patterns. In the final experiment, the object detectors were parameterised to detect
larger objects, forcing the overlapping of the objects in the evolved images. In several
runs, the system was able to evolve images where the two objects were detected by the
respective object detectors.

Although the evolution of computational ambiguous images was frequent, only a
portion of these images is evocative of both objects to humans. These evolved images
can be considered ambiguous to humans, capable of inducing multistable perception.
Furthermore, although the results obtained so far are not of the same level as human-
designed ambiguous images, we consider them inspiring. They also demonstrate the
feasibility of the approach and open new avenues for research.

As previously mentioned, the experimental results contain many false positives. In
Chapter 5 we are going to explore the ability of the EC engine to find false positives
to improve the quality of the training sets, and hence the robustness of the object
detectors.

4.5 evolution of photorealistic faces

Sections 4.3 and 4.4 described instantiations of EFECTIVE to generate particular images
that contained a certain object by defining and annotating the positive examples of the
dataset. From Chapter 2 we know that it can be hard to gather and annotate many
instances. In this chapter, we are going to describe an instantiation that helps to deal
with this issue. Parts of this section are based on the published article Correia et al.
(2016).

As the name of the Section indicates, in this Section we describe the work done
to generate photorealistic faces. In the first application of EFECTIVE (Machado et al.,
2012b) analysed in Section 4.2, we were able to generate faces using a general purpose
evolutionary art tool as the EC engine. With some degree of subjectivity, the approach
showed promising results, delivering results that were evocative of human frontal
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faces, e. g., caricatures, masks and abstract smiles as faces. Nevertheless, most of the
images generated were images that from a subjective standpoint were not evocative
but were classified as faces by the classifier. Therefore we created a system able to
generate false positives. In this work, we have two objectives: (i) design an EC engine
capable of generating photorealistic frontal faces consistently; and (ii) analyse if we
can evolve images that from a subjective perspective are classified as faces but the
classifier does not recognise as faces.

Thus, we propose DA approach to autonomously generate new frontal faces out
of existing ones. The elementary parts of the faces are recombined using EC and
Computer Vision (CV) algorithms. Most parts of the text that is described here are
from the resulting publication (Correia et al., 2016).

4.5.1 Annotation Tool

We have developed an image annotation tool (see Figure 4.35). It allows the user
to annotate objects present in images. One can annotate an object by positioning a
sequence of points along its contour and by choosing the corresponding category.
New categories can be added at any moment. The annotations created by the user
are automatically saved in output files, particularly in one eXtensible Markup Lan-
guage (XML) file for each image and in one text file for each object category. The tool
also exports the mask of each annotated object. When one opens a folder with im-
ages, the tool loads the corresponding annotations saved in files if they exist. The
interaction and features provided by the tool are depicted in the demo at https:

//cdv.dei.uc.pt/2016/annotation-tool.mov.
We have used this tool to annotate the elementary parts of faces on a set of images.

In this work, each face is annotated by indicating the bounds of its eyes, eyebrows,
nose, mouth, as well as the bounds of the face itself.

4.5.2 Evolutionary Engine and Fitness Assignment

The EC engine was described in Section 4.1.2.2, a conventional GA that is used to evolve
sets of indexes of annotated images and image parts, which form a composite face. In
Figure 4.36 we have examples of these composite faces. In some we can see what
parts we swapped, but imagine if they had been mixed up or if we did not give any
indication on which images were the originals or the composites, it would be hard
to track or notice it. This is one trait that we want to enforce with this method: we
want the generated individuals to look like real faces and different from the originals.
Of course in some cases (third row of Figure 4.36), the composite face does not look
realistic, but nevertheless, it still holds the features that make it a recognisable face. As
stated in Section 3.3, designing a EC engine that is able to easily generate the target

https://cdv.dei.uc.pt/2016/annotation-tool.mov
https://cdv.dei.uc.pt/2016/annotation-tool.mov
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Figure 4.35: Screenshot of the annotation tool.
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class is important for the success of the framework. This representation ensures that
we are always generating recognisable photorealistic faces.

Similarly to the previous instantiations of EFECTIVE, to create a fitness function it is
necessary to convert the binary output of the face classifier(s) to an output that can
provide a suitable fitness landscape. As in previous works we do this by accessing in-
ternal values of the classification task that give an indication of the degree of certainty
in the classification. In this case, we are interested in a fitness function that penalises
individuals that are classified as faces. Thus, the fitness function is defined as:

f(x) = (tstg - pstg(x)) + (tstg ⇤ ndet(x)) +
1

1+ stgdif(x)
, (4.2)

where tstg, is the total number of stages of the classifier, pstg is the number of stages
that the input image has passed, ndet is a boolean variable that tracks if the image is
considered a face, stgdif is the difference between the value attained in the last stage
that the image passed and the threshold of the stage. Of course, this is one of many
possibilities.

4.5.3 Experimental Setup

Since we are interested in evolving faces from existing ones, as a DA approach, our
objective is to evolve instances that are misclassified as negative examples, i. e., not
classified as faces. We begin by defining two datasets of positive examples, one with
200 examples and the other with 500 examples. We then use these datasets to train
two classifiers: face200 and face500. The face200 dataset includes all 200 annotated ex-
amples that are used in the GA for recombination. The face500 dataset contains all
the face200 examples plus 300 more examples. With these two datasets, we intend to
explore the impact of our approach in a scenario where all available faces have their
parts annotated and in a scenario that only a fraction of the available instances are an-
notated. Furthermore, we are interested in analysing the resulting individuals in both
scenarios.

The positive examples that compose both datasets were extracted from the FACITY
project, a worldwide project that gathers the pictures of photographers capturing the
multiplicity of human faces from different cities and countries10. The examples used
for training the face200 and face500 classifiers are shown in Figures 4.37 and 4.38, re-
spectively. We sought to obtain a heterogeneous group of faces.

We maintained the same negative examples used from previous experiments (e. g.,
Section 4.2), composed of 1905 images from the “Urtho – Negative face Dataset”, which
contains images of landscapes, objects, drawings, computer generated images, among

10 FACITY project – http://www.facity.com/

http://www.facity.com/
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Figure 4.36: Examples of composite faces, one per line. On the left, we have the two original
images, and on the right, we have the two composites.
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Figure 4.37: The positive instances used to train the classifier face200.

Figure 4.38: The positive instances used to train the classifier face500.

others. In the scope of this work, we intend to study the results of our approach while
using the classifiers face200 and face500 to assign fitness.

The main classifier parameters can be consulted in table 5.1 and were chosen based
on the works of Viola and Jones (2001) and Lienhart et al. (2002). As for the face
detection settings we use the default parameters of OpenCV, which are presented in
table 5.2.

We test two experimental setups: setup200 and setup500. In the first one, the faces200
is used to guide evolution and the faces500 to curate individuals; In the second, the
faces500 is used to guide evolution and the faces200 to curate individuals. The role of
the curator is to evaluate the individuals generated by the guiding classifier and to
select faces that it does not classify as faces. We study the behaviour of each curator
and its selection of individuals.
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Table 4.6: Training parameters.
Parameter Setting
Example width 64
Example height 64
Number of stages 20
Min. hit rate per stage 0.999
Max. false alarm per stage 0.5
Adaboost algorithm GentleAdaboost

Table 4.7: Detection parameters.
Parameter Setting
Scale factor 1.2
Min. face width 0.7 ⇥ example width
Min. face height 0.7 ⇥ example height

The evolutionary engine settings are presented in Table 7.4. Concerning face parts
recombination, we maintain the pairs of eyes and the pairs of eyebrows, reducing the
genotype length from seven to five. The rationale for this decision is related to the
fact that most faces have a certain horizontal symmetry that the classifier tends to
learn from the positive examples. On early experiments, we have observed that the
classifiers struggled on with images where the pair of eyes and eyebrows belonged
to different faces, leading to an early convergence of the system. Besides the technical
aspects, the images evolved were unnatural and easily noticeable as blends.

4.5.4 Experimental Results

In this section, we present and analyse the experimental results. We begin by analysing
the evolution of fitness in the two experimental setups. Afterwards, we discuss the
impact of the fitness on the progression of detections over the generations. We present
and discuss the individuals selected by the curators and the best individuals generated
by the guiding classifier. Finally, we analyse the visuals of the evolved individuals.

Figure 4.39 shows the evolution of fitness of the best individuals along the genera-
tions in the setup200 and setup500 experimental setups. We plot both fitness curves to
examine how one affects the other.

We can observe that the EA can optimise the fitness function. In both setups, when
one fitness value increases the other tends to have a similar behaviour. The values
reveal that it is easier to satisfy the face200 in both setups, i.e., when it is evaluating
and when it is curating. The observed behaviour in setup200 suggests that the evolved
individuals that affect the face500 performance also affect the face200. This can be a
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Figure 4.39: Evolution of the fitness of the best individual across generation when using face200
to guide evolution and face500 to curate individuals (top) and the other way
around (bottom). The visualised results are averages of 30 runs.
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Table 4.8: EC engine parameters.
Parameter Setting
Number of generations 50
Population size 50
Elite size 1
Tournament size 2
Crossover operator uniform crossover
Crossover rate 0.8
Mutation operator gene replacement
Mutation rate per gene 0.15

consequence of the face200 training instances being included in the face500 training,
which makes the evolutionary process evolve individuals that are different from the
ones available in both datasets.

In Figure 4.40 we observe the average of individuals that are classified as faces
throughout the generations. The number of detections decreases in both setups, show-
ing the ability of the approach to evolve individuals that are not classified as faces, i.
e., classified as false negatives. A contrast between the two charts is observable. When
face200 is guiding, face500 maintains a high rate of detections. When face500 is guiding
and face200 is curating, both curves behave similarly. Based on the percentage of faces
detected in setup200, the evolution promotes solutions that are classified as faces by
face500. This is somewhat consistent with the fitness curve behaviour of Figure 4.39.

Figure 4.41 depicts in which generation the best individual, on average, seizes to
be classified as a face. One can conclude that when face200 is guiding, in less of 10

generations the best individual is not classified as a face. The behaviour of the curator
(face500) suggests that the best individuals are still detected in the last generations. In
contrast, when face500 is guiding the results indicate that there are evolutionary runs
where the best individual is still classified as a face. Furthermore, these individuals
are also classified as faces by face200.

Figures 4.42 and 4.44 depict a selection of fittest individuals registered in the exper-
iments. As for figures 4.43 and 4.45 one can observe some of the curated individuals.
The results suggest that although there are individuals in common, the two curators
tend to select different individuals. Some of the selected faces share characteristics
that we consider as exploits of the classifiers, particularly at the level of the skin tone,
contrasts, and size of some facial features. One can conclude that there are overlaps
between the fittest and the curated individuals in setup200 (see figures 4.42 and 4.43).
When face500 is curating or guiding, the evolved individuals share more characteristics
(see figures 4.44 and 4.43). This is consistent with the idea that the exploits of face500
tend to be also exploits of face200.
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Figure 4.40: Progression of the average of detections when using face200 to guide evolution
and face500 to curate individuals (top) and the other way around (bottom). The
visualised results are averages of 30 runs.
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Figure 4.41: Progression of the detection of the best individual across generations when using
face200 to guide evolution and face500 to curate individuals (top) and the other
way around (bottom). The visualised results are averages of 30 runs.
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Figure 4.42: Fittest individual in the last generation for 12 different runs when using face200 to
guide evolution.

Figure 4.43: Examples of faces curated by face500 in different runs when using face200 to guide
evolution.
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Figure 4.44: Fittest individual in the last generation for 12 different runs when using face500 to
guide evolution.

Figure 4.45: Examples of faces curated by face200 in different runs when using face500 to guide
evolution.
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Figure 4.46 depicts a selection of individuals evolved in different runs that we found
to be interesting and peculiar. This selection shows the ability of the approach to ex-
plore the search space and exploit the vulnerabilities of the classifiers in an automatic
and tractable way. As such, one could expect simple recombinations of faces that the
classifier has not “seen” before or exploits of lighting and contrast conditions. Nev-
ertheless, the system produces atypical faces with unexpected features. For instance,
one can see convincing images of babies with piercings, cases of gender ambiguity,
and mixtures of interracial attributes that are at least visually uncommon and pecu-
liar. Some of the generated faces are realistic and disturbing at the same time that
one could relate with the uncanny valley problem MacDorman et al. (2009), i. e., the
phenomenon where computer generated figures or virtual humanoids that approach
photorealistic perfection make real humans uncomfortable.

A final comment goes for the potential use of this approach for DA. Similar to boot-
strapping, this approach can generate variations or completely new examples from a
pre-defined sub-set.

4.5.5 Summary

We have described and tested EFECTIVE for the automatic generation of photorealistic
faces that are not classified as faces by the classifier, i. e., false negatives. The exper-
imental results demonstrate the ability of the proposed approach to generate a wide
variety of faces that test the ability of the classifiers to detect them. As such, we con-
sider the approach proposed herein a viable solution for DA in the field of FD. The
results also show the impact of using different classifiers. Besides fulfilling the main
objective (generate false negatives), from our perspective, the faces created have inter-
esting and unexpected features.

4.6 summary

In this Chapter, we analysed the viability of the EFECTIVE framework to generate in-
stances, i. e., act as a generator. We explored the approach in several image generation
scenarios. First, we described the framework instantiation and dwelled into the CS
module and EC engine details.

The first work was a frontal face generation approach which was motivated by the
idea of Romero et al. (2003). By combining a general expression-based evolutionary
art tool with an off-the-shelf classifier, we showed that it is possible to generate images
that are evocative of human frontal faces. At the same time, we were surprised with
some of the results that exposed shortcomings of the classifier. Based on these results
we thought to explore two lines of research: (i) expand to different objects, not only
faces; and (ii) explore the instances that we consider to be shortcomings of the classifier
and attempt to overcome them.
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Figure 4.46: Examples of faces evolved in different runs. More faces can be visualised at https:
//db.tt/iSPaqPLU.

https://db.tt/iSPaqPLU
https://db.tt/iSPaqPLU
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Following the first line of research, we expanded the experimentation and tested
with three more objects: lips, leaves and breasts. The mouth classifier was off-the-shelf,
while the other two were purposely trained for the task. The results attained showed
that our approach worked for all the objects, evolving images that were evocative of
the target object. Once again, the images present exaggeration of key features of the
objects which, due to the fitness function employed, is an expected and consistent
behaviour.

Next, we explored the generation of ambiguous images by evolutionary means. Af-
ter experimenting with the evolution of images that resemble a target object, we tried
combining several detectors in the same image. Next, we explored the same approach
but tried to overlap the detections. We were able to evolve images that depicted optical
illusions, with shared visual features and tiling patterns. We observed that the com-
putational evolution of ambiguous images was frequent, but only a portion of these
images are evocative of both objects to humans. These evolved images can be consid-
ered ambiguous to humans, i. e., induce multistable perception. We conclude that the
results obtained so far are not of the same level as human-designed ambiguous images.
However, they are inspiring.

Afterwards, we described the exploration of the EFECTIVE framework as a generator
of positive instances, namely as a DA approach. We describe an approach that allows
the generation of photorealistic faces by combining parts of the different faces present
in the dataset. We annotated several instances of a dataset and performed experiments
using two classifiers trained with a different number of instances, one containing only
the annotated instances and the other containing the annotated plus unannotated ones.
The fitness assignment was formulated to reward images that are not classified as faces.
We performed experiments alternating in using one classifier to guide fitness and the
other to curate instances. The idea of the curator is to find which evolved instances are
also not detected by the curator. The results show the impact of different classifiers on
the evolved faces. Besides fulfilling its purpose from our perspective, the faces created
have interesting and unexpected features.
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T O WA R D S T H E I M P R O V E M E N T O F C L A S S I F I E R S ’
P E R F O R M A N C E

After showing the potential of EFECTIVE as a generator of images of a particular type,
we now focus on another line of research. Based on the results attained during the
experiments of frontal face generation we explore FD as a classification problem. After
answering the question “how can we generate images of a particular type?” with our
approach, we focus on the question “how to generate useful instances?”. By useful we
mean instances that make an impact on a classifier’s training dataset, and consequently
on the classifier’s performance.

We test the framework in a FD problem. FD is a real-world application and challeng-
ing problem related to areas of CV, ML and Pattern Recognition (PR). At the time that
these experiments took place, the state of the art approaches relied mainly on feature
templates and sliding window algorithms. For this problem, we continued to employ
cascade classifiers based on Adaboost with features.

To create a FD, one needs to define a dataset with both positive and negative in-
stances. In this particular case, the positive instances are images containing at least
one face and its localisation (image window delimiting the face); and the negative in-
stances are images that do not contain faces. For the positive dataset one can gather
images from all sort of sources containing faces. However, since any image without a
face is a viable candidate for the negative dataset – which implies that the space we
are trying to sample is vast – collecting a representative, effective and manageable neg-
ative training dataset becomes particularly hard, complex and time-consuming, since
little guidelines exist.

Based on the results attained in previous works, we test EFECTIVE in this context. We
applied a different pipeline for these experiments which is explained next in Section
5.1. Before describing the set of experiments around this problem, we need to define
a baseline classifier and dataset. Afterwards, we present the evaluation methodology,
define the test datasets and instantiate the framework. In this Chapter, we explore the
proof of concept towards the improvement of classifiers. In Section 5.3.1, we explore
the contribution of instances generated from a single EC run. Then, in Section 5.3.2, we
present the experiments that combined instances generated from multiple EC runs, the
first application of the Supervisor module.
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D
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CS EC S E’E

Figure 5.1: Overview of the framework workflow with multiple CS, each with multiple EC runs
that yield different instances E. The instances E are processed by the Supervisor S
generating a subset E’ that is added to the dataset D

5.1 instantiation

The framework process employed in the next sections of this chapter is schematically
summed up in Figure 5.1. A classifier is selected to represent the CS module. Several
CS modules are trained for each CS, and several E EC runs are deployed and the results
are analysed. Since we are going to retrain the classifier, the Supervisor (S) selects
and filters the results from the EC runs (E’). This process can be repeated for several
iterations. With this workflow we aim to expand the dataset (D) in every framework
iteration. After every iteration, the CSs have their dataset augmented by the instances
selected and filtered by the Supervisor.

5.2 face detector training and evaluation

Most of the face detection process and training of a cascade classifier was already
explained in Section 4.1.1. In the next sections, we define and explain the parameters,
the baseline dataset and the evaluation of a face detector.

5.2.0.1 Classifier Training and Dataset

To train the classifier, we use the “opencv_traincascade” tool of OpenCV. It is beyond
the scope of the thesis to fine tune the parameters of the CS. Therefore, we opted to use
the default parameters of OpenCV for the FD phase and the ones that were tested in the
work of Lienhart et al. (2003) for the training phase. The relevant classifier parameters
can be consulted in Table 5.1 and were chosen based on the works of Lienhart et al.
(2003), Lienhart et al. (2002), and Viola and Jones (2001). The parameters represent a
compromise between performance and training time.

In addition to the training parameters, in Table 5.2 we define the relevant parameters
for the detection phase, which were used in the EC runs. The scale factor and pre-
processing are based on the work of Lienhart et al. (2002). Regarding the minimum
face width and height, we defined that the face should occupy at least 75% of the image.
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Table 5.1: Haar training parameters.
Parameter Setting
Features ALL
Input width 20
Input height 20
Number of stages 14
Min Hit rate per stage 0.999
Max False Alarm per stage 0.5
Adaboost Algorithm GentleAdaboost

Table 5.2: EC run detection parameters.
Parameter Setting

Scale factor 1.1
Min. face width 0.75⇥ inputwidth

Min. face height 0.75⇥ inputheight

Pre-processing Histogram equalisation

This aspect promotes the evolution of images that have a clear pattern identified as a
face (Machado et al., 2012a).

In the context of this thesis, we consider the positive dataset to be a set of instances
where each instance is composed of an image that contain at least one face. On the
other hand, the negative dataset is a set of instances where each instance is composed
of an image that do not contain a face. For this experiment images from two well-
known datasets were used: “The Yale Face Database B” (Georghiades et al., 2001) and
“BioID Face Database”(Jesorsky et al., 2001). “The Yale Face Database B” is a dataset
with a total 5850 grayscale images with the subjects in diverse positions and light
variations. The Bio-ID Face Database dataset has 1521 frontal grayscale images. Each
image shows the frontal view of a face of one out of 23 different test persons with
various expressions.

We wanted to test if the proposed framework contributes to improvements in the
classifier’s performance. Adding different poses has no interest in this context and
would make development and analysis harder. As such, we decided to focus exclu-
sively on frontal faces. Although it is easier to develop a good initial classifier, it is
likely to make improvements harder, since there is less room for improvement.

Considering this constraint, the total number of available positive instances is 2172.
To build the ground truth file, the images have to be manually selected and cropped.
These cropped images (see Figure 5.2), are the objects that the Haar classifier attempts
to discriminate from negative samples. After manually filtering out images that were
too dark, or where only part of the face was illuminated, a total of 1905 positive
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Figure 5.2: Sample of images of the positive training dataset with their corresponding cropped
image corresponding to the object to detect.

instances and corresponding cropped versions were obtained. All these positive in-
stances pre-processed and at scale defined for training can be seen in Figure 5.3.

The negative dataset influences both the training time and test performance. Gener-
ally speaking hard and large negative datasets imply longer training times, but also
better performance. We employed the “Urtho - Negative face Dataset”1, which consists
of a total of 3019 images of landscapes, objects, drawings, etc. To keep the cardinality
of the negative and positive datasets balanced we randomly selected 1905 of the Urtho
images. A sample is presented in Figure 5.4.

5.2.0.2 Classifiers’ Assessment

The performance of the face detection classifiers is measured regarding percentage of
hits (%H), number of false alarms (FA) and percentage of correct instances (%C). The
results are compared with the ones in the ground truth file, and if the result matches
or lays within the tolerance area defined by the performance tool parameters, it is hit.
However, if it lays outside the tolerance area, it is counted as a false alarm. If no face
is detected and a face exists, it is counted as a miss. Finally, an instance is considered
correctly classified if, and only if: (i) all the ground truth faces are detected (note that
an image may contain several faces) and; (ii) the regions where the faces were detected
match the expected region. A negative instance is classified as correct if the classifier
detects no faces in the input image. To illustrate these concepts, three instances are
displayed in Figure 5.5 with example cases of correct and incorrect instances. The pa-
rameters for the performance assessment task are defined in Table 5.3 and are based on
the default parameters of OpenCV’s performance tool and the work of Lienhart et al.
(2002). In our performance evaluation, we focus on the following metrics: percentage

1 Tutorial haartraining — http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/

http://tutorial-haartraining.googlecode.com/svn/trunk/data/negatives/
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Figure 5.3: All positive instances of the training dataset.
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Figure 5.4: Sample of images of the training dataset considered as negative instances.

Table 5.3: Performance tool parameters.
Parameter Setting

Minimum window width 20
Minimum window height 20
Scale factor 1.1
Maximum size difference factor 1.5
Maximum position difference factor 0.3

of hits (%H), the total number of false alarms (FA), the percentage of correct instances
(%C).

Considering the goals of these experiments, the primary interest is the comparison
of the performance of the classifiers, from the initial iteration to the last, using different
setups. We assess the performance in three test datasets:

1. Flickr – 2166 negative images, from the Flickr search engine2);

2. Feret – 902 positive images with 902 faces, one per image, from Facial Recogni-
tion Technology Database3;

3. CMU-MIT – 130 positive and negative images containing a total of 511 faces
(Rowley et al., 1998b)4.

The Flickr image dataset consists of images retrieved from a search in Flickr using
the keyword “image”. We excluded images that contain frontal human faces. This
results in a negative dataset composed of landscapes, buildings, animals, computer
screenshots and various objects. The Feret test dataset is a positive dataset composed

2 Flickr – https://www.flickr.com/search/
3 The Feret Database – http://face.nist.gov/colorferet/colorferet.html
4 CMU Database – http://vasc.ri.cmu.edu/idb/html/face/frontal_images/

https://www.flickr.com/search/
http://face.nist.gov/colorferet/colorferet.html
http://vasc.ri.cmu.edu/idb/html/face/frontal_images/
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Figure 5.5: Three different detection outcomes. On the left we have a correct instance, where
only one detection was made in the right region, hence considered a hit. In the
middle we have an instance where no detections were made, meaning that no FAs
were encountered but the face was not detected, counting it as a miss and this
instance as incorrect. On the right we have a case where the face was correctly
detected, hence granting a hit, but there are two FAs and for that reason it is also
considered an incorrect classification.

of grayscale frontal faces, one face per image with a simple background. The dataset
was manually filtered to exclude instances that did not correspond to frontal faces (e.
g., partial profiles). The purpose of using this test dataset is to test the ability of the
classifiers to detect a clear frontal face. Finally, the CMU-MIT image dataset gathers
multiple types of images, such as cd-covers, wallpapers, photographs, buildings. This
dataset is commonly used to compare the performance of face detectors (Kienzle et al.,
2005; Lienhart et al., 2002; Viola and Jones, 2001). Samples from the described dataset
can be seen in Figure 5.6. All the positive instances of Feret and CMU-MIT can be seen
in Figure 5.7 and Figure 5.8, respectively.

5.3 proof of concept

In the following Subsections we describe and analyse the results of the first steps to-
wards the improvement of classifiers. Based on the conclusions from the experiments
in Chapter 4, with EFECTIVE we were able to generate instances that are wrongly classi-
fied by the classifier. We aim to use the misclassified instances to expand the classifier’s
dataset in order to eliminate its shortcomings. More specifically, in the next Sections,
we aim to generate false positives, retrain the classifiers with them, and analyse their
impact on the performance classifiers.
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Figure 5.6: Instances from the test datasets. On the top row, images of the Flickr dataset; on
the middle row, images of the Feret dataset; and on the bottom row, images of the
CMU MIT dataset.
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Figure 5.7: All positive instances of the Feret dataset.
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Figure 5.8: All positive instances of the CMU-MIT dataset.

Table 5.4: Parameters of the GP engine.

Parameter Setting

Population size 50
Number of generations 100
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap, sub-tree replacement, node insertion,

node deletion, node mutation
Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, ⇥ , /, min, max, abs, neg, warp, sign, sqrt, pow,

mdist, sin, cos, if
Terminal set x, y, random constants

5.3.1 Single Run

As previously mentioned, although the framework proposes the use of several parallel
classifiers, each with its evolutionary run, we only used one. So, in this experiment, we
train one CS, perform 30 independent EC runs, and perform one framework iteration.
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Figure 5.9: Evolution of fitness across generations. Results are averages of 30 independent runs.

Figure 5.10: Evolved images classified as faces by the classifier.

To analyse the impact of the evolved instances of each EC run, we train a classifier, one
per EC run, with the instances of the corresponding EC run, resulting in 30 different
classifiers. The training and detection parameters are described in Section 5.2. The EC
engine parameters are the same from Section 4.2 and are presented in Table 5.4.

Figure 7.6 displays the evolution of the population average fitness and of the best
population individual across generations. In essence this chart shows that in successful
runs, the EC engine finds images that are classified as faces in few generations. Note
that runs where the framework was unable to find images classified as faces were
discarded. These runs are useless for improving the classifier’s performance since no
images would be added to the dataset.

Figure 5.10 presents examples of images evolved in different evolutionary runs. All
of these images have been considered faces by the classifiers. This highlights the short-
comings of the classification system, based on a state of the art classification approach,
and further indicates the ability of the EC engine to exploit these shortcomings finding
images that are false positives.
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Table 5.5: Results attained by the initial classifier and the average of 30 classifiers trained with
images of single EC runs.

Flickr Feret CMU
Classifier FA %C H FA %C H FA %C AVG(%C)

Initial 861 73.5 852 97 85.6 193 60 48.5 69.2
Average 750.9 76.4 845.3 86.6 85.4 194.8 47.0 51.8 71.2

Table 5.5 presents a synthesis of the results achieved, presenting the performance of
the initial classifier and the average performance of the 30 classifiers (Average) created
from a single iteration of EFECTIVE.

Focusing on the comparison of the initial classifier with the average performance of
the framework classifiers, the most striking difference in performance is the significant
decrease in the number of FAs which occurs for all test datasets. In average, for the
three datasets, there is a decrease of 15% in terms of FAs. Adding false positives to
the negative training dataset results in classifiers that are more “demanding” than
the initial one when it comes to consider the presence of a face in an image. As a
consequence, it becomes more robust and precise in the detection, which leads to a
decrease in the number of false positives.

The disadvantage is that some face images may go unnoticed. In fact, a decrease in
the %H occurs in the Feret test dataset (94.4 vs. 93.6, which represents a decrease of
less than 1%). More importantly, in the CMU test dataset, the percentage of correctly
identified images increases for all test datasets. As expected, the improvements of
performance are more noticeable in the Flickr dataset, which is composed exclusively
of negative images.

Although in this Section we focus on examining the behaviour of EFECTIVE, it is
important to notice that from a practical perspective we do not need 30 classifiers,
we just need one. In the next Section we analyse the experiments performed using
multiple runs.

5.3.2 Aggregation of Multiple Runs

In order to manage the results of multiple runs we resort to the Supervisor module
of the framework. As stated in Chapter 3, this module manages the generated in-
stances from different EC runs. Thus, after finalising the N different independent EC
runs, started with different random seeds, the resulting individuals are submitted to
a Supervisor module responsible for choosing the set of images to be added to the
training set. This module comprises two parts: select and filter. Select creates a sub-set
of negative examples from the EC runs. In the experiments performed in this Section
we consider two selection modes: Aggregator and External.
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Table 5.6: Results attained by the initial, the external classifiers and by all the framework clas-
sifiers in three independent test datasets. Performance improvements over the initial
model and Average models are presented in bold typeface. Improvements over the
initial model in italic. Decreases of performance over the initial model are under-
lined.

Flickr Feret CMU
Classifier FA %C %H FA %C %H FA %C AVG(%C)

Initial 861 73.5 94.5 97 85.6 62.1 60 48.5 69.2
Fdlib 499 82.5 77.4 32 75.7 39.5 34 32.3 63.5

Average 750.9 76.4 93.7 86.6 85.4 62.6 47.0 51.8 71.2
Manual 456 84.6 93.2 52 88.7 65 35 50.8 74.7

Aggregator Unequal 522 82.2 94 53 89.2 68.8 40 57.7 76.4
Aggregator RMSE 769 75.7 93 125 82.2 63.7 36 55.4 71.1
External Unequal 412 84.9 92.6 38 89.0 60.1 38 53.1 75.7
External RMSE 319 88.6 91.6 51 86.7 61.7 39 51.5 75.6

In Aggregator mode all the images generated throughout the EC runs identified as
containing a frontal face are selected. In External mode an external classifier is used
and images will only be selected when the internal and external classifier disagree
(e. g., the classifier used in the EC runs classifies the image as having a face, yet the
external classifier does not recognise a face in the image). The rationale for using an
external classifier is the following, some of the evolved images may actually look like
frontal faces, as such, adding them to the training set may hinder performance. The
chosen external classifier was Face Detection Library (FDLib) developed by Kienzle
et al. (2005).

Once the selection process is over, the resulting sub-set of images is submitted to a
filter operation to remove similar images. We considered the filter methods defined in
Section 3.4, Unequal and RMSE. Since we are in a image classification scenario, these
filter modes operate at the image’s pixel level (e. g., perform comparison at the pixel
level).

We use 30 parallel EC runs and the images generated throughout these runs are
gathered and submitted to the Supervisor. The resulting sub-set of images is then
added to the training set and the classifier is retrained. As previously stated, we con-
sider two select modes – Aggregator and External– and two filter modes – Unequal and
RMSE– which results in a total of four combinations. Additionally, we consider the
option of using a human Supervisor in charge of manually handling the selection and
filtering process (Manual).

Table 5.6 presents a synthesis of the results attained in the three considered test
datasets by the: initial classifier; the Average classifier; the classifier resulting from
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manual selection of examples; and the four classifiers resulting from the combination
of select and filter modes.

When comparing the performance of the classifiers resulting from parallel EC runs
with the initial model we find an overall performance improvement. The number of
FAs decreases for all considered test datasets, the only exception is the number of FAs
attained by the classifier created with the Aggregator RMSE strategy in the Feret test set.
Furthermore, adding examples from multiple EC runs reduces significantly the FAs
in comparison to the Average runs (34.04% on Flickr, 26.30% Feret, 20% CMU) and
to the initial classifier (42, 44% Flickr, 34.23% Feret, 37.33% CMU). Combining these
results with the ones attained by the Average experiments, it becomes clear that the
addition of evolved false positives to the training dataset significantly reduces the FA
rates. The results also indicate that parallel EC runs models tend to perform better
than the Average model in terms of FA.

While comparing the %H of the parallel EC models to those of the initial classifier, we
observe a tendency to the decrease in the %H in the Feret dataset. This is an expected
result, since as we only expand the set of negative examples, the classifiers tend to
become more “cautious” in identifying faces. Interestingly, the same behaviour does
not occur in the CMU dataset.

In terms of percentage of correctly classified instances, the parallel EC runs models
achieve an average increase of performance of 5.52% over the initial model and a 3.46%
performance increase when compared with the Average.

Focusing on the comparison of the results attained by the two selection modes –
Aggregator and External – the External models tend to perform better in terms of per-
centage of correct instances (5.0% average improvement). Concerning the filter meth-
ods – Unequal and RMSE – equal achieves a better average performance in terms of
percentage of correct instances (2.69% improvement). In these experiments, the only
case where the advantage of using parallel EC runs is not clear is when the Aggregator
RMSE strategy is employed. Nevertheless, even in this case, there is an improvement
in terms of percentage of correctly classified instances over the initial classifier. Over-
all, the best classifier resulted from using a External RMSE strategy, which matches our
expectations.

It is important to notice that the external classifier, FDLib, has shortcomings. In
fact, although it achieves low FA rates in all test datasets, in terms of percentage of
correctly classified instances it performs worse than the initial classifier in the Feret and
CMU test datasets. One may consider that the performance of the classifiers created
through the proposed framework would be limited by the performance of the external
classifier. Although this is true to some extent, the experimental results point in a
different direction.

The manual supervision experiment was created to assess what differences of per-
formance would be observable when using a human as Supervisor. With the exception
of the classifier resulting from the use of the External RMSE strategy, all other parallel
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EC runs models achieved performances comparable to those attained by the classifier
created through human supervision. In fact, External Unequal and External RMSE, sur-
pass the performance of the Manual classifier. These results suggest that is possible,
without the intervention of a user, to boost classifiers in an automatic way, achiev-
ing reasonable performance increases. Although the external classifier has significant
weaknesses, these weaknesses are not under evolutionary pressure and, therefore, can-
not be exploited by the EC runs to create instances that are misclassified by the external
classifier. As such, in spite of its weaknesses, the external classifier remains a valid al-
ternative for supervision purposes.

When we compare the performance of the External models with the performance
of the FDLib classifer, we observe that FDLib is clearly outperformed in terms of
%C classified instances in all test datasets, as is the initial classifier. The number of
FAs obtained by the External models is lower than the one attained by FDLib on the
Flickr dataset, higher on the Feret dataset and CMU datasets. It is always lower than
the initial model. Thus, overall, the External models significantly outperform both the
initial and external classifier.

5.4 summary

In this Chapter we performed a proof of concept of using EFECTIVE to improve the
performance of classifiers. First we performed experiments using one CS model and
performed 30 EC runs. The instances of each EC run were used to train an single
classifier. We analysed the performance of the resulting classifiers in the test datasets.
Based on the average results, a reduction of the FAs and an increase in terms of %C
was attained.

In the other set of experiments we tested the use of the Supervisor to select and filter
instances from multiple EC runs in one iteration of the framework. The experimental
results attained indicate that by choosing instances from multiple EC runs and using
them to retrain the classifier, resulted in a better overall performance when compared
to the initial, the Supervisor’s classifier and individual EC run classifiers. These results
are comparable to the result obtained by a classifier trained with manually selected
instances from all the EC runs. Furthermore, the results suggest that although the
performance of the Supervisor’s classifier is worse than the initial classifier, in the role
of Supervisor it contributes to the selection of instances that impact the performance
of the classifiers.
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In the previous Chapter we presented a series of experiments that show the feasibility
of using EFECTIVE for assessing and improving classifier’s performance. In this Chapter,
we explore the approach further by performing multiple framework iterations. We
present and analyse the following experiments: (i) expand the negative dataset (Section
6.1); (ii) expand the positive dataset (Section 6.2); and (iii) expand the negative and
positive datasets (Section 6.3).

6.1 expanding the negative dataset

After the proof of concept with parallel evolutionary runs and aggregation of different
instances from different runs we explore the framework further. We start by exploring
the contribution of multiple framework iterations. We also analyse the training phase
and how the size of the dataset progresses. We address the evolutionary process and
how these evolved instances impact the framework by doing a control experiment
(Section 6.1.5). Lastly, we compare the different approaches in terms of performance
metrics, described before in Section 5.2.0.2. In the next Section we describe the changes
and updates to the framework that allowed us to further test and validate the frame-
work.

6.1.1 Framework Changes

The CS module, EC engine and fitness assignment were maintained from the previ-
ous experiments. EFECTIVE relies on the ability of the evolutionary engine to find and
exploit the weaknesses of the classifiers to increase the quality of the dataset. The
disposition of the EC to find shortcuts that exploit weaknesses of the fitness assign-
ment scheme is well-known (Baluja et al., 1994; Machado et al., 2007a; Spector and
Alpern, 1994; Teller and Veloso, 1995). In this case, the objective is to evolve false pos-
itives: images that are classified as faces, but that should not have been classified as
faces. Adding these false positives to the training dataset and re-training the classifier
promotes the correction of its exploitable flaws. With this in mind, after finalising all
the EC runs, the resulting instances are submitted to the Supervisor module, which is
responsible for choosing the set of instances that are going to be added to the train-
ing dataset. In this experiment, we consider a candidate instance an instance that is
classified as belonging to the positive class, i. e., classified as a face.

131
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In the selection part we collect a subset of images from the EC runs. We consider the
two selection methods: Majority and External. As we previously show in Chapters 4
and 5, although most of the evolved images are false positives, some of them actually
look like faces and, as such, adding them to the training dataset may hinder the perfor-
mance of the classifier. Thus, the goal of the selection stage is to discriminate between
the true positives and false positives.

In the Majority selection method, all the instances generated throughout the evolu-
tionary runs and identified as containing a frontal face are gathered. All the classifiers
of the CS evaluate each instance and if it is identified as not containing a face by the
majority of the classifiers, the instance is selected for the subset. The idea is to consider
instances that the majority of the CS consider as an error (false positives), that should
be corrected.

The External selection method relies on the feedback of an external classifier. The
rationale is that the external classifier is not subjected to evolutionary pressure, in the
sense that its flaws are not directly exploitable by the EC, as such, the classification it
produces for evolved images are prone to be more accurate.

In this work, an off-the-shelf LBP cascade classifier for frontal face detection from
the OpenCV distribution is used as the external classifier (Ahonen et al., 2006), i. e.,
the supervisor’s classifier. It was selected due to its state of the art relevance and
similarity with the type of classifiers used in our approach. The difference between
the LBP classifier and the ones used in this work is the type of features used in the
detection phase (as we have seen in Section 4.2.2.1). Instead of using Haar features,
it uses LBP features. The evolved images are only selected if they are classified as
containing faces by the CS and as not containing faces by the LBP detector.

When successful, the EC runs tend to converge to a certain kind of image and to
produce various similar images. The addition of all these images would lead to an
explosion of the size of the training set, without significantly improving performance.
To avoid the addition of visually similar images we introduce a filtering stage. For this
purpose we considered several image similarity metrics (see e. g. (Goshtasby, 2012)).
Taking into consideration the task at hand – which involves filtering images that tend
to result from converging EC processes – and the temporal complexity of the metrics,
we developed two filtering schemes: Unequal and RMSE. The former performs a pixel
based comparison of the images’ subset, discarding images that are equal. The latter
RMSE mode, also performs a pixel based comparison, calculating the root mean square
error (RMSE) between all pairs of images of the subset, and discards images that are
below a given RMSE threshold. The threshold was attained empirically and kept fixed
from previous experiments (Section 5.3.2).
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Table 6.1: Framework parameters.
Parameter Setting
Framework iterations (N) 10
Classifiers per iteration (C) 30
EC runs per classifier (E) 1
Minimum candidates per EC run 300
RMSE threshold 0.10

6.1.2 Experimental Setup

The experiments are designed to test the different possible combinations of filter and
select methods, using multiple classifiers and multiple framework iterations.

Each framework iteration involves training several CS, conducting an EC run for
each CS, selecting and filtering the results to prepare the next framework iteration.
We define the different setups as the combination of selection and filter methods, as
follows: Majority Unequal; Majority RMSE; External Unequal and; External RMSE.

The overall framework parameters are presented in Table 7.1, which yields 1200

distinct Haar cascade classifiers.
The settings for the GP engine for each EC run are presented in Table 7.4. An example

of the images generated in the initial population is depicted in Figure 6.1. Results from
Section 5.3.1 show that these parameters allow the generation of images classified as
containing faces in less than 50 populations of 100 individuals. Preliminary tests indi-
cated that some EC runs were unable to find a significant number of images detected
as faces, biasing the analysis of the results. To overcome this problem, when an EC
run fails to find at least 300 true positive instances, the run is discarded, and a new
evolutionary run with a different seed is performed. This process is repeated until this
minimum is reached. Only instances of successful EC runs are given to the supervisor
for selection and filtering. It is important to state that we are only discarding these
instances to ease the analysis. Thus, in a practical scenario it would be more advisable
to use these images.

6.1.3 Experimental Results

We start by describing the results of the evolutionary process and its behaviour for
the different defined setups. We show that it is possible to guide evolution with the
current fitness scheme, and that the results progress from one framework iteration to
the next. The results of each framework iteration and their differences are analysed
in Section 6.1.3.1. We discuss the assessment of the classifiers, by performing a sta-
tistical analysis of the results of each setup (Section 6.1.4). Then, we perform Control
experiments, comparing the results obtained using evolved instances, i. e. adversarial
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Table 6.2: GP engine parameters.
Parameter Setting
Population size 100
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set x, y, scalar random constants
Phenotype width (pixels) 64
Phenotype height (pixels) 64

Figure 6.1: Sample of images generated in the starting population.
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instances, to those obtained using datasets of equal size, without evolved instances,
generated via a standard non-adversarial method for FD (Subsection 6.1.5).

We rely on statistical tests to make inferences about the experimental results. First
we apply the Lilliefors test (Lilliefors, 1967) to test whether the samples follow a nor-
mal distribution or not. The test showed that the data does not follow the normal
distribution. Thus, we have to use the Kruskal-Wallis between the groups to assess if
statistically significant differences exist. When differences exist, we rely on post-hoc
tests, using Wilcoxon-Mann-Whitney test (Wilcoxon, 1945) to perform pairwise com-
parisons. All the tests are performed with a confidence level of 99%, i.e., the p-value
for rejecting the null hypothesis has to be less than 0.01. We use the Bonferroni cor-
rection (↵/#number of comparisions) in the cases where multiple comparisons were
performed (Bonferroni, 1935).

6.1.3.1 Training Phase and Evolutionary Process

In each iteration of the framework, we train 30 distinct classifiers. As such, since we
have 4 different framework setups and 10 iterations, the total number of trained clas-
sifiers is equal to 1200. For each of the trained classifiers we perform a single EC run.
These EC runs are guided by its corresponding classifier to evolve images that are de-
tected as belonging to the positive class (i. e., images classified as containing a face).
30 distinct EC runs start with the same initial population, but each with a different
classifier to assign fitness.

At the end of each EC run we count the number of images classified as belonging to
the positive class that were generated. If the number is above the pre-defined threshold
(in our case 300, see Table 7.1) the run is considered valid. If this threshold is not
achieved, a new EC run is initiated and the process is repeated until the threshold is
surpassed. After all EC runs for all classifiers have ended, all images from the valid
EC runs are gathered, and we advance to the supervisor module. After the supervisor
performs its selection and filtering methods, the resulting instances are added to the
training dataset and a new framework iteration begins.

6.1.3.2 Fitness Evolution

In the first iteration of the framework (Iter. 0), the positive and negative datasets are
the same for all supervisor setups. Moreover, the initial classifiers are the same for
all the setups. Hence the results of the EC runs in iteration 0 are the same across all
setups.

Figure 6.2 shows the evolution of the fitness of the best individual of each generation
(Max) and of the average fitness (Avg), during the initial framework iteration. We
present the results obtained using the 30 valid EC runs (solid line), which have reached
the pre-established threshold of candidates, and the ones obtained with all runs (valid
and invalid), which are depicted by dashed lines.
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Figure 6.2: Evolution of the average and maximum fitness across generations for the initial
framework iteration, considering the valid and all the EC runs. The results are
averages of 30 independent runs.

To improve the readability, the fitness values were normalised to the [0, 1] interval by
dividing the raw fitness, calculated according to Equation 4.2 by the average maximum
fitness found in the course of the framework iteration1.

As can be observed, the fitness increases rapidly in the first 5 generations, and
steadily, although at a lower pace, from there on. This is an indication that the fitness
function is capable of guiding the evolutionary process, leading it to the discovery of
images classified as members of the positive class. Additionally, the curves concerning
the valid runs and all runs depict similar behaviours. This can be explained by two
factors: the percentage of valid runs is relatively high (see Table 6.3); all the invalid
runs were able to generate images classified as faces, although not in sufficient number,
therefore reaching high fitness values.

After the initial iteration, the dataset size for the four setups becomes different, due
to the different supervision setups. Therefore, from there on, the classifiers are trained
using different datasets and, as such, will have different performances.

Figure 6.3 shows the evolution of the fitness of the best individual of each generation
(Max) and of the average fitness for the final framework iteration. As previously, we
present results for the 30 valid EC runs and for all runs.

As depicted, the curves exhibit the same overall behaviour. However, the differences
among valid runs and all runs are more visible. This can be explained by the fact that,
in spite of a significant drop in the percentage of valid EC runs (from 47% to, 5%), the

1 It is important to notice that the raw fitness values resulting from two different classifiers are not directly
comparable, since the number of stages and inner structure tends to be different.
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Figure 6.3: Evolution of the average and maximum fitness across generations for the last frame-
work iteration for all Supervisor setups, considering the valid and all the EC runs.
The results are averages of 30 independent EC runs.

percentage of invalid runs able to evolve faces is still relatively high (74%). The Majority
based setups yield the highest percentage of invalid runs that were able to evolve faces
(88% for Majority Unequal and 86% for Majority RMSE). These results indicate that
the External setups are likely to be the ones that result in a higher improvement of
performance of the classifiers, since it is harder to “fool” them.

Overall, these charts indicate that although the task of the EC engine becomes tougher
as the number of iterations increases, the EC is still finding new instances of the posi-
tive class in the final iteration of the framework.

To better understand how the addition of evolved instances to the dataset increases
the difficulty of the task of the evolutionary engine, we present in Table 6.3, for each
setup and for each iteration, the total number of EC runs performed in order to reach
30 valid runs, the average number of candidates per EC run, and the average number
of candidates per valid EC run.

To support the analysis of the evolution of the total number of EC runs per frame-
work iteration, we performed a non-parametric chi-squared method for statistical pro-
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Table 6.3: Number of EC runs necessary to find 30 valid runs, average and median number of
candidates per EC run, and average and median number of candidates per valid EC
run.

Setup Iter. EC runs
Avg Median Avg Median

candidates candidates candidates candidates
all runs all runs valid runs valid runs

0 64 631.09 242.00 1228.23 1069.50
1 176 173.11 28.50 801.87 722.50
2 218 142.59 20.50 757.67 722.50

Majority 3 255 111.76 19.00 648.87 538.50
Unequal 4 300 78.63 10.00 534.93 470.50

5 345 101.28 15.00 795.87 665.50
6 433 63.09 1.00 629.40 554.00
7 377 76.09 8.00 611.00 586.50
8 375 96.53 11.00 789.07 581.00
0 64 631.09 242.00 1228.23 1069.50
1 181 168.09 34.00 772.97 646.00
2 255 109.05 18.00 657.07 578.00

Majority 3 340 91.10 17.00 662.17 556.50
RMSE 4 343 97.74 23.00 659.00 479.00

5 272 121.19 11.50 796.77 640.00
6 474 60.67 6.00 603.43 469.50
7 530 61.18 7.00 641.43 525.50
8 356 85.78 10.50 683.87 540.50
0 64 631.09 242.00 1228.23 1069.50
1 473 66.43 1.00 732.73 622.50
2 303 105.14 16.00 686.60 540.50

External 3 894 41.61 1.00 690.73 682.00
Unequal 4 645 62.59 6.00 760.03 652.00

5 680 43.75 2.00 615.47 519.00
6 1008 36.33 3.00 611.67 452.00
7 923 43.01 5.00 701.83 547.00
8 1135 32.86 2.00 726.27 690.50
0 64 631.09 242.00 1228.23 1069.50
1 201 144.72 30.00 699.27 544.50
2 234 117.65 24.00 614.50 407.00

External 3 381 84.70 9.00 748.40 544.50
RMSE 4 386 74.41 8.00 660.10 642.00

5 486 52.02 5.00 577.10 510.50
6 510 59.34 4.00 648.33 533.50
7 545 51.10 5.00 605.07 508.50
8 698 42.67 4.00 568.47 492.50
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portion analysis. This analysis reveals that there are statistically significant differences2

between the proportion of valid EC runs observed during the initial iteration, and all
remaining ones. Statistically significant differences between the proportion of valid EC
runs of a given iteration and the previous one are indicated in italic. Statistically signif-
icant differences between one iteration and the last one are depicted in underline. As it
can be observed, the differences between consecutive iterations are rarely statistically
significant. In other words, although the difficulty of the task tends to increase, the
differences from one iteration to the other tend to be below the threshold that would
allow to classify the differences as statistically significant. The External RMSE setup is,
arguably, the perfect example of this behaviour. As it can be observed, the total num-
ber of EC runs steadily increases from one iteration to the other, but the differences are
always too subtle to be statistically significant. The analysis of the differences in the
last iteration reinforces this interpretation of the results.

For the analysis of the number of candidates we perform the Wilcoxon-Mann-Whitney
test with a confidence level of 99% with Bonferroni correction for multiple tests, which
implies setting significance level to 0.01/8 for the tests involving comparisons with
iteration 8, and 0.01/2 for all the remaining ones.

The results concerning the number of candidates for all EC runs confirm the previous
analysis. There are statistically significant differences among the results of the initial
iteration and all the remaining ones. From one iteration to the other the differences
are rarely statistically significant, but several statistically significant differences can be
observed from the first iterations and the final one.

When we focus on the number of candidates per valid EC run we observe that there
are almost no statistical significant differences. Although it is increasingly difficult to
find a valid EC run, when a valid run is found, the behaviour of the EC algorithm
within the run tends to be similar for all iterations except for the initial one.

Comparing the results obtained by the different setups according to these metrics
is likely meaningless. Nevertheless, it is interesting to notice that the External RMSE
setup yields a consistent behaviour, with a steady increase of the number of EC runs
and decrease of the average number of candidates per run, as the number of iterations
increases.

6.1.3.3 Visualising the Evolved Instances

As stated, since the supervisor selects and filters the instances after all populations
are gathered, the first iteration will be equal across all setups. To help visualise the
type of images generated, a sample is presented in Figure 6.4. We can observe in
Figure 6.5 that the patterns of the last iteration images differ from setup to setup.
It is important to notice that all the sample instances are images that the classifiers
identified as containing at least one face.

2 with a confidence level of 99%
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Figure 6.4: Sample of images generated by the framework that were added to the training
dataset on the first iteration.

The initial images contain noise and fuzzy patterns. The results of each setup in
the last iteration seem cleaner and, in some cases, well-defined patterns emerge. Some
of them have parts that resemble a human face. In Majority RMSE one can see some
rectangular patterns that may appear to be mouths and eyes (first two images on
bottom left). External RMSE has some patterns that resemble face contours (second
image from the top-right position).

One can observe that different images were evolved with different characteristics in
all setups. Taking into account the metrics of the evolutionary phase that were previ-
ously analysed, the visual results suggest that the different setups explored different
areas of the search space.

Overall, the results for the evolutionary metrics and the ones shown in Figure 6.2
and Figure 6.3, suggest that is possible to properly guide evolution with the chosen
fitness scheme (Equation 4.2).

6.1.4 Supervision and Classifier Performance

This subsection focuses on the analysis of the impact of the configuration of the su-
pervisor module in the growth of the dataset size (6.1.4.1) and performance of the
classifiers in test datasets (6.1.4.2).

6.1.4.1 Dataset’s Size

In Table 6.4 the dataset’s size and the number of instances added throughout the
iterations are presented. Regarding the selection methods, we observe that External
adds more negative instances than the Majority method. This suggests that the External,
which uses a LBP cascade classifier, identifies more false positives than the majority
of the classifiers that were trained throughout the iterations. This behaviour can be
observed by looking at the dataset size of the first iteration (Iteration 1), where all
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Figure 6.5: Samples of images generated that were added to the training dataset in the last
iteration from each corresponding setup.
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Table 6.4: Negative dataset’s size along the iterations for all setups.

Iteration

Majority External
Unequal RMSE Unequal RMSE

size added size added size added size added
(0) baseline 1905 - 1905 - 1905 - 1905 -

1 10927 9022 7684 5779 14611 12706 9914 8009
2 13395 2468 8730 1046 22428 7817 13515 3601
3 15495 2100 9924 1194 28693 6265 16967 3452
4 16815 1320 11281 1357 35939 7246 19475 2508
5 17610 795 12193 912 42861 6922 22616 3141
6 18717 1107 13196 1003 47890 5029 24703 2087
7 20184 1467 14281 1085 52498 4608 27857 3154
8 21442 1258 14927 646 59528 7030 30825 2968
9 22899 1457 15704 777 63637 4109 32699 1874

evolved instances are the same for all the setups but different number of instances
are picked (as seen in subsection 6.1.3.1). The External Unequal registers the highest
value (14611), which means that in equal conditions for all setups, it selects more
instances than the other three setups. This can be explained by the fact that the external
classifier is not under selective pressure and, therefore, in the considered experimental
conditions, it is more robust than the classifiers that are being trained. Regarding the
filtering methods, Unequal, as expected, yields a higher number of additions than the
RMSE method, since it only discards instances that are equal. On the other hand, the
RMSE method discards images that are similar at the pixel level. Overall, these results
show that: (i) the combination of different filtering and selection methods have distinct
effects on the size of the dataset and; (ii) the supervisor’s classifier used in the External
setup identifies most of the generated instances as false alarms.

6.1.4.2 Classifier’s Performance

Each of the trained classifiers is applied to the test datasets to assess the performance.
We group the models per iteration and analyse the differences for each performance
metric. The summary of the results obtained in the test datasets are depicted in Table
6.5.

As previously, to determine if statistical significant differences occur we use the
Wilcoxon-Mann-Whitney test with a confidence level of 99% with Bonferroni correc-
tion for multiple comparisons. This implies setting the significance level to 0.01/11 for
the tests involving comparisons with iteration 9, and 0.01/2 for all the remaining ones.
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In Table 6.5 underlined values indicate that there is a statistically difference between
the value and the corresponding one observed in the last iteration (9) of each corre-
sponding setup, those in italic values indicate that there is a statistically difference
between the value and the corresponding one observed with the previous iteration.
In addition to the percentage of hits (%H), number of FA and percentage of correct
(%C), we include the AVG (%C) which represents the average %C for the considered
test datasets. Notice that the framework iterations start with the training of the initial
classifiers (iteration 0), which are the same for all the setups.

In general, all of the classifiers show significant differences in performance from iter-
ation 0 to iteration 1. Note that iteration 0 is the classifier trained with the base dataset.
Most of the differences represent improvements over the initial classifiers, especially
in terms of the number of FA and %C. This makes sense since we are improving
the negative training dataset. The trade off is a relatively small decrease in terms of
%H. The improvement in terms of AVG(%C) from the initial iteration to iteration 1

ranges from 11.3%, for Majority Unequal, to 13.3%, observed in the External Unequal
setup. From there on the improvements in terms of AVG(%C) are smaller from itera-
tion to iteration. Nevertheless, comparing the initial iteration with the final one reveals
improvements ranging from 14.5% (Majority Unequal) up to 17.0% (External RMSE).

Next we will focus on the analysis of the performance obtained in each of the test
datasets. In the Flickr dataset (composed only of negative instances) where only FA
may occur, we see a significant decrease of FA along the iterations for all setups. The
average number of FA observed in the baseline (i.e., iteration 0), 1326.4, is reduced to
an average value of 135.5 in the case of External RMSE and to 244.2 in the case of the
Majority Unequal. This results in a reduction of the original number of FA by 89.8% to
81.6%. This considerable decrease in the number of FA has consequences on the %C.
When comparing the initial with the last iteration we can observe improvements of
average %C ranging from 24.8% (Majority Unequal) up to 28.8% (External RMSE). These
results highlight the ability of the approach in reducing the number of FA, which is
arguably the most significant contribution.

When considering the Feret dataset, we observe a similar behaviour in what con-
cerns the average number of FA: while in the baseline classifier obtains and average
of 224.9 FAs, in the last iteration the average number of FA ranges from 24.5 (External
Unequal) to 57.7 (Majority Unequal), that is a reduction by 89.9% to 74.4% of the original
number of FA. As expected, the decrease in the number of FA has a potential cost: the
decrease in the number of hits (%H). The decrease in the average %H from the initial
iteration to iteration 1 ranges from 0.8% (Majority Unequal) to 1.3% (External Unequal).
When comparing the initial iteration to the last one we observe decreases ranging from
0.9% (Majority Unequal) to 1.6% (External Unequal). As such, for the Feret dataset, the
improvements in terms of FA appear to clearly outweigh the losses in terms of %H.
This is confirmed by the analysis of the variation of average %C, where we can observe
improvements ranging from 13.7% (Majority Unequal) up to 17.5% (External Unequal).
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The CMU dataset was the one that posed more difficulties for our approach. As pre-
viously, the number of FA and %H decrease, while %C increases, but the differences
are not as noticeable as in the previous datasets. In terms of FA we observe a reduction
from 91.9 in the initial iteration to a number ranging from 10.0 (External RMSE) to 15.8
(Majority Unequal) in the last, which corresponds to a reduction of 89.2% and 82.8% of
the initial number of FA. However, the decrease in %H is more severe than in previous
cases, ranging from 9.1% (Majority Unequal) up to 11.3% (External Unequal), when com-
paring the initial with the last iteration. The combined effect results in improvements
of %C that range from 4.7% (Majority RMSE) up to 5.6% (External RMSE).

Since we perform multiple framework iterations it is also important to assess if it
is advantageous to perform more than one. In general, a brief perusal of Table 6.5,
reveals that this is the case. For instance, if we consider the AVG(%C) we can observe
statistically significant differences between the classifiers of iteration 1 and iteration
9. In fact, with the exception of Majority Unequal, there are statistical significant dif-
ferences between the results of iterations 5 and 9, meaning that for those the results
indicate that 9 framework iterations yield better results than 5. In general the results
concerning %H and FA reveal the same pattern.

When we analyse the behaviour for each test dataset, we observe the same pattern
for Flickr and Ferret. For the CMU dataset, since the improvements are smaller, the
differences are not statistically significant, and we are unable to detect a meaningful
pattern.

6.1.4.3 Comparison among setups

In this subsection we focus on the analysis of the impact of the select and filtering
methods in the performance of the classifiers. For that purpose we analyse the perfor-
mance among all setups, for all the validation datasets, at the end of the framework
process, i.e., in the last iteration (9).

Table 6.6 summarises the significant statistical differences among setups in the last
framework iteration. A “�” indicates that the difference is not statistically significant,
a “+” indicates that significant differences exist and that the value is better when
compared with the setup displayed in the corresponding row, and “-” indicates that
significant differences exist and the value is worse when compared with the setup
displayed in the corresponding row.

As can be observed in Table 6.6 the statistical significant differences of performance
between Majority and External occur mostly in terms of FA and %C, where External
setups tend to consistently obtain better results. In terms of %H, almost no statistical
significant differences were observed among Majority and External setups. The excep-
tion is a significant difference between External Unequal and Majority RMSE in the
Feret dataset, justifiable by the higher values obtained by the External Unequal setups.

When comparing the filter methods, we did not observe any statistical significant
difference when comparing Majority RMSE with Majority Unequal, nor when compar-
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Table 6.5: Percentage of hits (%H), number of false alarms (FA), percentage of correct instances
(%C) and average percentage of correct instances (AVG(%C)) for each validation
dataset, along the iterations for all the framework setups.

Flickr Feret CMU
FA %C %H FA %C %H FA %C AVG(%C)

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 478.3 83.2% 95.3% 96.2 85.7% 53.1% 31.0 46.6% 71.8%
2 347.9 87.1% 94.9% 71.3 87.8% 49.5% 21.3 46.4% 73.8%
3 340.1 87.1% 94.9% 69.4 88.0% 49.3% 22.6 46.3% 73.8%

Majority 4 304.0 88.4% 95.0% 60.4 88.9% 49.7% 20.7 45.9% 74.4%
Unequal 5 251.1 90.1% 94.8% 55.8 89.2% 48.9% 15.9 46.4% 75.2%

6 244.9 90.4% 95.0% 60.4 88.8% 48.4% 15.0 46.8% 75.3%
7 250.6 90.1% 94.8% 56.0 89.2% 48.5% 16.4 46.0% 75.1%
8 231.4 90.8% 94.7% 56.8 89.0% 46.8% 14.3 45.2% 75.0%
9 244.2 90.3% 94.7% 57.7 88.9% 47.7% 15.8 45.8% 75.0%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 396.7 85.6% 95.0% 80.6 86.8% 51.5% 25.2 46.2% 72.9%
2 349.4 86.9% 94.8% 74.1 87.3% 50.9% 24.5 46.0% 73.4%
3 340.1 87.1% 94.9% 66.0 88.3% 50.5% 22.0 46.8% 74.1%

Majority 4 277.3 89.2% 94.5% 60.5 88.5% 48.6% 17.6 45.4% 74.3%
RMSE 5 268.0 89.5% 94.7% 63.4 88.4% 49.0% 17.2 45.8% 74.6%

6 232.3 90.7% 94.7% 51.6 89.5% 48.1% 15.4 46.0% 75.4%
7 197.3 92.0% 94.8% 44.4 90.3% 47.2% 13.0 45.5% 75.9%
8 222.4 91.1% 94.8% 45.5 90.2% 47.4% 14.6 45.5% 75.6%
9 185.4 92.4% 94.5% 44.6 90.1% 46.2% 11.9 45.5% 76.0%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 327.5 87.7% 94.8% 73.8 87.4% 50.6% 21.4 46.3% 73.8%
2 340.8 87.1% 95.4% 67.3 88.6% 51.1% 22.3 46.8% 74.2%
3 239.7 90.4% 94.7% 52.2 89.5% 48.0% 15.8 45.4% 75.1%

External 4 219.3 91.0% 95.0% 46.1 90.2% 47.8% 14.7 46.5% 75.9%
Unequal 5 229.6 90.7% 95.5% 40.2 91.5% 48.7% 16.2 46.0% 76.1%

6 197.3 91.8% 95.3% 33.6 91.9% 47.5% 13.1 46.6% 76.8%
7 174.8 92.7% 95.2% 30.7 92.1% 46.9% 13.2 46.5% 77.1%
8 143.7 93.9% 95.2% 23.7 92.8% 45.4% 9.7 45.5% 77.4%
9 148.6 93.7% 95.2% 24.5 92.7% 45.5% 10.8 45.6% 77.3%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 352.7 86.7% 95.2% 79.3 87.2% 51.2% 23.6 46.5% 73.5%
2 293.1 88.8% 95.1% 62.2 89.0% 50.8% 19.4 46.5% 74.7%
3 225.8 90.9% 94.6% 49.6 89.6% 48.7% 15.7 46.0% 75.5%

External 4 203.8 91.7% 94.9% 45.9 90.3% 48.3% 14.7 46.3% 76.1%
RMSE 5 177.2 92.8% 94.9% 37.5 91.1% 46.9% 12.3 45.8% 76.6%

6 169.7 92.9% 95.0% 32.8 91.7% 47.1% 11.2 46.1% 76.9%
7 155.4 93.4% 94.7% 32.1 91.4% 46.3% 11.5 46.0% 77.0%
8 137.7 94.1% 94.6% 27.7 91.8% 45.6% 9.8 45.3% 77.1%
9 135.5 94.3% 94.7% 27.8 91.9% 45.9% 10.0 46.4% 77.5%
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Table 6.6: Statistical significant differences of: %H - percentage of Hits, FA - number of false
alarms, %C - percentage of correct instances; among the framework setups in the last
iteration for each test dataset: 1 - Flickr; 2 - Feret; 3 - CMU.

Measure Setup

Majority External
Unequal RMSE Unequal RMSE

Dataset
1 2 3 1 2 3 1 2 3 1 2 3

%H

Majority
Unequal n.a. n.a. n.a. n.a. � � n.a. � � n.a. � �

RMSE n.a. � � n.a. n.a. n.a. n.a. + � n.a. � �

External
Unequal n.a. � � n.a. - � n.a. n.a. n.a. n.a. � �

RMSE n.a. � � n.a. � � n.a. � � n.a. n.a. n.a.

FA

Majority
Unequal n.a. n.a. n.a. � � � + + � + + +

RMSE � � � n.a. n.a. n.a. � + � + + �

External
Unequal - - � � - � n.a. n.a. n.a. � � �

RMSE - - - - - � � � � n.a. n.a. n.a.

%C

Majority
Unequal n.a. n.a. n.a. � � � + + � + + �

RMSE � � � n.a. n.a. n.a. � + � + + �

External
Unequal - - � � - � n.a. n.a. n.a. � � �

RMSE - - � - - � � � � n.a. n.a. n.a.

ing External RMSE with External Unequal. This indicates that the observed differences
among setups are most likely due to the selection methods and that, in the considered
experimental conditions, none of the considered filtering methods offers a competitive
advantage over the other.

6.1.5 Adversarial versus Non-Adversarial Augmentation

In this subsection we focus on analysing if there is an advantage in evolving instances
that explore shortcomings, i. e. adversarial instances, and using them for training pur-
poses, as we do in our framework, or if these results could also been obtained by the
addition of non-evolved, and hence not adversarial, negative instances.

In order to do this, we trained the same number of classifiers as we did for all the
framework setups, with the same number of negative instances per iteration (see Table
6.7), but without including evolved instances. Instead, we employ the DA technique
proposed by Sung and Poggio (1995) to increase the number of negative instances
by randomly selecting parts of non-face images, classifying them, and adding the
misclassified parts to the training dataset. This is a main approach used when training
Haar cascade classifiers and is included by default in OpenCV.

We refer to these setups as Control. After training all Control classifiers we tested
them with the same test datasets. Table 6.7 summarises the results obtained by the
Control classifiers.
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Table 6.7: Percentage of hits (%H), number of false alarms (FA), percentage of correct examples
(%C) and average percentage of correct examples (AVG(%C)) for each validation
dataset, along the iterations for all the Control setups.

Flickr Feret CMU
FA %C %H FA %C %H FA %C AVG(%C)

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 802.9 76.1% 95.5% 147.0 81.1% 54.2% 53.2 43.7% 66.9%
2 772.9 76.8% 95.5% 140.6 81.7% 53.8% 47.3 44.8% 67.8%

3 782.8 76.7% 95.5% 148.2 80.9% 53.8% 50.1 43.4% 67.0%

Control 4 738.1 77.5% 95.4% 135.2 81.9% 53.6% 45.6 44.8% 68.1%

Majority 5 717.5 78.1% 95.4% 131.1 82.5% 53.5% 45.6 44.0% 68.2%

Unequal 6 751.4 77.1% 95.4% 140.5 81.6% 54.1% 49.3 43.9% 67.6%

7 639.8 79.7% 95.5% 124.8 83.0% 53.1% 43.7 43.6% 68.8%

8 713.2 78.2% 95.4% 140.3 81.5% 52.9% 47.0 43.3% 67.7%

9 724.7 77.8% 95.5% 128.1 82.8% 53.3% 46.0 44.4% 68.3%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 712.1 78.2% 95.4% 126.5 82.8% 53.7% 46.3 44.1% 68.3%
2 746.7 77.2% 95.5% 133.2 82.3% 53.7% 48.4 44.7% 68.1%

3 649.9 79.7% 95.3% 122.8 83.0% 53.4% 42.1 44.8% 69.2%

Control 4 812.6 75.5% 95.6% 149.2 80.9% 54.3% 52.1 44.3% 66.9%
Majority 5 781.7 76.6% 95.3% 137.3 82.0% 54.3% 49.2 44.2% 67.6%

RMSE 6 778.0 76.6% 95.5% 143.5 81.4% 54.2% 48.3 43.9% 67.3%

7 884.8 74.4% 95.6% 152.2 80.7% 54.8% 55.6 43.5% 66.2%

8 711.4 78.3% 95.3% 129.0 82.4% 53.9% 46.8 44.2% 68.3%

9 748.8 77.4% 95.5% 131.8 82.3% 53.4% 46.2 43.6% 67.8%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 744.4 77.4% 95.4% 141.2 81.4% 54.1% 48.2 44.1% 67.6%
2 710.8 78.3% 95.4% 134.2 82.0% 52.9% 43.8 44.3% 68.2%

Control 3 760.4 77.1% 95.5% 136.7 82.1% 53.7% 48.1 44.2% 67.8%

External 4 682.2 78.7% 95.5% 120.8 83.4% 53.6% 45.0 44.9% 69.0%

Unequal 5 835.2 75.4% 95.6% 165.5 79.6% 54.6% 55.4 44.6% 66.5%
6 769.4 76.7% 95.6% 140.1 81.8% 54.7% 51.3 45.1% 67.9%

7 774.7 76.7% 95.7% 144.7 81.5% 54.6% 48.8 44.9% 67.7%

8 803.3 76.2% 95.6% 146.2 81.1% 54.0% 49.8 44.3% 67.2%

9 754.7 77.1% 95.6% 135.3 82.2% 53.6% 48.8 43.9% 67.8%

(0) baseline 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 751.8 77.1% 95.4% 141.1 81.5% 53.8% 50.0 44.5% 67.7%
2 801.0 76.1% 95.4% 149.0 80.8% 54.0% 53.0 43.8% 66.9%

3 730.2 77.7% 95.5% 132.6 82.4% 53.9% 47.5 44.8% 68.3%

Control 4 763.4 76.9% 95.4% 142.9 81.3% 53.2% 48.4 43.7% 67.3%

External 5 747.8 77.6% 95.4% 140.0 81.5% 53.6% 49.2 44.6% 67.9%

RMSE 6 747.6 77.3% 95.5% 131.6 82.4% 54.1% 47.7 44.7% 68.1%

7 771.1 76.7% 95.6% 146.2 81.2% 53.9% 50.2 44.3% 67.4%

8 708.9 78.3% 95.4% 128.2 82.6% 54.0% 45.0 45.2% 68.7%

9 776.3 76.7% 95.6% 142.1 81.5% 53.6% 50.0 44.1% 67.4%
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As previously we indicate statistical significant differences with the previous itera-
tion using italic, and with the last using underlined. In addition, bold indicates statisti-
cal significant differences between the results obtained in one iteration by the classifiers
of our framework confronted against the result of the Control classifiers in the same
iteration.

One can observe that there are statistical significant differences between the classi-
fiers of the initial iteration and the ones of iteration 1 for all considered metrics, with
the exception of %C in the CMU dataset. The same occurs when comparing the initial
iteration with the last one. Interestingly, from the initial iteration onwards, there are
no statistical significant differences between any other iteration with the results of the
last iteration. Thus, while it is advantageous for EFECTIVE to perform more than one
iteration, when using the control setups no significant further improvements of perfor-
mance are gained after iteration 1. Thus, while the EC runs are able to systematically
create novel adversarial instances that contribute to the improvement of the perfor-
mance of the classifiers, the advantages of non-adversarial instances, by selecting and
adding misclassified parts of non-face images, are exhausted when a sufficiently large
number of such image parts is included in the training dataset. Depending on the
setup, the increases of AVG(%C) from the initial to the last iteration range from 6.9%
Control External RMSE to 7.8% Control Majority Unequal.

More importantly, the comparison of the results obtained with the Control setups
with those obtained using our framework, reveals the advantages of EFECTIVE. As it
can be observed the differences in terms of AVG(%C) are always statistically significant.
For the Flickr dataset, statistical significant differences exist both in terms of FA and
%C. The same happens for the Feret dataset. However, in this case, one can also observe
some statistical significant differences in terms of %H, were the framework setups tend
to perform worse (although statistically significant, the differences in %H range from
0.1% to 1.1%). It is interesting to notice that, in most cases, the External Unequal setup
appears to achieve an improvement of FA without incurring in statistical significant
losses of performance in terms of %H.

On the downside, the results regarding the CMU dataset tend to be inconclusive.
That is, our approach tends to perform significantly worse in terms of %H and sig-
nificantly better in terms of FA. In terms of %C, although the values obtained by our
approach tend to be superior, the differences are not statistical significant in most cases.
This result was, to some extent, expected since it was the dataset in which our frame-
work showed the least improvements over the original classifiers. Overall, we consider
that these results demonstrate the advantages of our approach over a standard tech-
nique for DA (i.e. based on the work of Sung and Poggio, 1995).

Table 6.8 summarises the significant statistical differences among framework and
control experiments at the end of the framework process, i.e., in the last iteration (9).
As previously: a “�” indicates that the difference is not statistically significant; a “+”
indicates that the result obtained by the framework is better and the difference is
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Table 6.8: Statistical significant differences of: %H - percentage of Hits, FA - number of false
alarms, %C - percentage of correct examples; between the framework and control
setups in the last iteration for each validation dataset: 1 - Flickr; 2 - Feret; 3 - CMU.

Measure Setup

Framework Setups

Majority External
Unequal RMSE Unequal RMSE

Dataset
1 2 3 1 2 3 1 2 3 1 2 3

C
o

n
tr

o
l

S
e
tu

p
s

H

Majority
Unequal n.a. - - n.a. - - n.a. � - n.a. - -

RMSE n.a. - - n.a. - - n.a. � - n.a. - -

External
Unequal n.a. - - n.a. - - n.a. � - n.a. - -

RMSE n.a. - - n.a. - - n.a. � - n.a. - -

FA

Majority
Unequal + + + + + + + + + + + +

RMSE + + + + + + + + + + + +

External
Unequal + + + + + + + + + + + +

RMSE + + + + + + + + + + + +

C

Majority
Unequal + + � + + � + + � + + +

RMSE + + � + + � + + � + + +

External
Unequal + + � + + � + + � + + �

RMSE + + � + + � + + � + + +

statistically significant; a “-” indicates that the result obtained by the framework is
worse and the difference is statistically significant. This summary further reinforces
the previous analysis, highlighting the differences between methods.

6.2 expanding the positive dataset

In the previous Section we explored the expansion of the negative dataset. We instan-
tiated EFECTIVE to evolve instances classified as false positives, performed multiple
framework iterations and analysed the results of the evolutionary process and the per-
formance of the classifier. Based on the results in test dataset, lower values of FA than
the baseline classifier were attained by the framework classifiers, which resulted in an
increase of the classifiers’ overall performance but at the cost of %H. In this Section,
we test the EC engine described in Section 4.5 to generate instances classified as false
negatives and use them to expand the positive dataset. We are interested in testing if
the expansion of the positive dataset using EFECTIVE increases the performance of the
classifier in terms of %H.
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Table 6.9: Framework parameters.
Parameter Setting
Framework iterations (N) 10
Classifiers per iteration (C) 30
EC runs per classifier (E) 1
Minimum candidates per EC run 50
RMSE threshold 0.10

6.2.1 Framework Changes

The CS module was maintained for this set of experiments and can be consulted in
Subection 4.1.1. In this case, the objective is to evolve false negatives. Therefore, in
this experiment, candidate instances are images that are not classified as faces, but
that should have been classified as faces. To fulfil this requirement we resort to the
EC engine that generates photorealistic faces, described in Section 4.5. The Supervisor
module is the External RMSE. The choice was made based on the overall results at-
tained in Section 6.1. The Supervisor’s classifier was maintained. In contrast with the
approach of Section 6.1, the Supervisor selects instances that are classified as faces.

6.2.2 Experimental Setup

The overall framework parameters are presented in Table 6.14, which yields 300 dis-
tinct Haar cascade classifiers. The dataset used is the same as described in Section 5.2
(1905 images from different sources). This contrasts with the experiment of Section
4.5 that uses a different positive dataset (composed of either 200 or 500 faces from
FACITY).

Table 6.10: EC parameters.
Parameter Setting
Number of generations 50
Population size 100
Elite size 1
Tournament size 2
Crossover operator uniform crossover
Crossover rate 0.8
Mutation operator gene replacement
Mutation rate per gene 0.15

In the experiments for expanding the negative dataset (Section 6.1) an expression
based GP engine is used (see Subsection 4.1.2.1). The representation of the GP engine
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is more flexible, easing the process of generating suitable individuals for the problem.
On the other hand, with the eXploit-Faces EC engine representation adapted to the
problem of generating false negatives, we are more restricted and it becomes harder
to generate candidate instances. The settings for the GA engine for each EC run are
presented in Table 6.10. These are based on the results obtained in Section 4.5.2. An
adjustment was made to the population size. The adjustment was made in order to
increase the number of individuals of the population so it becomes easier to reach
the minimum candidates per EC run quota. These adjustments were determined em-
pirically. The fitness function was maintained from the previous experiment and is
described in Section 4.5.2.

6.2.3 Experimental Results

First, we start by describing the results of the evolutionary process. We show that it is
possible to guide evolution with the current fitness scheme and parameters, and that
the results change from one framework iteration to the next. We start by analysing
the evolutionary process for each framework iteration. Afterwards, we discuss the
assessment of the classifiers, by performing a statistical analysis of the results of each
setup.

Similar to the experiments presented in Section 6.1, we rely on statistical tests to
make inferences about the experimental results. First we apply the Lilliefors test (Lil-
liefors, 1967), then we use the Kruskal-Wallis between the groups to assess if statis-
tically significant differences exist. When differences exist, we rely on post-hoc tests,
using Wilcoxon-Mann-Whitney test (Wilcoxon, 1945) to perform pairwise comparisons.
All the tests are performed with a confidence level of 99%, i.e., the p-value for rejecting
the null hypothesis has to be less than 0.01. We use the Bonferroni correction (↵/
textnumberofcomparisions) in the cases where multiple comparisons were performed (Bon-
ferroni, 1935).

The training phase is the same of the Section 6.1.3.1. At each iteration of the frame-
work, 30 distinct classifiers are trained. A single EC run is performed per classifier,
which results in 30 distinct EC runs. Each EC run evaluates the individuals with a
different classifier to assign fitness. In this instantiation the EC run must generate 50

candidate instances, in order for an EC run to be valid. In this experiment, a candi-
date instance is an instance classified as not containing a face. The Supervisor selects
and filters the candidate instances and the resulting set of instances are added to the
training dataset completing a framework iteration.

Figure 6.6 shows the evolution of the fitness of the best individual of each gener-
ation (Max) and of the average fitness (Avg), during the initial framework iteration.
To improve the readability, the fitness values were normalised to the [0, 1] interval by
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Figure 6.6: Evolution of the average and maximum fitness across generations for the initial
framework iteration, considering the valid the EC runs. The results are averages of
30 independent runs.

dividing the raw fitness, calculated according to the fitness function by the average
maximum fitness found in the course of the framework iteration3.

The fitness increases rapidly in the first 7 generations, and steadily, although at a
lower pace, from there on. This is an indication that the fitness function is capable of
guiding the evolutionary process, leading it to the discovery of images classified as
members of the negative class.

Figure 6.7 shows the evolution of the fitness of the best individual of each generation
(Max) and of the average fitness for the final framework iteration for the valid EC runs.
When comparing the maximum and average fitness curves of both iterations we can
observe that the curves grow at different rates. In the initial iteration we see a fast
increase in the first 10 generations and a slower rate after, stabilising after the 30th
generation. The average fitness of the population per generation reaches high values
(0.7) close to the average maximum of the 30 runs (0.9). In the last iteration the EC
struggles to get to the maximum value, with small increases along the generations and
unable to reach the maximum value reached in the initial iterations. The charts indicate
that becomes harder to the EC engine to find instances classified as false negatives as
the number of iterations increases.

To analyse the impact of the addition of the evolved instance to the dataset, we
present in Table 6.11, for each setup and for each iteration, the total number of EC runs

3 Similar to the experiments for expanding the negative dataset, it is important to notice that the raw fitness
values resulting from two different classifiers are not directly comparable, since the number of stages and
inner structure tends to be different.
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Figure 6.7: Evolution of the average and maximum fitness across generations for the last frame-
work iteration, considering the valid the EC runs. The results are averages of 30
independent runs.

performed in order to reach 30 valid runs, the average number of detections per EC
run, and the average number of detection per valid EC run.

For the analysis of the evolution of the total number of EC runs per framework
iteration, we performed a non-parametric chi-squared method for statistical propor-
tion analysis. This analysis reveals that there are statistically significant differences4

between the proportion of valid EC runs observed during the initial iteration, and all
remaining ones. Statistically significant differences between the proportion of valid EC
runs of a given iteration and the previous one are indicated in italic. Statistically sig-
nificant differences between one iteration and the last one are depicted in underline.
The differences from iteration per iteration only exists in iteration 2 (from 31 to 47) but
stabilises from there on. Nevertheless it suffers some fluctuations in terms of values. It
seems that it does not need several EC runs to find the necessary number of candidate
instances. As for the statistical differences between one iteration and the last iteration
only in the first two framework iterations occurs. This copes with the results attained
with the charts.

As for the analysis of the number of candidate instances, we perform the Wilcoxon-
Mann-Whitney test with a confidence level of 99% with Bonferroni correction for mul-
tiple tests, which implies setting significance level to 0.01/8 for the tests involving com-
parisons with iteration 8, and 0.01/2 for all the remaining ones. The results concerning
the number of candidate instances follow the previous analysis. The differences from
consecutive iterations only occur until iteration 2. The differences from a iteration with

4 with a confidence level of 99%
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Table 6.11: Number of EC runs necessary to find 30 valid runs, average and median number of
candidate instances per EC run, and average and median number of detections per
valid EC run.

Setup Iter. EC runs

Avg Median Avg Median
candidates candidates candidates candidates

all runs all runs valid runs valid runs

Expanding Positive

0 30 3382.50 3583.50 3382.50 3583.50
1 31 1922.68 2055.00 1986.77 2055.50
2 47 1097.60 1106.00 1716.90 1807.00
3 34 1484.65 1716.50 1682.60 1825.00
4 39 1206.28 1392.00 1566.67 1645.50
5 39 1219.62 1275.00 1585.50 1643.00
6 42 1193.79 1141.00 1669.60 1695.50
7 39 1350.64 1245.00 1755.83 1693.00
8 49 925.76 747.00 1512.07 1572.50

the last iteration also hold a similar behaviour for the results with all EC runs. In the
valid EC runs only in iteration 0 we have a statistically significant difference.

Figure 6.8 shows an example from the last population from each CS model’s EC run.
Interestingly we see almost the same faces with different facial attributes. Since in the
initial iterations the datasets of the classifiers do not have these examples, this could
mean that these faces are uncommon on the base dataset yielding a higher fitness. In
contrast, Figure 6.17 shows a more diversified sample of faces. In this iteration it seems
that the classifier struggles with some lighting conditions (e. g., second on the second
row of Figure 6.17). We have more atypical combinations, using babies and mixing
woman eyebrows with man faces (first on the second row of Figure 6.8). Based on
these image results, fitness and detection, we can say that the classifiers are still able
to find instances that are not classified as faces.

In Table 6.12 the dataset’s size and the number of instances added to the positive
dataset throughout the iterations are presented. The results reinforce the observations
performed for the EC runs analysis and fitness charts. In the first iteration the highest
number of instances are added to the dataset when compared with the rest of the
iterations. This can be explained by the fact that the dataset used by the EC engine
to generate instances, contains examples that differ from the instances of the baseline
classifier’s dataset. After adding the instances of the first iteration, it becomes harder
for the EC engine to find instances that the classifier does not classify as faces. We can
also observe that, based on the average number of candidates per EC run (Table 6.11),
the Supervisor, with a External RMSE strategy, tends to filter several of the generated
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Figure 6.8: Instances collected by the External RMSE Supervisor of the last population of each
classifier in the first iteration, not considered to be faces.

Figure 6.9: Instances collected by the supervisor representative of the last population of each
classifier in the last iteration, not considered to be faces by the classifier.
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Table 6.12: Positive dataset’s size along the iterations for all setups.

Iteration

Expanding
Positive

size added
0 1905 -
1 8580 6675
2 9368 788
3 10039 671
4 10673 634
5 10896 223
6 11392 496
7 11626 234
8 11969 343
9 12415 446

instances. As seen in Figure 6.8 and Figure 6.17 one of the reasons for such instances
to be filtered is their similarity.

The trained classifiers are used in the test datasets to assess the performance. We
group the models per iteration and analyse the differences for each performance met-
ric. The Supervisor’s classifier is also included for analysis. The summary of the results
obtained in the test datasets are depicted in Table 6.13. As previously, to determine if
statistical significant differences occur we use the Wilcoxon-Mann-Whitney test with
a confidence level of 99% with Bonferroni correction for multiple comparisons. This
implies setting the significance level to 0.01/11 for the tests involving comparisons
with iteration 9, and 0.01/2 for the comparison of consecutive iterations. In Table 6.13
underlined values indicate that there is a statistically difference between the value and
the corresponding one observed in the last iteration (9) of each corresponding setup,
those in italic values indicate that there is a statistically difference between the value
and the corresponding one observed with the previous iteration. We include the AVG
(%C) which represents the average %C for the considered test datasets.

Overall, there are significant differences in the %H from iteration 0 to iteration 1.
The differences to the last iteration exist for all the metrics of iteration 0 in the Feret
test dataset and for %H of iteration 1 of the CMU. Since we are improving the positive
dataset, the results make sense. Although there are no statistically significant differ-
ences, for all the test datasets, in the last framework iteration the %C is higher than
the baseline in all test datasets except the CMU (-0.3 difference). Compared with the
Supervisor’s classifier, only in the Flickr the result is lower. In terms of AVG(%C) this
experiment results show a higher and statistically significant result when compared
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Table 6.13: Percentage of hits (%H), number of false alarms (FA), percentage of correct in-
stances (%C) and average percentage of correct instances (AVG(%C)) for each vali-
dation dataset, along the iterations for all the framework setups.

Setup Iteration
Flickr Feret CMU

FA %C %H FA %C %H FA %C AVG(%C)
baseline(0) 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%

1 1249.9 66.6% 96.7% 160.7 81.1% 52.9% 92.6 39.3% 62.3%
2 1329.2 65.2% 97.0% 149.3 82.4% 54.3% 95.6 40.2% 62.6%

Expanding 3 1248.9 66.5% 97.3% 138.4 83.7% 53.8% 91.2 40.2% 63.5%
Positives 4 1370.6 64.6% 97.2% 151.9 82.5% 54.4% 99.6 39.0% 62.0%

5 1312.9 65.5% 97.3% 145.6 83.2% 53.9% 96.6 38.8% 62.5%
6 1279.1 66.0% 97.4% 136.7 83.9% 53.8% 94.7 40.1% 63.3%
7 1311.7 65.5% 97.3% 143.0 83.4% 54.2% 95.2 39.6% 62.9%
8 1299.4 66.1% 97.3% 140.0 83.5% 54.5% 94.3 40.9% 63.5%
9 1197.1 67.7% 97.1% 129.8 84.5% 53.5% 89.0 40.5% 64.2%

Supervisor 401.0 83.9% 42.7% 521.0 41.9% 31.5% 244.0 21.5% 49.1%

to the baseline. The overall results suggest that using EFECTIVE with this EC engine we
are able to increase the %H.

Next we will focus on the analysis of the performance obtained in each of the test
datasets. In the Flickr dataset, although not statistically significant, a decrease of 129.3
in terms of FAs occurs from iteration 0 to iteration 9, resulting on an increase of %C of
2.2%. This behaviour is explained by the pressure applied to the FA rate during train-
ing of the classifier (see Section 4.1.1). That is, we are adding more positive instances
to the dataset while maintaining the number of negative examples, the minimum FA
rate and %H rate. At each iteration, during training the classifier must detect more
instances as faces while maintaining the same number of FAs which indirectly forces
the classifier to be more robust. Nevertheless is not a difference that competes with
the the Supervisor’s classifier, which obtains a better result with a difference of 16.2.

In the Feret dataset we observe an increase in terms of %H and a decrease of FAs.
The increase of %H, ranging from 0.5% to 1.3% along the iterations, is explained by
the addition of the evolved instance to the positive dataset. The total decrease that
ranges from 64.2 to 95.1 in terms of FA, follows the same behaviour that occurred in
the Flickr test dataset. The values of %H and FA resulted in an overall, and statistically
significant, increase of 9.3% of %C when comparing the last iteration with the baseline.
When compared with the Supervisor’s classifier, the result of the framework’s clas-
sifiers is higher in terms of %C, ranging from 39.2% (Iteration 1) to 42.6% (Iteration
9).

The CMU continues to be a challenging dataset. When compared with the Super-
visor’s classifiers, the framework’s classifiers obtains a better result in every iteration,
resulting in differences that range from 17.8% to 19% in terms of %C. The only statisti-
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cal difference for %H is obtained in iteration 1 but the value is lower than the baseline
classifier. Only iteration 8 holds a better result in terms of %C by 0.1% but not statis-
tically significant. We see variations in %H along the iterations, from 52.9 to 54.5 but
always lower than the baseline %H. One explanation for this behaviour is the follow-
ing: the face crop box of our instances differ from the ones of the CMU’s groundtruth.
I. e., the preparation of the dataset positive dataset was manually performed by us
and the CMU dataset was already annotated by the creators of the dataset (see Sec-
tion 5.2.0.1). Since we are obtaining programmatically the new instances, the crop of
the face in the image is also automatic and tends to follow the manual cropping per-
formed by us in the preparation of the dataset. This can affect the positioning of the
face detection box, resulting on missing the groundtruth hit, creating an FA and re-
sulting in incorrect classified instance. This behaviour is less noticeable for the Feret
because the examples were manually cropped and thus, the box has less probability
to be misplaced.

6.3 expanding the positive and the negative datasets

After performing the experiments of Sections 6.1 and 6.2 we show that we are able to
expand the negative and positive dataset, respectively. In the experiments for expand-
ing the negative dataset, the classifiers trained with the expanded negative dataset
showed a decrease in the number FAs in the test datasets. When expanding the pos-
itive dataset, the classifiers trained with the expanded positive dataset revealed an
increase in the %H in the test datasets. In this Section, we are going to perform a new
set of experiments where we expand both datasets per iteration. The idea is to test if
we are able to train classifiers that when tested in the test datasets will show a decrease
in the number of FAs and, at the same time, an increase the %H. We start by defining
the framework changes for this set of experiments in Section 6.3.1. Then, we present
the experimental setup in Section 6.3.2. Finally, we present the assessment results in
Section 6.3.3.

6.3.1 Framework Changes

We use the same EC described in Section 4.1.2.2 engine to evolve false negative in-
stances. However we use NORBERT as the EC engine to evolve false positive instances.
Based on the results attained in Section 6.1 we use External RMSE as the Supervisor
to filter and select instances from the two distinct EC engines. In this instantiation for
each iteration, EC runs from both engines are performed. Each EC engine has a Super-
visor that selects and filters the instances that are going to be added to the dataset. In
this way, a framework iteration is completed when the EC runs from both engines end
and when the corresponding Supervisors updated each corresponding dataset with
the set of instances.
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Table 6.14: Framework parameters.
Parameter Setting
Framework iterations (N) 10
Classifiers per iteration (C) 30
EC runs per classifier (E) 1
Minimum candidates per EC run 300 (Abstract) and 50 (PhotoRealistic)
RMSE threshold 0.10

Table 6.15: Abstract engine parameters.
Parameter Setting
Population Size 100
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set x, y, scalar random constants
Phenotype width (pixels) 64
Phenotype height (pixels) 64

6.3.2 Experimental Setup

The EFECTIVE parameters are presented in Table 6.14. The settings for the EC engine for
each EC run are presented in Tables 6.15 and 6.16. From here on we will refer to the EC
engine that expands the negative dataset as the Abstract. Also, we will refer to the EC
engine that expands the positive dataset as the PhotoRealistic.

Note that both engines present different characteristics than the EC engines used in
Sections 6.1 and 6.2. Since the Abstract engine uses NORBERT, the results are not directly
comparable with the ones using NEvAr. Regarding the PhotoRealistic, although we are
using the same EC engine as in Section 6.2, we made alterations to a parameter for
the generator of photorealistic faces. In the previous experiment we exchanged, from
one individual to another, pairs of eyes and eyebrows. In this experiment we do not
pair both the eyes or the eyebrows. Based on the annotated dataset of 200 individuals
this means that we have 2007 ⇡ 1.28 ⇤ 1016 different composite faces to explore. The
rational is the following: by working with atypical faces forces the classifier to be
more robust to detect faces in the training stage. As a downside, the training can
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Table 6.16: PhotoRealistic engine parameters.
Parameter Setting
Number of generations 50
Population size 100
Elite size 1
Tournament size 2
Crossover operator uniform crossover
Crossover rate 0.8
Mutation operator gene replacement
Mutation rate per gene 0.15

leave the classifier exposed to more shortcomings. Nevertheless, we wanted to push
the framework to test the limits of the approach and evaluate if it is still able to adapt
from iteration to iteration to the positive and negative shortcomings. In terms of fitness
function, we maintain the same fitness function that is described in Subsection 4.5.2.

The Supervisor is the External RMSE but operates differently for the PhotoRealistic.
With the PhotoRealistic engine the Supervisor must invert the condition of the selection
mechanism. It must select instances that the classifier classified as negative but for the
Supervisor classified as positive.

6.3.3 Experimental Results

In this Subsection we follow the same structure of Subsections 6.1 and 6.2. We start by
analysing the evolutionary process, analysing the progression of the EC runs in terms
of fitness, number of EC runs, and candidate instances. Then we analyse the dataset
size per iteration and performance of the classifiers per iteration. For the analysis of
the results we rely on the same statistical tests done in Subsections 6.1 and 6.2.

At each iteration of the framework, 30 distinct classifiers are trained. A single EC
run is performed per classifier, per EC engine, which result in 60 distinct EC runs. Each
EC run evaluates the individuals with a different classifier to assign fitness. As shown
in 6.3.2, in this instantiation, different conditions are imposed to the Abstract and Pho-
toRealistic. The EC run of Abstract must generate 300 candidate instances, in order for
the EC run to be valid. With PhotoRealistic it must generate 50 candidate instances to
be valid. A candidate instance of Abstract is an instance classified as containing a face.
In PhotoRealistic a candidate instance is an instance classifier as not containing a face.
The Supervisor also operates in a different way for each EC engine. At each framework
iteration it selects and filters: (i) candidate instances from Abstract to expand the neg-
ative dataset; and (ii) candidate instances from PhotoRealistic to expands the positive
dataset.
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Figure 6.10: Evolution of the average and maximum fitness of Abstract across generations for
the initial framework iteration, considering only the valid EC runs. The results are
averages of 30 independent runs.

For this particular experiment we have to analyse both EC engines in terms of fitness.
To improve the readability, the fitness values were normalised to the [0, 1] interval by
dividing the raw fitness, calculated according to the fitness function by the average
maximum fitness found in the course of the framework iteration.

Starting with Abstract, in Figure 6.10 shows the evolution of the fitness of the best
individual of each generation (Max) and of the average fitness (Avg), during the initial
framework iteration. The behaviour is similar to the one observed in Section 6.1. A sim-
ilar behaviour can be seen in Figure 6.12 while using PhotoRealistic. In both cases, these
results suggests that we are able to guide evolution with the design fitness functions.

In Figure 6.13, we can observe some of the instances generated by the Abstract engine
in the initial iteration. We can observe similarities with the results attained in Section
6.1 and from Chapter 4. Several of the images are not really suggestive of faces, and
tend to be symmetrical and noisy images.

The average fitness results in the last iteration for Abstract can be viewed in Fig-
ure 6.14. Once again, there are some similarities with the results attained in the evo-
lution of false positives instances experiment. Nevertheless, the patterns seem to be
more evocative of faces than the ones attained in Section 6.1. The fitness results can
be seen in Figure 6.16. Based on the results, we can notice the curve has not stabilise
near the maximum value. As seen in Section 6.1, this suggests that in the last itera-
tion it becomes harder to evolve instances classified as false positive than in the initial
iteration.



162 assessing and improving classifiers’ performance

Figure 6.11: Examples collected by the supervisor of the Abstract EC engine. They are represen-
tative of the last population of each classifier in the first iteration, considered to be
faces by the classifier.
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Figure 6.12: Evolution of the average and maximum fitness of PhotoRealistic across generations
for the initial framework iteration, considering only the valid EC runs. The results
are averages of 30 independent runs.
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Figure 6.13: Examples collected by the supervisor of the PhotoRealistic EC engine. They are
representative of the last population in the first framework iteration, considered
to be faces by the classifier.

Figure 6.14: Examples collected by the supervisor of the Abstract EC engine. They are repre-
sentative of the last population of each classifier in the last framework iteration,
considered to be faces by the classifier.
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Figure 6.15: Evolution of the average and maximum fitness of the PhotoRealistic across gener-
ations for the last framework iteration, considering the valid EC runs. The results
are averages of 30 independent runs.
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Figure 6.16: Evolution of the average and maximum fitness of the Abstract across generations
for the last framework iteration, considering the valid EC runs. The results are
averages of 30 independent runs.
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Figure 6.17: Examples collected by the supervisor of the PhotoRealistic. They are representa-
tive of the last population of each classifier in the last framework iteration, not
considered to be faces by the classifier.

Statistically significant differences between the proportion of valid EC runs of a given
iteration and the previous one are indicated in italic. Statistically significant differences
between one iteration and the last one are depicted in underline. As for the analysis of
the number of candidate instances we perform the Wilcoxon-Mann-Whitney test with
a confidence level of 99% with Bonferroni correction for multiple tests, which implies
setting significance level to 0.01/8 for the tests involving comparisons with iteration 8,
and 0.01/2 for all the remaining ones.

In Table 6.17 we have the values related with the EC runs valid runs and candidate
instance generation. The results attained for the Abstract are similar to the ones ob-
served in Section 6.1. It becomes harder to evolve candidate instances from iteration to
iteration. For all EC runs we have statistically significant differences to the last iteration
from iteration 0 to iteration 3. For the valid runs we only have differences to the last
iteration in iteration 0 and 1. The number of EC runs needed to find the necessary
candidate instances, when compared with the last iteration, increase steadily but the
increase is only statistically significant for iterations 0, 1 and 3. This result suggests that
from iteration to iteration the Abstract finds the task of finding valid EC runs harder
(supported with the Median candidates column). However when Abstract finds a valid
EC run it generates a high number of candidates (almost triple of the minimum re-
quired). This supports the idea that the representation allows the EC to easily generate
candidate instances for the negative class.

The results PhotoRealistic differ from the ones obtained in the Section 6.2. The most
noticeable difference is the increase of number of EC runs needed, average number
of candidates for all the runs and for the valid ones. These results strongly suggest
that after iteration 1 it becomes really hard to generate false negatives. In terms of
results, since the endgame is to get an improved version of the classifier the behaviour
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Table 6.17: Number of EC runs necessary to find 30 valid runs, average and median number of
candidate instances per EC run, and average and median number of detections per
valid EC run.

Setup Iter. EC runs

Avg Median Avg Median
candidates candidates candidates candidates

all runs all runs valid runs valid runs

Abstract

0 30 2558.97 2517.50 2558.97 2517.50
1 31 1436.81 1516.00 1475.90 1524.50
2 57 605.93 365.00 1004.70 1034.00
3 45 696.07 738.00 1026.80 1081.00
4 57 491.79 356.00 890.13 792.00
5 65 504.38 205.00 1037.93 1051.00
6 76 440.43 65.00 1062.27 1056.00
7 71 416.00 88.00 927.20 918.00
8 87 362.97 86.00 960.97 824.00

PhotoRealistic

0 30 2326.47 2414.00 2326.47 2414.00
1 77 314.75 46.00 782.97 750.50
2 3900 3.50 0.00 191.87 146.50
3 6627 2.47 0.00 182.73 103.50
4 2173 5.57 0.00 251.77 132.50
5 5202 2.92 0.00 269.90 170.50
6 4179 3.44 0.00 248.17 130.00
7 6966 1.79 0.00 125.17 96.50
8 5946 1.94 0.00 137.33 103.50
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Table 6.18: Abstract and PhotoRealistic dataset’s size along the iterations for all setups.

Iteration

Evolving
Abstract and PhotoRealistic

size added to Negative added to Positive added total
0 1905 - - -
1 21823 14203 5715 19918
2 33432 8904 2705 11609
3 38737 4733 572 5305
4 43078 3783 558 4341
5 46102 2244 780 3024
6 48806 2141 563 2704
7 51238 1900 532 2432
8 53387 1999 150 2149
9 56443 2599 457 3056

registered in terms of candidate instances in the PhotoRealistic engine is a desirable
one, arguably indicating that it became more robust.

In Table 6.18 we show the progression of the dataset size along the framework itera-
tions. It copes with the results attained in terms of fitness and EC run stats. In the first
iteration a considerable amount of instances are added to the positive and to the nega-
tive dataset (14203 negatives, 5715 positives). In the second iteration we also have a lot
of instances added to the datasets. From the iteration 2 onwards there is a significant
drop of instances added per iteration. The numbers for the positive instances decrease
significantly confirming that it becomes hard to evolve instances that explore short-
comings of the classifier in terms of false negatives. The addition of negative instances
also reduces from iteration 0 to 4 but then it maintains a quota of 2000 instances per
framework iteration.

The performance of the classifiers of this instantiation is presented in Table 6.19. In
Flickr we have a consistent reduction of FA and consequently increase of %C along
the iterations. The first three framework iterations (0 to 2) show significant differences
when compared with the iteration 9. The same behaviour is observed for the differ-
ences in consecutive iterations. The reduction of FA ranges from 1063.4 to 1154.8. The
value is not the lowest value registered when comparing with the other experiments
but it is lower than the values of the baseline classifier and of the Supervisor’s classifier
(ranging from 138 to 229.4 less FAs).

The performance of the classifiers along the iterations for the Feret dataset suggest
that the behaviour we were seeking in this set of experiments occurs. The %H consis-
tently improves with significant differences for the last iteration from iteration 0 to 5,
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Table 6.19: Percentage of hits (%H), number of false alarms (FA), percentage of correct exam-
ples (%C) and average percentage of correct examples (AVG(%C)) for each test
dataset, along the iterations for the Abstract and PhotoRealistic setup.

Flickr Feret CMU
FA %C %H FA %C %H FA %C AVG(%C)

baseline(0) 1326.4 65.5% 96.1% 224.9 75.2% 56.8% 91.1 40.8% 60.5%
1 263.0 89.9% 95.7% 40.0 91.7% 49.4% 20.6 44.8% 75.4%
2 181.9 92.8% 97.2% 24.7 94.7% 52.7% 10.0 48.9% 78.8%

Abstract 3 207.2 91.7% 97.3% 32.2 94.0% 52.9% 15.0 48.0% 77.9%
and 4 174.7 92.9% 97.4% 23.4 95.1% 52.0% 11.2 48.4% 78.8%

PhotoRealistic 5 171.6 93.1% 97.7% 20.7 95.6% 51.9% 11.9 48.9% 79.2%
6 192.5 92.2% 97.9% 23.9 95.4% 52.1% 13.4 49.0% 78.9%
7 179.5 92.7% 97.9% 24.0 95.4% 52.1% 13.6 47.9% 78.7%
8 177.4 92.7% 97.9% 19.9 95.9% 52.8% 13.9 49.0% 79.2%
9 171.8 92.9% 98.2% 20.6 96.1% 52.8% 12.2 48.7% 79.3%

Supervisor 401.0 83.9% 42.7% 521.0 41.9% 31.5% 244.0 21.5% 49.1%

the FA decrease with significant differences from iteration 0 to 3 to the last iteration.
Consequently, the %C increases consistently with significant differences to the last it-
eration from 0 to 4. The significant differences from one iteration to the next occurs
only once from 0 to 1 with the exception of FA which occur from 0 to 2. When compar-
ing the framework’s classifiers with the baseline classifier, the values of the %H range
from -0.4 to 2.1 difference; the FA reduction range from 184.9 to 205; and %C range
from 16.5 to 20.9 difference.

In the CMU dataset regarding the %H we observe a similar behaviour from the last
Section, suggesting that the positioning of the detection box could be a cause for this
behaviour. In terms of FA, the values significantly decrease in a similar way that was
observed in Section 6.1. The %C values stabilise around the 49%, which is the highest
value achieve in all the three experiments. In terms of significant differences to the last
iteration only iteration 0 and 1 registered such differences. The analysis from iteration
per iteration was registered from iteration 0 to 1 and 1 to 2. From iteration 1 to 2 we
see that both %H and FA both improved at the same time and was found statistically
significant. From there on, some adjustments occur until reaching the last iteration.

Overall we observe that while using EFECTIVE to generate instances classified as false
positives and false negatives, by expanding the negative and positive datasets, we are
increasing the %H and decreasing significantly the FAs. Moreover, the results attained
show that the framework classifiers yield a better overall results since the first iteration,
when compared to the baseline classifier and when compared with the Supervisor’s
classifier.
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6.4 summary

In this Chapter, the framework was used to assess and improve the performance of
classifiers in a face detection problem and tested using several test datasets. First, we
used EFECTIVE to perform several framework iterations expanding the negative dataset
by evolving false positives. The experimental results show statistically significant im-
provements in performance over the baseline classifiers regarding FA and, conversely,
small losses of performance regarding %H. Since the improvements in terms of false
alarms (FA) tend to be large (suppression of up to 89.9% of the baseline’s false alarms)
and the losses in terms of hits tend to be small (the worst case is a 10.3% difference
in terms of percentage of hits), these two opposing forces result in a clear and statisti-
cally significant improvement of performance – differences up to 17.0% – in terms of
the average number of correctly classified instances across test sets (AVG(%C)).

The results show that it is advantageous to perform multiple iterations and that the
performance of the classifiers tends to improve as the number of iterations increases.
The results suggest that the Supervisor has a significant impact on the performance of
the classifiers, indicating that adding instances criteriously contributes to better clas-
sifiers. Afterwards, we performed a control experiment. Using the standard approach
of collecting negative instances to train cascade classifiers, we trained classifiers with
the same number of instances from the previous experiments but without using in-
stances generated by EFECTIVE. The results show a significant improvement of the
results against all test setups, showing that the evolutionary instances are relevant and
impact the performance of the classifiers.

Then we tested expanding the positive dataset, using the eXploit-faces EC engine (see
Section 4.5), with multiple framework iterations and the External RMSE Supervisor.
The EC engine was able to generate false negatives that led to a better performance
than the baseline due to the increase in %H (1.0% in the Feret) and, due to properties
of the training, a small decrease in terms of FA. This conjunction of results led to an
increase of 3.7 regarding AVG(%C) when compared with the baseline classifier.

Finally we performed tests where we expand the negative and positive dataset. We
used an EC engine to generate false positives, and another EC engine to generate false
negatives. The approach was tested using the setup that attained the best results, the
External RMSE. The results of expanding the negative and the positive dataset simul-
taneously led to an increase in the maximum value of performance of 79.3 regard-
ing AVG(%C), a 18.8% performance increase when compared with the baseline and a
30.0% increase when compared with the Supervisor’s classifier. The results show that
by expanding both the positive and negative dataset we diminish the FAs and increase
in terms of %H, which leads to an increase in terms of %C and, consequently, an in-
crease in terms of AVG(%C). Overall, the approach showed its viability to assess and
improve the classifier performance.
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E F E C T I V E F O R S T Y L E C H A N G E

In this Chapter we test the approach in a CC context to create a system that promotes
style change. This work was built upon previous ones of Machado and Cardoso (1997),
Machado et al. (2007a,b), and Romero et al. (2003, 2012) incorporating ideas and parts
of the work done in Correia et al. (2013b), Machado et al. (2015b), Vinhas et al. (2016).
Furthermore, most of the work described in this Chapter is featured in a book Chapter
(Correia et al., 2017).

McCormack (2007) posited that the development of Aesthetic Judgement Systems
(AJSs) is one of the most significant challenges in the field of CC. Over the course of
the years, two main approaches to address the challenge emerged: the development
of hardwired fitness measures that try to encapsulate some aesthetic principle and the
use of ML techniques to learn aesthetic models (Romero et al., 2012).

As we stated in previous works (Machado and Cardoso, 1997; Machado et al.,
2007a,b; Romero et al., 2003, 2012), the long-term goal is the development of Artificial
Artists (AAs) that display the full range of abilities of human artists. In this context, the
ability to learn aesthetic models is indispensable, since it gives the system the ability to
experience, assess and react, not only to its artistic production but also to the artworks
of other, artificial or human, artists (Machado and Cardoso, 1997). Furthermore, it also
creates the preconditions that allow the system to be inspired by other artists, to detect
trends, and to innovate and deviate deliberately.

The ability to consistently generate innovative and adequate artefacts is a key trait
of creative, human or computational, agents. In this Chapter, we present an AA that is
characterised by the ability to build its aesthetic model from a set of examples, and by
its perpetual quest for novelty and innovation through style variation and change.

The approach resorts to an expression-based evolutionary art engine and several
classifiers, in this case, ANNs. The ANNs are trained to discriminate among the artistic
production of the system and that of famous artists. The evolutionary engine is used to
generate images that the ANNs do not recognise as being products of the system, and
that, as such, novel concerning its previous artistic practice. During the evolutionary
runs, we also promote the discovery of a diverse set of imagery by taking phenotype
similarity into account when assigning fitness.

When a set of evolutionary runs is concluded, the novel imagery they produced is
added to the training set, enlarging the area of the search space covered by the system,
and the ANNs are retrained. This leads to a refinement of the classifiers, which, in turn,
forces the evolutionary algorithm to explore new paths and styles to break with its
past. Thus, the consecutive discovery of new styles is attained through the revision
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and refinement of aesthetic criteria for novelty of the AA, while variation within style
is achieved by promoting phenotype diversity.

The research presented in this Chapter builds upon our previous efforts on the same
topic (e. g., Correia et al. (2013b), Machado et al. (2007a,b), and Romero et al. (2012))
expanding previous approaches by:

• Performing in each framework iteration a set of parallel evolutionary runs in-
stead of a single one;

• Considering phenotype similarity to promote the discovery of a wide set of di-
verse images in the course of each evolutionary run;

• Using classifiers with access to a larger number of image features;

• Using a significantly larger set of training examples;

• Using an archive to summarise the innovative imagery produced by the system.

The experimental results obtained across several iterations are presented and anal-
ysed, showing the ability of the system to consistently produce novel imagery and
to identify atypical images without human intervention. We consider that the results
obtained in the course of the first iteration are evocative of images produced by user-
guided evolution. Furthermore, we claim that the images evolved in the last of the
presented iterations are of a significantly different nature, breaking the mould with
the previous artistic production of the AA. As such, we hypothesise that a limited
form of h- and t-creativity (Boden, 2004) may have been attained.

This Chapter is structured as follows: we start with the instantiation of the EFECTIVE
framework for this work 7.1; this is followed by the presentation and analysis of the ex-
perimental results (Section 7.2) and; drawing conclusions and summarising the results
of this Chapter (Section 7.3).

7.1 instantiation

The architecture proposed by Romero et al. (2003) argues that an AA should be com-
posed of two main modules: a creator and a critic. We employ EFECTIVE using a general
purpose expression-based evolutionary art tool as the creator and an ANN as the critic.
Thus, in our scenario, the EFECTIVE fits the role of an AA, who, based on its judgment
and its past experience, iteratively learns from its inspiration and produced work,
evolving its craft along its existence. We consider the role of the Supervisor as the
creator’s selective memory component, i. e., managing the generated images selecting
the images that will improve its knowledge and past experience. The whole process
of EFECTIVE allows the creator to learn from the past experience, generating different
artworks per iteration and improving upon previous ones.
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Before diving into the details of the instantiation of the framework, a succinct de-
scription on how it operates in this particular scenario follows:

1. A set of external images is selected; In the case of this Chapter, this set is com-
posed of famous artworks, representing a source of inspiration for the AA;

2. A set of internal images is selected; in this case, the EC engine is used to ran-
domly create a set of images, thus creating a sample of the type of imagery the
evolutionary engine tends to produce;

3. The ANN is trained to distinguish among internal and external images;

4. A new set of evolutionary runs is started; The output of the ANN is used to as-
sign fitness; Images classified as external have higher fitness than those classified
as internal; additionally, phenotype diversity is also taken into consideration;

5. During the course of each evolutionary run, an archiving module keeps track
of the artistic production of the AA, storing images that are both: classified as
external; and diverse from other images classified as external evolved during the
course of the run;

6. When the set of evolutionary runs is concluded, the Supervisor module gathers
and merges the archives resulting from each evolutionary run;

7. The consolidated archive is added to the set of internal images;

8. The process is repeated from step 3.

One of the key aspects of this approach is the definition of two classes of images. The
first class contains external imagery. Images that were not created by the GP system and
that are usually considered interesting or of high aesthetic value. Conceptually, the
external set should be seen as an inspiration for the AA. It provides a stable attractor
that is meant to ensure that the evolved imagery tends to incorporate aesthetic quali-
ties recognised by humans. The second class contains internal imagery, it is composed
of images generated by the evolutionary engine, and describes the previous artistic
production of the AA. For the purpose of the present work, this class represents unde-
sirable imagery, since we are interested in innovation through style change.

In the present case, the task of the evolutionary module is to evolve images that the
ANN classifies as external. This may be accomplished by evolving images that are:

1. Similar to those belonging to the external set;

2. Different from the set of internal images (e.g., images that are entirely novel,
hence dissimilar from both sets).



174 efective for style change
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Figure 7.1: Schematic of the EFECTIVE Framework instantation.

Note that in this context, the concept of similarity and dissimilarity is deeply con-
nected to the features that serve as input to the ANN. Therefore, it may deviate from
human perception.

The approach relies on promoting competition between the evolutionary engine and
the CS. In each iteration, the evolutionary engine must evolve images that are misclassi-
fied by the CS; otherwise, no progress is achieved. By assigning fitness using a classifier
and valuing examples that belong to a predefined class, the approach evolves several
misclassified examples Machado et al. (2012b). These examples can be potentially use-
ful for improving the performance of the CS.

The systematic expansion of the internal set and the subsequent retraining of the
ANN causes an arms-race between generator and classifier. As such, from iteration
to iteration, the evolutionary engine is forced to explore new paths, which results in
stylistic change and the expansion of the diversity of the artistic production of the
system.

As pointed out by Machado et al. (2007a), in the long run, there are two possible
final scenarios, which correspond to natural termination criteria for the approach: (i)
the evolutionary engine becomes unable to find images that are classified as external;
(ii) the ANN becomes unable to discriminate between internal and external imagery.
The first outcome reveals a weakness of the EC engine, which can be caused by a
wide variety of factors (deceptive fitness landscape, incorrect parametrisation, lack
of computational resources, etc.). In the second outcome, there are two possible sub-
scenarios: (ii.a) the images created by the EC engine are similar to some of the external
images, which implies that the EC and the CS are performing flawlessly; (ii.b) the
images created by the EC engine are stylistically different from the external imagery,
which indicates a flaw of the CS.

EFECTIVE is instantiated for this scenario with one classifier system, an evolutionary
engine and a supervisor as can be seen in Figure 7.1. It starts by training a classifier
with an initial dataset. Then E parallel evolutionary runs are started. When all evolu-
tionary runs are finished, the supervisor gathers the individuals and decides which
ones are going to be added to the dataset. This cycle is iteratively repeated until a
termination criterion is met. The global parameters of the framework are presented in
Table 7.1.



7.1 instantiation 175

Table 7.1: Global parameters of the framework.
Parameter Setting
Classifiers per iteration (C) 1
EC runs per classifier (E) 30
Adequacy threshold 0.5
Dissimilarity threshold 0.01

7.1.1 Classifier System

The CS is composed of a Feature Extraction module and an ANN. The classifier partic-
ipation in the approach is crucial for several reasons: it evaluates the images that are
generated by the evolutionary engine; its performance dictates the number of exam-
ples that are added and/or deleted before retraining the classifier.

In this work, the CS is trained under certain conditions before it is used to assign
fitness during the evolutionary runs. On each training phase, the ANN is trained with
the full dataset. If training is entirely successful, meaning that the ANN can adequately
discriminate between the internal and external sets, we proceed to the evolutionary
runs. However, if false externals exist, i. e., if there are human-produced artworks being
classified as evolved images, these images are removed from the external dataset, and
a new training attempt is made. Training is only concluded when no external images
are classified as being internal.

The removal of these images has two motivations. First, from the perspective of
the classifier, one can consider that the style these images embody has already been
explored. As such, they should no longer be classified as external. Second, from a
more pragmatic perspective, these images tend to be atypical compared with the rest
of the images of the external dataset, removing them arguably simplifies the task of
the classifier, which may, in turn, result in classifiers that provide fitness landscapes
that are more favourable for the evolutionary engine.

The existence of false externals, i. e., evolved images classified as human-made, does
not have a direct solution. Deleting them would solve nothing. Instead, they remain in
the internal dataset. Future iterations are likely to explore the same shortcoming of the
classifier, increasing the number of examples of the same style present in the internal
dataset, and forcing, due to the increased cardinality of the subset, the classifier to
learn that such images are internal.

7.1.1.1 Feature Extraction

In our approach, the ANNs do not have direct access to the images. Instead, each image
is described by a set of image features, which serve as input to the ANN. As such, we
developed a Feature Extractor used to extract relevant features from each image.
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The pipeline of the feature extractor is the following: the input image is resized
to 128⇥ 128 pixels; converted to the Hue Saturation Value (HSV) colourspace, and a
copy of each image channel is stored for further computation; several preprocessing
operations are computed on demand, depending on the feature to be extracted, e. g.,
applying Canny filter to the image and extracting information from the edges. In total,
the feature extraction process yields a total of 120 features, which are later used as
input for the classifier.

A thorough description of the feature extractor is outside the scope of this Chapter.
Therefore, we present a brief description of the features extracted, indicating biblio-
graphic references that may provide to the interested reader a complete description.
Most of the features implemented originate from previous work concerning the aes-
thetic analysis of images Datta et al. (2008). The features collected were inspired by the
work of Datta et al. (2006), Li and Chen (2009), Faria et al. (2013), Romero et al. (2003),
Heijer (2012) and, based on our previous work (Correia et al., 2013b; Machado et al.,
2007a,b).

To make the description of the feature set tractable, we introduce a taxonomy (refer
to Table 7.2). Some of the features could be classified into several categories; in these
cases, we followed the literature consensus for the feature’s category. When selecting
and developing this group of features, our goal was to cover several aspects of the
images’ style and aesthetics.

Although most of the features are implementations based on the state of the art, we
have also introduced some new features in this work. These are briefly described in
the following paragraphs.

As the name suggests, the edge density feature captures information regarding the
number of edges present in the image. We compute it by applying a Canny filter to
the image and counting the percentage of pixels that correspond to edges, i. e., white
pixels.

We also introduce the Palette analysis features, which are intended to provide ad-
ditional information regarding the image’s colour palette. The core idea is to analyse
the contrasting colours present in the image (Machado et al., 2015d). First, we apply a
colour quantisation algorithm to reduce the number of colours using k-means cluster-
ing. The colour occurrences are counted and sorted in descending order. We compute
the distances among the colours of the resulting image using the HSV space, as follows:
considering two colour vectors (H,S,V) to represent the colour, the distances in the S

and V colour components are calculated using the Euclidean norm; for the H channel,
which is circular, we use the formula dist(a,b) = min (|a- b|, |a-MAX- b|, |b-MAX- a|)
to compute the distance, where a and b are two colours and MAX is the maximum
value of H. After calculating the distances, we discard the colours that are closer to
each other than a predetermined threshold. This results in n colours, which we con-
sider the image’s palette. With the palette, we calculate a frequency histogram of the
colours. Afterwards we compute the following metrics: number of palette colours;
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Table 7.3: Parameters related to the ANNs and their training.

Parameter Setting
Initialisation of weights random, [-0.1, 0.1] interval
Learning function backpropagation
Tolerance threshold 0.3
Learning rate 0.3
Momentum 0.2
Epochs 1000

percentage of occurrences; the mode, minimum value and maximum value for each
component of the colour; histogram’s linear regression and error; average distance to
the next colour; average and standard deviation of the differences between the his-
togram’s bins; components of the maximum and minimum distance from one colour
to the others. We make the same analysis by considering the purity of the colours,
which translates to only considering the S and V components of the image’s channels
to compute the metrics, ignoring the H channel.

7.1.1.2 Artificial Neural Network

The choice of an ANN, as described in Section 4.1.1, is justified by the success of this
approach in previous works of related nature (Correia, 2009; Correia et al., 2013b;
Machado et al., 2007a).

The ANN receives as input the feature vector. The output indicates its confidence in
classifying the input instance as belonging to either the internal or the external class.
To avoid a “binary” output, i. e., both neurons returning either 0 or 1, which would
result in an unsuitable fitness landscape, we employ a tolerance threshold during the
training stage. It translates into a modification of the training algorithm, where, during
the backpropagation of the error, if the difference between the output of the network
and the desired output is below the tolerated threshold, then the error is propagated
back as zero (no error). The parameters of the ANN are summarised in Table 7.3.

7.1.2 Initial Datasets

The initial sets of external and internal images play an important role in the perfor-
mance of our system. We use an external set containing 26238 images including works
of artists such as Cézanne, de Chirico, Dalí, Gauguin, Kandinsky, Klee, Klimt, Matisse,
Miró, Modigliani, Monet, Picasso, Renoir, van Gogh. The images were gathered from
different online sources. The rationale was to collect a varied set of artworks. Although
we avoided repetitions, it is relatively common for an artist to paint several versions of
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Figure 7.2: Samples of the internal dataset.

the same theme. In these cases, and to prevent the subjectivity of deciding what was
sufficiently different, we decided to include the different variations.

The set of internal images is created using the evolutionary engine, described in the
next Subsection, to generate 30 initial random populations of size 1600. These images
are added to the internal dataset until the same amount of examples exist in the two
datasets. Although the images were created randomly, some of the phenotypes may
appear more than once. Figure 7.2 presents samples of the images belonging to the
internal dataset, illustrating the type of imagery that the EC engine produced in these
circumstances.

7.1.3 Evolutionary Engine

For this work we used the NORBERT as the EC engine (Vinhas, 2015) defined in Section
4.1.2.1. Similarly to previous works, in this instantiation the fitness of the individuals
is given by the output of the CS, more precisely, by the ANNs output as described
in Subsection 7.1.1.2. Figure 7.3 presents some examples of images generated with
NORBERT from trial runs.

We employ a phenotype diversity mechanism by using a novelty search algorithm,
designed to evolve a diverse set of adequate images. The fundamental goal of this
algorithm is to generate a broader set of images than the set that would be created by
a traditional fitness-based EA. In essence, it is a method capable of evolving images
according to two criteria that are chosen automatically by analysing the quality of
the images produced in each generation. One criterion is to look for the best images
according to a fitness function and the other consists in taking novelty and fitness as
two different objectives to be maximised. The reason why novelty is not considered
alone is that prior tests have shown how big the search space is and, consequently, how
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Figure 7.3: Images generated from trial runs of this instantiation using NORBERT.

difficult it is to discover suitable images (Vinhas, 2015). Similar behaviour has occurred
when using a single criterion or considering both fitness and novelty (Vinhas, 2015).

The algorithm’s flowchart is similar to the traditional EA one, differing only in two
main aspects: (i) the creation of an archive to store the most novel solutions and, (ii) a
customised selection mechanism, which is able to consider single or multiple objectives
using a tournament based strategy. The algorithm’s flow is shown in Figure 7.4, and
can be summarised as follows:

1. Randomly initialise the population;

2. Render the images (phenotypes) from the individuals’ genotypes;

3. Apply the fitness function to the individuals;

4. Select the individuals that meet the criteria to be in the archive (archive assess-
ment);

5. Select the individuals to be used in the breeding process. The individuals are
picked using one of the following criteria: (i) according to their fitness, as a
standard EA; (ii) taking into account both the fitness and the novelty metric,
which is computed using the archive members;

6. Employ genetic operators to create the new generation of solutions, that will
replace the old one;

7. Repeat the process starting from step 2, until a stop criterion is met.
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Figure 7.4: Flow of the proposed hybrid algorithm.

7.1.3.1 Archive Assessment

In this work, the archive has an unlimited size, and it plays an important role because
it is used to evaluate our solution and prevents the algorithm from exploring areas of
the search space already visited. The idea is that the archive should represent the spec-
trum of images found to date, and for this reason, the bigger the archive is, the more
the algorithm can generate suitable and diverse images. Whereas in the previously
mentioned works the archive size is limited, we opted for not restricting it.

At this stage, a candidate individual has its fitness assigned, and it has to meet two
requirements in order to be added to the archive: (i) its fitness must be greater than
or equal to an adequacy threshold fmin; (ii) it needs to be different from those that
already belong to the archive. This process is performed by computing the average dis-
similarity between the candidate and a set of k-nearest neighbours. When the average
dissimilarity is above a predefined dissimilarity threshold, dissimmin, the individual
is added to the archive. The values for fmin and dissimmin are presented in Table
7.1.1.

The dissimilarity metric for an image i is computed as:

dissim(i) =
1

maxarch

maxarchX

j=1

d(i, j), (7.1)

where maxarch is a predefined parameter which represents the number of most similar
images to consider when comparing with image i, and d(i, j) is a distance metric that
measures how different two images (i and j) are. From this dissimilarity measure there
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are two exceptions that should be highlighted. If there are no entries in the archive,
the first individual that has a fitness above fmin is added. Moreover, if the number of
archive entries is below maxarch, Equation (7.1) is used with the number of archive
entries instead of maxarch.

For archive assessment, we resorted to an image similarity metric. Similarity met-
rics provide us with a notion of distance between a pair of images. The development
of image distance metrics is a relevant area of research with several applications. A
revision of the state of the art is beyond the scope of this Chapter. To the interested
reader, we suggest consulting the works of Wang et al. (2005a) and Goshtasby (2012).
Images distance metrics typically involve pixel-based operations that can be less or
more elaborated. Among the available state of the art options, we chose to employ the
Normalised Cross-Correlation (NCC), which can be calculated, for two images X and
Y with a m by n size, in the following way:

NCC(X, Y) =
Pm⇥n

i=1 XiYiqPm⇥n
i=1 X2

i

Pm⇥n
i=1 Y2

i

, (7.2)

where Xi and Yi correspond to the pixels of images X and Y, respectively.
NCC similarity outputs a value in the interval [0, 1], where 1 indicates the best match.

This measure, besides providing a fast calculation, is deemed more robust than most
metrics for noisy scenes Nakhmani and Tannenbaum (2013). It suits our needs, in
the sense that our approach involves a considerable quantity of images, and it can
minimise the impact of noisy images on our dissimilarity assessment. As such, we use
as distance metric d(i, j) = 1-NCC(i, j).

7.1.3.2 Selection Mechanism

The selection mechanism is important to shape how evolution will proceed, depending
on the results obtained in a given generation. Our novelty approach has a customised
selection mechanism that can switch between a fitness-based strategy and a hybrid
mechanism that considers both fitness and novelty. It starts as a fitness guided evolu-
tion; however, that can change according to a decision rule, which is described as:

8
<

:
change_to_fitness, adequateinds < Tmin

change_to_hybrid, adequateinds > Tmax,

where adequateinds is the number of individuals of the current generation that have
a fitness above the threshold fmin; Tmin is the threshold used to verify if evolution
should be changed to fitness, and Tmax is used to verify if it should be changed to
hybrid.
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Figure 7.5: Novelty computation for an individual.

In fitness guided evolution, the tournament selection is based on the fitness values
of the candidate solutions, as in a standard EA. If hybrid evolution is chosen, it is
necessary to compute the novelty of each selected individual, and perform a Pareto-
based tournament selection, using the novelty and fitness of each selected individual
as two different objectives to maximise.

The novelty computation process is inspired by Lehman and Stanley’s work 2008,
with one small change: the k most similar images are considered from the set of the
selected individuals and the archive, instead of considering the whole population and
the archive. An example of this novelty computation is illustrated in Figure 7.5: consid-
ering k = 4 and a tournament size of 5, the dashed lines denote the chosen individuals
to compute novelty, and it is possible to see that from the 4 nearest individuals picked,
3 were chosen from the tournament while the remaining one was chosen from the
archive.

At this stage, each selected individual has a fitness and novelty value, and there is
the need to determine the winner of the tournament. This process is inspired by multi-
objective EAs, namely the Pareto-based approaches, which select the best individuals
based on their dominance or non-dominance when compared to other individuals. In
this work, the hybrid tournament selection determines the non-dominant solutions by
comparing, among the selected individuals, both fitness and novelty. After computing
the set of non-dominant individuals, we have the so-called Pareto front. The tourna-
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Table 7.4: Parameters of the GP engine.

Parameter Setting
Population size 100
Number of generations 50
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap,

sub-tree replacement,
node insertion, node deletion
and mutation

Initialisation method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Archive assessment width 32 px
Archive assessment height 32 px
Tmin 5
Tmax 15
Function set +, -, ⇥ , /, min, max, abs,

neg, warp, sign, sqrt, pow,
mdist, sin, cos, if

Terminal set x, y, random constants

ment winner will be selected by randomly retrieving one of the solutions of the Pareto
front.

The settings of the GP engine and the archive assessment for each EC run are pre-
sented in Table 7.4.

7.2 the experimental results

In this Section we present the experimental results obtained using our approach. As
previously stated, one of the key characteristics of our approach is its iterative nature.
In each iteration we perform 30 evolutionary runs, and once these runs end, the “ex-
ternal” images produced by the system, i. e., the images that expand the range of the
artistic production of the system, are added to the internal set and the ANN retrained,
promoting the discovery of novel images in subsequent iterations.

We are, therefore, primarily interested in analysing the differences, in terms of pro-
duced imagery, that occur from iteration to iteration. It is impossible to show all the
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Table 7.5: Statistics regarding evolutionary process across iterations. The results pertain 30 in-
dependent evolutionary runs for each framework iteration.

Framework Evolved Images Seeds with Avg. generations
iteration external images added ev. external for ev. external

1 38283 30110 30 3.63
2 1426 250 22 18.22
3 816 195 17 20.52
4 752 178 24 25.33
5 366 57 10 29.3
6 1105 433 21 20.24
7 620 131 22 31.64
8 191 31 7 23.86
9 422 115 21 24.90
10 692 62 20 28.5
11 374 126 22 32.27
12 267 101 11 31.09
13 842 352 17 21.76

images produced in the course of the evolutionary runs. Even if we only presented
the images classified as external, this would imply presenting 38283 images for the
first iteration alone. As such, we will present a synthesis of the results, which aims
to convey the key experimental findings. We divide our analysis into Subsections as
follows: first, we present and examine the results concerning the evolution of fitness
throughout iterations; next, we will inspect the images produced; finally, we analyse
the classifier’s training and performance in each iteration.

Although we present results concerning 13 iterations of the framework, it is impor-
tant to stress that further iterations are still being performed. Therefore, the process
is not concluded, and all evidence indicates that a significantly higher number of it-
erations would be necessary before a breakdown of the EC engine or classifier takes
place.

7.2.1 Analysis of the Numeric Results Concerning Evolution

Table 7.5 depicts a series of statistics concerning the evolutionary process across itera-
tions, namely: the total number of images evolved in the course of the 30 evolutionary
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runs of each iteration that were classified as external (Evolved external); the number of
these that were added to the internal set used to train the classifier guiding the next
iteration after supervision (Images added); the number of seeds in which the EC engine
was able to find at least one image classified as external (Seeds with ev. external); the
average number of generations necessary for finding an image classified as external
(Avg. generations for ev. external). This average is calculated taking only into account the
seeds where at least one image classified as external was found.

As it can be observed, a striking number of images classified as external was found
in the course of the first iteration, 38283, which corresponds to an average of 1276.1 per
evolutionary run. All of the evolutionary runs were able to find “external” images and,
on average, they took 3.63 generations to find the first image classified as external.

Although this number is somewhat surprising, it is far from being unexplainable. In
essence, this result means that it is easy for the system to break from its “past” and
produce novel imagery.

The initial set of internal images was created by randomly generating genotypes and
their corresponding phenotypes. As such, the images of the initial internal dataset did
not undergo evolution. By supplying an aesthetic model, and a mechanism that steers
evolution towards regions of the search space that where not covered by the initial
dataset, we are fundamentally changing the nature of the images that the system tends
to produce. When confronted by images that are novel, and that probably do not fit in
either of the categories (internal or external), the classifier is forced to make a choice,
eventually classifying some of these new images as external. Once such image is found,
evolution quickly explores and exploits such type of imagery, leading to the discovery
of a high number of images classified as external.

On a second stage, the phenotype diversity mechanisms “kicks in”, contributing to
the discovery of a diversified set of images classified as external. The importance of
the phenotype diversity mechanism can be verified by the fact that out of the 38283

classified as external, 30110 were added to the internal dataset. Thus, only 8173 of
the evolved images classified as external, roughly 21%, was considered similar to the
ones already in the archive of their corresponding evolutionary runs and, therefore,
discarded. This result shows that the phenotype diversity mechanism is able to prevent
stagnation of the evolutionary runs and convergence to a fixed type of image.

After the “explosion” of novelty that occurs in the first iteration, the task of the evo-
lutionary engine and, as will be seen, of the classifier, becomes increasingly harder and
an abrupt decrease of productivity is verified. In the course of the 30 generations of
the second iteration, the EC engine found 1426 images that were classified as external.
Although this is still an impressive number, it pales in comparison with the numbers
observed in the first iteration. This increase in difficulty can also be observed by the
increase in the average number of generations necessary to find an external image
18.22 and by the fact that only 22 out of the 30 evolutionary runs were able to find
images classified as external. The chart presented in Figure 7.6, concerning the evolu-
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Figure 7.6: Evolution of the fitness of the best individual of each generations. Results are aver-
ages of 30 independent evolutionary runs for each iteration.

tion of the fitness of the best individual of each generation across iterations, further
highlights the differences in the difficulty of the task of the EC engine in the first and
second iteration.

Out of the 1426 external images found in the course of the second iteration, 250
were added to the internal dataset, since the remaining 1176 were considered suffi-
ciently similar by our archiving algorithm to these 250. This illustrates a well-known
fact concerning novelty search algorithms (as defined by Lehman and Stanley 2008):
as optimising fitness becomes harder, it becomes significantly more difficult to find
solutions that are both novel and fit. In other words, although the phenotype diversity
mechanisms are activated and contribute to the diversity of the population, finding
images that are simultaneously novel, in relation to the ones evolved in the course of
the evolutionary run, and adequate, i. e., classified as external, becomes increasingly
difficult.

As the number of iterations increases, and as the internal dataset becomes larger, one
would expect an increasing difficulty in finding images classified as external (and also
an increasing difficulty in learning to differentiate between the two sets). Although this
tends to be true, it is not always the case. As Figure 7.6 illustrates, although there is
a clear differentiation among the lines representing the evolution of fitness of the first
two iterations and the remaining ones, and although these differences are statistically
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significant, the same does not happen in the remaining iterations. The explanation for
this fact is twofold: (i) the number of images added in each iteration is not sufficient
to make the task visibly harder; (ii) the training of the classifier includes a stochastic
component, and as such, even if trained with the same datasets, different classifiers
may induce different fitness landscapes with different difficulties.

7.2.2 Analysis of the Visual Results

Next we make an analysis of the visual results, i. e., the images produced in the course
of the 13 iterations. The complexity of the setup, and the vast number of images clas-
sified as external that were evolved make this analysis particularly hard. Furthermore,
and although we will try to be as objective as possible, the analysis entails a degree of
subjectivity that cannot, and perhaps, should not, be avoided. We divide this analysis
in three Subsections, focusing, respectively, on the analysis of the visual results of the
first iteration, intermediate iterations, and thirteenth iteration.

7.2.2.1 First Iteration

We begin by trying to convey what happens within each of the 30 evolutionary runs of
the first iteration. For this purpose, Figure 7.7 depicts the fittest individual from each
of the 50 generations of a typical evolutionary run of the first iteration. As it can be
observed, the fittest images of the first two generations are entirely amorphous. By the
third generation, the EC engine finds the first image classified as external. From this
point onwards, the phenotype diversity mechanism kicks in, promoting the discovery
of images that are, simultaneously adequate, i. e., classified as external, and different
from the ones previously evolved in the course of this specific run. This mechanism
does not produce immediate effects regarding the fittest image of the generations, but
it prevents the algorithm from converging, and creates the conditions for the discovery,
within the evolutionary run, of different images that are also classified as external. As
such, the apparently abrupt changes that can be observed in Figure 7.7 result mainly
from a progressive evolutionary process that promotes the diversity of the population.

In Figure 7.8 we present a sample of the images classified as external evolved in
the course of the same run of Figure 7.7. Since we were unable to find a reasonable
algorithm for automatically sampling the set of evolved images convincingly, this and
other samples presented in this Chapter were selected by hand, trying, in all cases, to
maximise the diversity of the sample and make it as representative as possible. As it
can be observed, the diversity of the populations and the images being classified as
external are more extensive than what Figure 7.7 suggests, showing the adequacy of
the phenotype diversity mechanisms.

Figure 7.9 depicts the fittest individual of each of the 30 evolutionary runs of the
first iteration. All of these images have been classified as external. There are, at least,
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Figure 7.7: Fittest individual from each population of a typical evolutionary run of the first
iteration. The image in the upper-left corner corresponds to population 0; remaining
images in standard reading order.
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Figure 7.8: Samples of the images classified as external, generated throughout the course single
typical evolutionary run of the first iteration.
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Figure 7.9: Fittest individuals of the last generation of each of the 30 seeds of the first iteration.
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three predominant traits: most of the images tend to be dark and with low contrast;
several exhibit a star-like shape; many of them include some noise. In some cases, the
contrast is so low that the images appear to be of a uniform colour for the human
eye; however, a colour adjustment and equalization operation will reveal the hidden
structure. Regarding this point, it is relevant to point out that several of the features
that serve as input to the ANN are invariant regarding contrast among colours, so these
results also highlight the differences in the perception of images between humans and
ANNs. It also appears to be safe to state that several of the runs converged to the
same type of imagery, which is an expected result. The runs are performed in parallel,
and the classifier, which ultimately defines the fitness landscape, is common to all.
Therefore, the fitness landscape has the same local and global optimum, optima with
a larger basis of attraction are bound to be explored more often. Additionally, each
evolutionary run has its archive and no access to the archives of others; therefore,
the phenotype diversity mechanisms cannot avoid imagery being explored in other
evolutionary runs – they only operate within the production of a specific run.

Figure 7.10 presents a sample of the 38283 images evolved in the course of the first
iteration and classified as external. Obviously, the visual inspection of 38283 and the
selection of a representative set sufficiently small to present in this Chapter is close to
impossible. Nevertheless, we believe that the selected samples illustrate the diversity
of images classified as external that were evolved throughout this iteration.

Based on the results presented, we believe it is safe to claim that the images classified
as external are substantially different from the ones belonging to the initial dataset.
On the other hand, it is also safe to state that they are substantially different from the
external dataset composed of human-made artworks. In a nutshell, the EC engine is
producing images that are distinct from both initial datasets, and that the classifier,
which is forced to classify them into one of these two sets, identified as external. We
also believe that it is safe to claim that these images are novel concerning the ones
previously produced by the EC system (i. e., the initial set of internal images), not only
from a computational perspective but also to the human eye.

In our subjective opinion, several of these images are aesthetically interesting and
appealing. Considering our background and experience using user-guided evolution-
ary art systems, it is relevant to make the following observation: these images are in
many ways similar to the ones we evolved through user-guided evolution. Anecdotal
evidence of this fact is that, when confronted with Figure 7.10, one of the authors
asked “Why do we include user-guided images?”. Proving that this resemblance is
real is beyond the scope of the present Chapter, nevertheless, even without strong ev-
idence to make this claim, we consider this one of the most unexpected, and possibly
relevant, results of this Chapter.
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Figure 7.10: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the first iteration.
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7.2.2.2 Intermediate Iterations

In this Subsection we make an overview of the visual results obtained from the second
to the twelfth iterations. These results are illustrated by the samples of the images
classified as external presented in Figures 7.11 to 7.21. It is important to remember
that, in most cases, for each of the images presented in the figures a significant number
of images of similar nature was evolved throughout the corresponding run.

Rather than making a detailed analysis, we will focus on highlighting some of the
most striking results obtained in each iteration, identifying, whenever possible, trends
that emerge in several runs and that, as such, represent optima with a large basis of
attraction for the classifier being used in that particular interaction.

In the course of the second iteration, the EC engine evolved 1436 images classified
as external. These images result from 22 of the 30 runs. The images presented in the
figures are ordered by the evolutionary run. As such, two similar images presented
side by side typically indicate that they were evolved in the same run, similar images
that are not adjacent to each other typically indicate the rediscovery of the same type
of imagery in two different runs.

A brief scrutiny of the images presented in Figure 7.11 reveals that most of the evo-
lutionary runs converged to different imagery, but also the recurrence of some themes.
Among these, we highlight the stripped star-like shapes, which also emerged in the
first iteration, and that continues to be present, although “rendered” in a different
style. One of the interesting results concerns the evolution of several “minimalistic”
images (e. g., the two rightmost images of the first row and the leftmost images of the
fifth row), which occurs in several runs. Although they appear minimalistic, this type
of image is particularly hard to evolve, and their simplistic nature contrasts with the
size of their genotypes. In fact, an inspection of the learning process after the second
iteration appears to indicate that the emergence of these images is deeply related to
the presence in the initial dataset of external imagery that is also minimalistic and
monochromatic (see Subsection 7.2.3. In fact, the use of a reduced colour palette oc-
curs in several of the evolutionary runs. This is consistent with the colour schemes
used in many of the images belonging to the external dataset and contrasts with the
typical imagery produced by the EC engine. More importantly, considering the nature
of this Chapter, the appearance of the evolved images classified as external appears, in
most cases, to be different from the initial dataset of external images and the images
evolved in the course of the first iteration.

Analysing the images produced in the course of the third iteration, from which a
sample is presented in Figure 7.12, one can observe the same overall patterns: most
runs tend to converge to different types of images; most evolved novel imagery in
relation with the previous production of the system; there are some recurring themes,
namely the star-like images, which are “rendered” in different styles. The emergence
of images with strong and contrasting colours (magenta, green, yellow, white, black)
occurs in several evolutionary runs. This type of imagery is highly atypical of the
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Figure 7.11: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the second iteration.
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EC engine and matches the chromatic characteristics of several of the artworks of the
external set.

As we will see when analysing the results of other iterations, the emergence of
graphic elements such as lines, points and planes, also characterises some of the
evolved images. Although these are usually considered graphic primitives for humans,
the EC engine has no explicit way of creating such elements. As such, their emergence
is deeply linked with the fitness landscape induced by the classifiers.

Much of what was stated regarding the images evolved in the third iteration also
applies to the ones evolved in the fourth (see Figure 7.13). Many of the images are char-
acterised by the emergence of organic lines and planes. Others appear to be composed
of multiple layers with transparencies (e.g. leftmost image of the third row).

In the fifth iteration, the EC engine experienced difficulties in finding images clas-
sified as external. Only 10 of the 30 evolutionary runs found such images and, on
average, these took 29.3 generations to evolve. In total, 366 images classified as ex-
ternal were evolved, a number that is reduced to 57 by our archiving algorithm. For
these reasons, the diversity of the images presented in Figure 7.14 is not as broad as
in previous iterations. The feature common to all of these images is the presence of
“noise” patterns. It is also interesting to notice that a vast percentage of the images is
monochromatic and with intricate detail. In several of the cases (e. g., the black and
white images of the first and last row) the lines are discontinued, in the sense that they
emerge from the arrangement of several white or grey dots that are not connected.

Although the productivity of the AA during the fifth iteration was not high, the ad-
dition of these images to the internal dataset, coupled with the removal of some of the
external images (see Subsection 7.2.3), appears to cause profound changes in the clas-
sifier. There is a burst of productivity in the course of the sixth iteration, 1105 images
of which 433 are added to the archive, a number that is only surpassed by the first
iteration. As Figure 7.15 illustrates, this burst of productivity coincides with a change
of style in comparison with the previous iterations. This sudden increase in produc-
tivity can be explained by the performance of the classifier and will be discussed in
Subsection 7.2.3.

Productivity decreases during the seventh iteration, see Figure 7.16, and reaches an
all-time low in the eighth iteration (refer to Figure 7.17). Generally speaking, one can
state that the images classified as external evolved in the course of the seventh iteration
correspond to variations in the style of themes already explored in previous iterations,
almost as if the AA further refined and included additional detail to previously ex-
plored images. The ones evolved in the eighth iteration appear, in our eyes, to be of
the same style as images evolved in some of the previous iterations. The classifier is
not able, even during training, to fully discriminate among the internal and external
datasets. As previously explained, this opens the door for the repetition of styles and
imagery that was not sufficiently explored in previous iterations. Our analysis indi-
cates that this is what happened in the course of the eighth iteration, the AA artist
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Figure 7.12: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the third iteration.
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Figure 7.13: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the fourth iteration.
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Figure 7.14: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the fifth iteration.
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Figure 7.15: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the sixth iteration.
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explored styles that, although already present, were not sufficiently explored. As the
cardinality of such images increases the CS is “forced” to recognise such images as
internal and, therefore, the EC engine will no longer be able to explore them in future
iterations.

As previously, the changes to the datasets gave rise to a classifier that bases its as-
sessments on different premises, inducing a different fitness landscape, which happens
to be more prone to evolution. In the ninth iteration, the EC engine evolved a total of
422 images, of which 115 were archived, finding images classified as external in 21

of the 30 runs. As can be observed by inspecting Figure 7.18, there is a mixture be-
tween new and old themes and styles. Interestingly, several images that are evocative
of landscapes (three leftmost images of the third row) were evolved.

The tenth iteration was one of the most productive ones regarding the total number
of images classified as external, 692, but of these only 62, less than 10% made it to
the archive. As it can be observed in Figure 7.19, several runs converged to the same
type of imagery, reducing the overall diversity and productivity of the set. Visually,
we identify three main styles which emerge in several runs: the black and white min-
imalistic images; images that appear to have a white transparent layer (e.g., the five
leftmost images of the first row, and also the two rightmost of the last row); The im-
ages exploring a combination of magenta and green. Like in several of the previous
iterations, the star-like shape continues to be one of the favourite “themes” of the AA.

The lack of diversity of the tenth iteration contrasts with the visual diversity of
the eleventh. Although only 374 images classified as externals were found, 126 of
these images were archived. On average it took 32.27 generations to find the first
image classified as external. Although there is some stylistic agreement among several
evolutionary runs (see Figure 7.20), the overall diversity is significantly higher than in
the previous iteration. The purely black and white images disappear from this iteration
onwards, likely due to the combination of two factors: the inclusion of several of these
images in the internal dataset and, most importantly, the removal of a large number
of strictly black and white images from the external dataset.

The twelfth iteration is among the least productive ones, only 267 images classified
as external were found and only 11 of the 30 runs found such images. In spite of this
lack of productivity, visible in Figure 7.21, some of the evolutionary runs were able to
find novel imagery that contrasts both in terms of style and theme with the previous
artistic production of the system.

7.2.2.3 Thirteenth Iteration

The thirteenth and last iteration presented in this Chapter corresponds to the burst
of novelty and productivity of the system. Although a similar burst occurred in the
sixth iteration, the nature of the burst appears significantly different. In this case, the
increased productivity is coupled with significant stylistic variations and may be seen
as a moment where the AA actually “broke the mould”.
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Figure 7.16: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the seventh iteration.
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Figure 7.17: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the eighth iteration.
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Figure 7.18: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the ninth iteration.
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Figure 7.19: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the tenth iteration.
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Figure 7.20: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the eleventh iteration.
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Figure 7.21: Samples of the images classified as external, generated throughout the course of
the 30 evolutionary runs of the twelfth iteration.
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As we will see in the next Section, while the increase of productivity in the sixth
iteration seems to be linked with shortcomings of the classifier, here it appears to be
linked with significant changes to the way the classifier system differentiates between
the class of internal and external imagery. Thus, while in the other intermediate itera-
tions the AA seems to be making minor stylistic variations of images that it has already
produced, and opportunistic exploitations of shortcomings of the classifier, what hap-
pens in the thirteenth iteration seems to be rather different, resulting from profound
changes of the aesthetic model, caused by the cumulative revision of the internal and
external set. Making an analogy, this can be seen as an “Eureka” moment, where the
system discovers substantially different styles, expanding and enriching the range of
its artistic production.

As it can be observed by the sample of the images presented in Figure 7.22, although
there are some recurring themes, the detail of “execution” of the images of the thir-
teenth generation classified as external is a lot higher than in previous iterations. The
images seem to be more elaborate, detailed, and refined when compared with previous
iterations. At the same time, some novel ornamentation techniques, such as the one
depicted in the three rightmost images of the first column, were discovered, and some
novel themes seem to emerge. The exploration of “light” (see, e.g. the leftmost image
of the third row and the rightmost image of the fifth row) also emerges as visible and
distinctive traits.

We considered the images resulting from the first iteration comparable to the ones
evolved through user-guided evolution. Although in fairness, the same could be stated
for a significant portion of the images evolved in the course of the thirteenth, it is
equally fair to state that some of the runs created imagery that is stylistic dissimi-
lar from what we have evolved through user-guided evolution or other means. Thus,
many of these images strike us not only as novel when compared with the previous
artistic production of the AA, but also as novel and surprising with our own experience
and production.

7.2.3 Classifier’s Training Results

In this Subsection, we make an overview of the results pertaining the training of the
classifier. As previously mentioned (see Section 7.1.1), when an iteration has concluded
the images classified as external, evolved in the course of the iteration, they are gath-
ered by the supervisor and added to the internal dataset. This is followed by several
training attempts, which may imply removing images from the external dataset. Train-
ing is concluded when no external images are classified as being internal. The exis-
tence of internal images classified as external implies that the EC engine may revisit
previous styles, but, when this occurs, the consequent increase of the number of im-
ages of those styles present in the internal dataset will eventually force the classifier to
recognise such images as internal.
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Figure 7.22: Sample of images classified as external, generated throughout the course of the 30
evolutionary runs of the thirteenth iteration.
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Table 7.6 presents a summary of pertinent statistics regarding the training phase. It
details, per iteration: the number of training attempts necessary to reach a classifier
without false internals (attempts); the total number of false externals identified in the
course of these attempts (False Externals); the number of false externals and internals
after the training attempts are concluded (CS False External and CS False Internal, re-
spectively), which reflects the ability of the classifier that is going to be used to guide
the following iteration to discriminate between the sets; the size of the external and
internal datasets after training is concluded (Total External and Total Internal).

As it can be observed, the training of the classifier for the first iteration required
two attempts. One external image - a black and white photograph of a detail of a
painting - was removed from the external dataset. Unfortunately, due to copyright
issues, this and other external images cannot be replicated in the Chapter. After the
second attempt, no external images were classified as internal, but one internal image,
a black and white a star-like shape was deemed as external. The existence of this
image, and the difficulty in classifying it may, at least partially, explain the recurrence
of such theme in several iterations.

As previously mentioned, the first iteration generated a wide and varied number of
images. As a consequence, 30110 images have been added to the internal dataset and
the training of the classifier that guided the second iteration took a significantly larger
number of attempts; in total 68 external images have been removed. These are mostly
black and white engravings, and quite interestingly, some images of mathematical ob-
jects, an artwork of M. C. Escher, which also has a mathematical appearance, and a
cartoon image. In what concerns the engravings, we believe that these images were
removed by two main reasons: (i) with the resolution that the FE processes these im-
ages, they could easily be confused with images produced by the EC engine; (ii) more
importantly, these images tend to be atypical in relation to the other images belonging
to the external dataset, which makes them harder to classify. In what concerns the im-
ages of mathematical objects, they seem to be computer-generated and, therefore, the
confusion with the images produced by the AA is natural. After the removal of these
images, the classifier can completely distinguish between the two sets.

The same overall trend occurs in iterations 2 to 3, although the number of attempts
varies (4 and 7, respectively) the types of external images being excluded is the same,
including engravings, M. C. Escher artworks, black and white drawings, photographs
of sculptures, and minimalistic paintings (some of them by Kazimir Malevich). The
reasons for their misclassification are the same: they are either atypical in relation
with the rest of the external set or, confusable with computer-generated imagery, i.e.,
similar in style with the images the EC engine is prone to create.

The fourth generation provoked few changes on the external dataset, removing only
11 images. While 10 of these are black and white drawings, the remaining one is no-
table since it is the first Mondrian removed from the external set. The images produced
in the fifth generation provoked the exclusion of 18 images from the external dataset,



7.3 summary 211

among which two by Matisse and two by M.C. Escher. The most relevant issue con-
cerning the training after the fifth iteration is that the resulting classifier, which will
guide evolution in the sixth iteration, misclassifies 28 internal images. This gives the
EC engine a large degree of freedom to explore previously visited imagery, which
explains the burst of productivity observed in the sixth iteration. The exploitation of
these “shortcomings” leads to the generation of images that, once added to the internal
dataset prevent their future exploitation.

In the seventh iteration, a total of 248 external images were removed from the ex-
ternal dataset, these include Black and white engravings, several M. C. Escher art-
works (14 to be precise), several Mondrian paintings, and numerous line drawings.
The eighth iteration, the least productive of all, provoked the removal of 31 external
images, that tend to be of the same type as the ones previously identified. After these
removals, the classifier is, again, able to fully distinguish between the two sets.

The ninth and tenth iterations caused the removal of few external images, 8 and 6,
respectively. Confirming our previous observation that, although these iterations were
productive, they were not particularly fruitful regarding the novelty of the evolved
imagery. As mentioned previously, although 692 images classified as external were
evolved in the tenth iteration, only 62 of these made it to the archive.

These numbers contrast with the ones of the eleventh and twelfth iteration where,
respectively, 47 and 63 were deleted. These include several Picasso, Dalí, Paul Klee,
Mondrian, and Mark Rothko paintings, as well as several line drawings. The lack of
texture, at low resolution, appears to be the binding trait of these paintings.

As mentioned previously, in our opinion, the thirteenth iteration is different from
the others in the sense it corresponds to a pronounced shift in style. As such, it is
particularly interesting to inspect what kind of changes to the external dataset the
evolved imagery induces. In total 64 external images where removed. In previous
iterations most of the removed images were black and white drawings or engravings,
this is not the case in the thirteenth generation; only ten of the deleted images are black
and white. The remaining images are Renascence style paintings (unfortunately, they
do not include the Mona Lisa), two Van Gogh paintings, three by Kandinsky and one
by Miró. Quite interestingly, four paintings of Monet’s Waterloo Bridge, a theme that is
present in several of his artworks, were also removed. In this case, it was possible - and
quite easy we might add - to identify the evolved images that promote the confusion
between internal images and these artworks. Some of them are depicted in the bottom
two rows of Figure 7.22, and we believe that the reader will also understand why, in
the eyes of the classifier, they can be easily confused.

7.3 summary

In this Chapter, we presented an Artificial Artist that is characterised by its permanent
quest for novelty. The system is composed of two main modules: a creator and a critic.
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Table 7.6: Statistics regarding the training of the classifiers of each iteration in terms of: num-
ber of attempts, false internals and externals during training, false externals after
training, and size of the internal and external and internal dataset after training.

During Training Cycles After Training Attempts
False False CS False CS False Total Total

Iteration Attempts External Internal Externals Internals Externals Internal
initial 2 1 1 1 0 26238 26239

1 7 23 68 0 0 26170 56349
2 4 52 20 3 0 26150 56599
3 7 41 67 3 0 26083 56794
4 6 7 11 3 0 26072 56972
5 2 40 18 28 0 26054 57029
6 2 7 18 3 0 26036 57462
7 3 11 248 3 0 25788 57593
8 3 23 31 0 0 25757 57624
9 3 11 8 5 0 25749 57739

10 3 126 6 5 0 25743 57801
11 8 145 47 4 0 25696 57927
12 6 99 63 7 0 25633 58028
13 4 88 64 3 0 25589 58380
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The role of the creator is played by an expression based evolutionary engine and that of
the critic by an ANN. The ANN is trained to discriminate among the images produced by
the evolutionary engine and a set of famous artworks. The fitness of the images being
evolved depends on the output of the classifier, promoting the discovery of images
that the network classifies as external. These two components make part of an EFECTIVE
instantiation, and on each iteration of the framework, we perform 30 evolutionary runs.
When these are concluded, the Supervisor picks relevant misclassified images that are
added to the set representing the production of the AA, and the ANN is retrained.

The EFECTIVE instantiation of this Chapter promotes and explores a competition
between creator and critic. From a theoretical standpoint – assuming that the EC engine
and the ANN are adequate and always able to cope – the iterative expansion of the
internal set leads, necessarily, to change since the evolutionary algorithm is forced to
explore new paths. Moreover, assuming that a sufficiently large number of iterations
is performed and that both systems cope, the convergence to the aesthetic model (or
models) implicitly defined by the set of external images, which provides an aesthetic
reference to the artistic production of the AA, is bound to occur eventually.

To increase the diversity within evolutionary runs and prevent their early conver-
gence and stagnation, we include mechanisms to promote the phenotype diversity of
the populations. This implies taking two criteria into account when performing tour-
nament selection: the adequacy of the image (which results from the output of the
neural network, i. e., the critic) and its diversity about the images produced in the
course of the same run.

The analysis of the experimental results confirms the adequacy and potential of
EFECTIVE, revealing that the system can consistently produce novel imagery of ar-
guably, aesthetic merit. As such, we consider that we successfully developed a creative
system that can learn, create and innovate in an entirely autonomous way.

The experimental results indicate that the images produced in the course of the first
iteration of the framework are similar to those produced by expression-based interac-
tive evolutionary art systems, where the role of the evaluator is played by a human.
Analysing the results, we consider that the behaviour and production of the system
during the first twelve iterations can be considered as e-creative. We find that what
happens during the thirteenth generation is significantly different and goes beyond
e-creativity. In this case, the system made a qualitative and substantial change both
regarding production and aesthetic model, thus breaking the mould. We put forward
the hypothesis that this behaviour can be seen as a limited case of h-creativity – in
the sense that the system produced images that appear to be different from those
previously attained by evolutionary means – and of t-creativity, in the sense that the
changes seem to be related to profound changes in the aesthetic model and, therefore,
to a profound transformation of the search space.
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C O N C L U S I O N S A N D F U T U R E W O R K

The working hypothesis for this thesis is that EC can be used to assess and improve the
performance of classifiers by evolving new training instances. The main contribution
is a framework for the assessment and improvement of classifiers, which was exper-
imentally validated. The definition of the framework, named EFECTIVE, is described
in Chapter 3. It combines three key modules: a CS module which represents the ML
approach to be improved; an EC engine responsible for generating instances; and a Su-
pervisor module responsible for managing the instances generated. The combination
of these modules create an automatic, iterative process of assessment and improve-
ment of classifiers.

One of the starting points of this thesis was the exploration of the idea by Romero
et al. (2003): combining a general purpose evolutionary art system with an image clas-
sifier trained to detect faces, or other types of objects, to evolve images of a particular
type. Based on the literature concerning Evolutionary Art systems, it is theoretically
possible to achieve this by using proper representation and fitness assignment. We pur-
sue this idea by using an evolutionary art tool combined with a face detector to evolve
frontal faces in Chapter 4. However, we encountered some interesting and surprising
results. The classifier, in some cases, detects faces on images that do not resemble, from
a human perspective, a face. This result led to a research opportunity of using these
cases to improve the face detector by adding them to the training dataset.

Before proposing the framework, we performed a survey on the existing techniques
for dataset construction, more precisely on instance gathering, IS, and IG. The survey
of Chapter 2 led us to identify the most relevant concepts and aspects of the process
dataset construction, and also opportunities to be explored.

In a first phase, we explore image generation. In Chapter 4, we tested EFECTIVE in
several image generation tasks: (i) evolution of faces; (ii) evolution of figurative im-
ages; (iii) evolution of ambiguous images; and (iv) evolution of photorealistic faces.
The evolution of frontal faces confronted us with the research question of how to cre-
ate a suitable fitness function. We used the internal values of the classifier to build
the fitness function. In the evolution of faces experiment we used an off-the-shelf clas-
sifier combined with a GP based EC engine. The approach evolved images that were
classified as faces and were evocative of human faces. However, most of the generated
images did not resemble a face, although they were classified as faces by the classi-
fier. This particular result suggested that the approach could be suitable to generate
false positives. In the evolution of figurative images, we explored the application to
other types of objects and created our own object detectors. The results showed that
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we were still able to generate instances evocative of the target object. Once again, most
of the results were classified as containing the target object but did not, from a human
perspective, resemble the object. In the experiment of evolution of ambiguous images,
we had the objective of creating images that induce multistable perception, by present-
ing an ambiguous stimulus. To attain this, we evolved images where the classifiers
detected more than one type of object in the same area. In the last experiment of this
Chapter, we wanted to test if we could evolve false negatives. We created an EC engine
with a representation that allowed us to generate photorealistic faces consistently. Af-
terwards, we design a fitness function that allowed us to generate images that, from
a human perspective, are faces and that the classifier does not classify as faces. Thus
these experiments in conjunction, allowed us to show that we are able to generate
false positives and false negatives with EFECTIVE. Based on the aforementioned results,
Chapter 4 answers the question “How to create a suitable fitness function?”.

The results obtained in Chapter 4 show that we are able to generate instances that
are misclassified by the classifiers. In Chapter 5, we move towards the improvement of
classifiers by performing a set of experiments where we use the misclassified instances
to improve their performance. In a first test, as proof of concept, we assess the perfor-
mance of classifiers trained with the contribution of instances from one EC run, which
evolves false positives. The classifiers trained with the instances from one EC run re-
vealed improvement in its performance, reducing the number of FAs when tested in
a group of test datasets. Afterwards, instead of using a single EC run, we performed
experiments where we aggregated the instances of several EC runs for the classifier’s
dataset. We tested the usage of the Supervisor module with different strategies for
filtering and selecting instances. For selection we tested the following: adding all the
misclassified instances (Aggregator); using an external classifier to select instances that
it classifies correctly (External); and manual selection of individuals by a user (Manual).
The filter methods considered were: discarding images that are equal (Unequal); and
discarding similar images using a pixel-based root mean squared error as the simi-
larity measure (RMSE). The results revealed that the strategy for the Supervisor had
impact on the performance of the classifiers, showing that the External RMSE yielded
results as good as the Manual selection strategy. At this point we also concluded that
it could be advantageous to perform several iterations of the framework. The question
“How should the Supervisor select and filter individuals per EC run?” was partially
answered here.

In Chapter 6 we started by performing several framework iterations evolving in-
stances that are classified as false positives, expanding the negative dataset at each
framework iteration. We also tested the impact of using several framework iterations.
Several setups were performed based on the type of Supervisor in use. The results
show that by expanding the negative dataset, we are able to reduce the number of
FAs. Furthermore, we tested if the evolved instances had impact in the framework by
comparing our approach with a commonly used method for DA. We concluded that
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the classifiers from EFECTIVE obtained the highest results for every test dataset, when
compared with the classifiers trained using the DA approach. Afterwards, we tested
evolving instances classified as false negatives, expanding the positive dataset. The
corresponding results show that the system increased the %H. In a last experiment,
we expanded the negative and positive datasets in the same framework iteration. The
results show that with the addition of the false negative and false positive instances,
we can reduce the FAs while increasing the %H, which results in an overall increase of
%C. Using this method, we obtained the best performance values when compared with
the baseline classifier. Based on the experiments and on the corresponding results, this
Chapter answers the following questions: “How should the Supervisor select and filter
individuals per EC run?”; “How to compensate the unbalance that will be created?”.
The questions “What are the necessary conditions for the framework to succeed?” is
partially answered sustained by the experimental results of this Chapter.

In Chapter 7 we tested EFECTIVE in a CC context to create a system that promotes
novelty and style change in the generation of images. The analysis of the experimental
results confirms the adequacy and potential of EFECTIVE, revealing that the system can
consistently produce novel imagery of arguably, aesthetic merit. As such, we consider
that we successfully developed a creative system that can learn, create and innovate in
an entirely autonomous way.

In what concerns the scientific dissemination of the results, the work conducted in
the Chapter 4, regarding generation of images of a particular type, resulted in the
following publications:

• Penousal Machado, João Correia, and Juan Romero (2012a). ‘Expression-Based
Evolution of Faces.’ In: Evolutionary and Biologically Inspired Music, Sound, Art
and Design - First International Conference, EvoMUSART 2012, Málaga, Spain, April
11-13, 2012. Proceedings. Vol. 7247. Lecture Notes in Computer Science. Springer,
pp. 187–198. doi: 10.1007/978-3-642-29142-5_17

• João Correia, Penousal Machado, Juan Romero, and Adrián Carballal (2013a).
‘Evolving Figurative Images Using Expression-Based Evolutionary Art.’ In: Pro-
ceedings of the fourth International Conference on Computational Creativity (ICCC),
pp. 24–31

• Penousal Machado, Adriano Vinhas, João Correia, and Anikó Ekárt (2015b). ‘Evolv-
ing Ambiguous Images.’ In: Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015. Ed. by Qiang Yang and Michael Wooldridge. AAAI Press, pp. 2473–2479.
url: http://ijcai.org/papers15/Abstracts/IJCAI15-350.html

• Penousal Machado, Adriano Vinhas, João Correia, and Anikó Ekárt (2015c). ‘Evolv-
ing Ambiguous Images.’ In: AI Matters 2.1, pp. 7–8. issn: 2372-3483. doi: 10.1145/
2813536.2813539. url: http://doi.acm.org/10.1145/2813536.2813539
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• João Correia, Tiago Martins, Pedro Martins, and Penousal Machado (2016). ‘X-
Faces: The eXploit Is Out There.’ In: Proceedings of the Seventh International Con-
ference on Computational Creativity (ICCC 2016). Ed. by François Pachet, Amilcar
Cardoso, Vincent Corruble, and Fiammetta Ghedini. Sony CSL Paris, France,
pp. 164–182

Next, concerning the improvement of classifiers, the following articles were published:

• Penousal Machado, João Correia, and Juan Romero (2012b). ‘Improving Face De-
tection.’ In: Genetic Programming - 15th European Conference, EuroGP 2012, Málaga,
Spain, April 11-13, 2012. Proceedings. Ed. by Alberto Moraglio, Sara Silva, Krzysztof
Krawiec, Penousal Machado, and Carlos Cotta. Vol. 7244. Lecture Notes in Com-
puter Science. Springer, pp. 73–84. doi: 10.1007/978-3-642-29139-5_7

• João Correia, Penousal Machado, and Juan Romero (2012). ‘Improving haar cas-
cade classifiers through the synthesis of new training examples.’ In: Genetic and
Evolutionary Computation Conference, GECCO ’12, Philadelphia, PA, USA, July 7-11,
2012, Companion Material Proceedings. Ed. by Terence Soule and Jason H. Moore.
ACM, pp. 1479–1480

The work discussed in Chapter 7 led to the following publications:

• João Correia, Penousal Machado, Juan Romero, and Adrián Carballal (2013b).
‘Feature Selection and Novelty in Computational Aesthetics.’ In: Evolutionary and
Biologically Inspired Music, Sound, Art and Design - Second International Conference,
EvoMUSART 2013, Vienna, Austria, April 3-5, 2013. Proceedings. Ed. by Penousal
Machado, James McDermott, and Adrián Carballal. Vol. 7834. Lecture Notes in
Computer Science. Springer, pp. 133–144. isbn: 978-3-642-36954-4

• Penousal Machado, Juan Romero, Marcos Nadal, Antonino Santos, João Correia,
and Adrián Carballal (2015a). ‘Computerized measures of visual complexity.’ In:
Acta Psychologica 160, pp. 43–57. issn: 0001-6918. doi: http://dx.doi.org/10.
1016/j.actpsy.2015.06.005. url: http://www.sciencedirect.com/science/
article/pii/S0001691815300160

• Adriano Vinhas, Filipe Assunção, João Correia, Aniko Ekárt, and Penousal Machado
(2016). ‘Fitness and Novelty in Evolutionary Art.’ In: Evolutionary and Biologically
Inspired Music, Sound, Art and Design - Fifth International Conference, EvoMUSART
2016, Porto, Portugal, March 30 – April 1, 2016, Proceedings. Ed. by Colin Johnson,
Vic Ciesielski, João Correia, and Penousal Machado. Cham: Springer Interna-
tional Publishing, pp. 225–240. isbn: 978-3-319-31008-4. doi: 10.1007/978- 3-
319-31008-4_16. url: http://dx.doi.org/10.1007/978-3-319-31008-4{\_}16

• João Correia, Penousal Machado, Juan Romero, Pedro Martins, and F Amílcar
Cardoso (2017). ‘Breaking the Mould: An Evolutionary Quest for Innovation
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Through Style Change.’ In: Computational Creativity: The Philosophy and Engineer-
ing of Autonomously Creative Systems. Ed. by Tony Veale and F Amílcar Cardoso.
Springer International Publishing. isbn: 978-3-319-43608-1

Furthermore, the following publications resulted from ramifications of the research
conducted in this thesis:

• Penousal Machado and João Correia (2014). ‘Semantic Aware Methods for Evo-
lutionary Art.’ In: Genetic and Evolutionary Computation Conference, GECCO ’14,
Vancouver, BC, Canada, July 12-16, 2014. Proceedings. ACM

• Tiago Martins, João Correia, Ernesto Costa, and Penousal Machado (2015). ‘Evo-
type: Evolutionary Type Design.’ In: Evolutionary and Biologically Inspired Music,
Sound, Art and Design - Fourth International Conference, EvoMUSART 2015, Copen-
hagen, Denmark, April 8-10, 2015, Proceedings. Ed. by Colin G. Johnson, Adrián Car-
ballal, and João Correia. Vol. 9027. Lecture Notes in Computer Science. Springer,
pp. 136–147. doi: 10.1007/978-3-319-16498-4_13. url: https://doi.org/10.
1007/978-3-319-16498-4_13

• Tiago Martins, João Correia, Ernesto Costa, and Penousal Machado (2016). ‘Evo-
type: From Shapes to Glyphs.’ In: Proceedings of the Genetic and Evolutionary Com-
putation Conference 2016. GECCO ’16. New York, NY, USA: ACM, pp. 261–268.
isbn: 978-1-4503-4206-3. doi: 10.1145/2908812.2908907. url: http://doi.acm.
org/10.1145/2908812.2908907

• Tiago Martins, João Correia, Ernesto Costa, and Penousal Machado (2018). ‘Evo-
type: Towards the Evolution of Type Stencils.’ In: Computational Intelligence in
Music, Sound, Art and Design - Seventh International Conference, EvoMUSART 2018,
Parma, Italy, April 4-6, 2018, Proceedings. Ed. by Antonios Liapis, Juan Jesús Romero
Cardalda, and Anikó Ekárt. Vol. 10783. Lecture Notes in Computer Science.
Springer, pp. 299–314. doi: 10 . 1007 / 978 - 3 - 319 - 77583 - 8 _ 20. url: https :

//doi.org/10.1007/978-3-319-77583-8_20

The experiments described in Chapter 6 resulted in a journal paper that is currently
under review. As for future work in the domain of improving the classifiers perfor-
mance, the immediate step is to compare EFECTIVE with other methods, e. g., GANs or
other type of adversarial learning. Furthermore, we want to further explore the impact
of the Supervisor, e.g. use the Supervisor in other types of adversarial learning.

Currently, the EFECTIVE framework operates at the end of the training. We can intro-
duce the evolved instances in the training phase, e. g., add instances to the training
batch and use the classifier that is being trained to assign fitness. We also plan to
explore the usage of DL classifiers as the CS module and as the Supervisor.

The results that we attained in Chapter 7 using a tuned EC engine with multi-
objective tournament selection and an archive for the generated individuals resulted
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in interesting results, which we are going to use and build upon in future experiments.
So, in the domain of the generation of images of a particular type, we are interested in
using the algorithms from Chapter 7 in new experiments with object detectors using
different ML approaches.
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