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Why so many people?
Explaining non-habitual transport overcrowding with

internet data
Francisco Pereira, Member, IEEE, Filipe Rodrigues, Evgheni Polisciuc, and Moshe Ben-Akiva

Abstract—Public transport smartcard data can be used to
detect large crowds. By comparing smartcard data with statistics
on habitual behavior (e.g. average by time of day), one can
specifically identify non-habitual crowds, which are often prob-
lematic for the transport system. While habitual overcrowding
(e.g. during peak hour) is well understood by traffic managers
and travelers, non-habitual overcrowding hotspots can be very
disruptive given that they are generally unexpected. By quickly
understanding and reacting to cases of overcrowding, transport
managers can mitigate transport system disruptions.

We propose a probabilistic data analysis model that breaks
each non-habitual overcrowding hotspot into a set of explanatory
components. Potential explanatory components are retrieved from
social networks and special events websites and then processed
through text-analysis techniques. We then use the probabilistic
model to estimate each components specific share of total over-
crowding counts.

We first validate with synthetic data and then test our model
with real data from Singapores public transport system (EZLink),
focused on 3 case study areas. We demonstrate that it is able to
generate explanations that are intuitively plausible and consistent
both locally (correlation coefficient, CC, from 85% to 99% for
the 3 areas) and globally (CC from 41.2% to 83.9%).

This model is directly applicable to domains that are sensitive
to crowd formation due to large social events (e.g. communica-
tions, water, energy, waste).

I. INTRODUCTION

Given the quantity and quality of pervasive technologies
such as RFID, smartcards and mobile phone communications,
we have the ability to detect crowds with minimal risk to
privacy in almost real-time. Crowd detection is a valuable
measure for safety and security as well as for real-time sup-
ply/demand management of transportation, communications,
food stock, logistics, water and many other systems that
are sensitive to aggregated human behavior. Although these
technologies help detect and quantify crowds, they have limited
power to explain why crowds happen.

We are less concerned with recurring crowds, such as peak-
hour commuting, because we have a better understanding of
why these crowds occur. However, we face greater challenges
in explaining non-habitual overcrowding scenarios in which we
need contextual knowledge in order to discern explanations.
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Fortunately, the Internet is a pervasive technology that is rich
in local context. Information about public special events (such
as sports games, concerts, parades, sales, demonstrations, and
festivals), social networks (e.g. Twitter, Facebook) and other
platforms that have dynamic context content (e.g. news feeds)
are abundant.

In order to assess and treat issues of overcrowding, we must
first understand why people are crowding, and where/when
they will go next. Then managers can react accordingly by,
for example, adding extra buses, trains, or taxis. For example,
if we know that an overcrowding hotspot is due because of
a concert, we can also estimate the overcrowdings duration
(for instance, until shortly after the concert begins) and the
next possible overcrowding hotspot (for instance, immediately
after the concert ends). If the overcrowding is instead due to a
series of small, scattered events, the treatment may be different
(e.g. no single ending hotspot). By understanding such impacts
on a post-hoc analysis, we can learn from previous events and
better prepare for the next time similar events occur.

This paper aims to address the following problems: what
are the potential causes of a non-habitual large crowd (an
overcrowding hotspot); and how do these potential causes indi-
vidually contribute to the overall impact? We will particularly
focus on public transport overcrowding in special events areas.

Given the importance of these social phenomena, many
traffic management centers have teams of people that are re-
sponsible for periodically scanning the internet and newspapers
in search of special events. The challenge comes when multiple
smaller events co-occur in the same area because it is not only
harder to find them, but it is also difficult to estimate their
aggregated impact.

We identify and measure the overcrowding hotspots by
analyzing 4 months of public transport data from Singapore.
We define a hotspot as a continuous period where observed
demand (e.g. number of arrivals) repeatedly exceeds a high
percentile (e.g. 90%). The overcrowding hotspot impact is
measured as the total sum of demand above the median line.

During the whole period of the dataset, we collected special
events data from 5 websites1 as well as their Facebook
likes and Google hits. While the latter two are numerical
in nature, the former include unstructured text descriptions.
Hence, we apply an information extraction technique, called
topic modeling [1], that transforms such data into a set of

1These websites were www.eventful.com, upcoming.org, last.fm, time-
outsingapore.com and singaporeexpo.com.sg.
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features understandable from a machine learning algorithms
perspective.

Since we only have observations of aggregated impacts
rather than the individual events, we propose a Bayesian hier-
archical additive model, where each hotspot is formalized as
a sum of the potential explanatory components. We explicitly
model uncertainty on the parameters by using the Infer.NET
platform [2].

We validate the model in two ways: using synthesized
impact data based on real event descriptions; and comparing
the sum of estimations from our model with the observed
real-world sums. In doing so, we demonstrate that our model
approximates the (simulated) ground truth, and that the results
in a real world case are feasible.

This methodology is applicable beyond the specific case
of public transport overcrowding. For example, during spe-
cial events, cell-phone, wifi network, energy, waste or cater-
ing/logistics systems may be equally disrupted. If data is
available to quantify and correlate the impacts, the general
procedure remains the same. We provide the source code and
the synthesized dataset for interested readers2.

The main contributions of this paper are a fully implemented
model for inferring latent demand contributions in special
events scenarios (with code available to the reader, runnable in
the Infer.NET platform); the application of a state-of- the-art
topic modelling technique (LDA); and a validation technique
with synthetic data that follows a realistic methodology and
can be used as a benchmark for future work.

In Section II, we present a literature review. In Section III,
we explain how we determine the overcrowding hotspots and
in Section IV we show how we collect potential explanatory
data from the Web. A Bayesian model is explained in Section
V and is followed by experimentation and validation in Section
VI. We analyze several hotspots in Section VII and end the
paper with a discussion and conclusions (Sections VIII and
IX, respectively).

II. LITERATURE REVIEW

A. Detecting mobility patterns with pervasive data
In June 2014, a search with the keywords cell phone and hu-

man mobility in Google returned approximately 14.4k entries.
In Google Scholar, we find over 1000 entries that mention
these words explicitly. If we include other types of data such
as GPS or smartcard data, these numbers will increase even
more dramatically. Therefore, we mention a few papers we
consider seminal to the area.

Using a large cell-phone dataset, González and colleagues
[3] showed that individual mobility travel patterns generally
follow a single spatial probability distribution. This finding in-
dicates that despite their inherent heterogeneity, humans follow
simple reproducible patterns. Several other works indicate that
human mobility is habitual for the vast majority of the time, for
example to estimate disease spreading [4] or vehicular network
routing protocols [5].

Despite other studies that stretch the boundaries of that
principle and verify that it is widely persistent (e.g. [6],

2https://dl.dropboxusercontent.com/u/1344277/PereiraEtAl2014.zip

[7]), mobility behavior heterogeneity is recognized to create
predictability challenges. This is particularly important when
it involves large crowds. As pointed out by Potier et al
[8], even for well-known big events (e.g. Olympic games),
demand is more difficult to forecast than habitual mobility,
particularly in the case of open-gate events. When facing these
constraints, authorities tend to rely on trial and error experience
(for recurring events), checklists (e.g. [9]) and sometimes
invest in a reactive approach rather than planning. This is
the case in Germany, with the RTTI (Real-time Traffic and
Traveller Information) and its active traffic management [10]
and in Netherlands [11]. However, such tools have limited
applicability, particularly for smaller and medium events, that
are harder to capture and to evaluate.

Calabrese et al [12] use a massive cell-phone dataset to
study public home distributions for different types of special
events (e.g. sports, concerts, theatre). They identified a strong
correlation between public neighborhood distributions and
event types. This is a key finding since it implies that such
heterogeneous cases are still predictable as long as we have
sufficient event information. They did not, however, consider
multiple event interactions or deeper explanatory content (e.g.
event description text).

B. The role of the Internet

The Internet is the best source for extracting special events
information. We can also explore online popularity features,
such as Facebook likes or Google trends. In an earlier work
[13], we compared an origin/destination (OD) prediction model
with and without simple information obtained from the Inter-
net, such as event type or whether the performer/event had
a Wikipedia page. We verified that such information could
reduce the root mean squared error (RMSE) by more than
50% in each OD. This study was done on a single spatially
isolated venue that had one event at a time. When we applied
it to more complex locations, we verified that a deeper analysis
was needed to handle multiple concurrent events.

The internet is also a valuable source for other aspects of
mobility research. For example, Twitter has been used for
opinion mining on public bus [14] and inference of home
locations [15]; Points of Interest (POIs) from Foursquare,
Yahoo! local and others have supported studies on urban region
functions [16] and job-related trips [17]; and Flickr has been
used to study the geographical distribution of activities (e.g.
beach, hiking, sunset) [18] or to recommend touristic routes
[19].

C. Topic models

Even if we have all the web pages that announce our events,
a considerable amount of the relevant information will be in
textual form. To obtain an automated system, we still need to
convert such data into a proper representation that a machine
can understand. Explicitly including the text, word by word,
in a machine learning model would increase its dimensionality
much beyond the reasonable. On the other hand, hand coding
rules that find certain “relevant” words (e.g. “rock”, “pop”,
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“football”, “festival”) would incur in plenty of subjective
judgment and lack of flexibility. Natural language is rich in
synonymy and polysemy, different announcers and locations
may use different words, besides it is not always obvious which
words are more “relevant” from the perspective of a machine
learning model.

The approach of topic modelling research to these questions
is to re-represent a text document as a finite set of topics.
These topics correspond to sets of words that tend to co-occur
together rather than a single word associated to a specific topic.
For example, a rock festival textual description could have a
weight w1 assigned to topic 1 (e.g. words related to concerts
in general), w2 of topic 2 (e.g. words related to festivals),
w3 of topic 3 (e.g. words related to the venue descriptions)
and so on. In particular, we use a specific technique that is
called Latent Dirichlet Allocation (LDA). For the readers that
are familiar with Principal Components Analysis (PCA), there
is a simple analogy: PCA re-represents a signal as a linear
combination of its eigenvectors, while LDA re-represents a
text as a linear combination of topics. In this way, we reduce
the dimensionality from the total number of different words of
a text to the number of topics, typically vey low.

In LDA, each document is represented as a distribution over
topics, and each topic is a distribution over words. Formally,
given each document d defined as a vector wd of n words,
wd = {wd,1, . . . wd,n} and the parameter K, representing
the number of different topics, LDA assumes the following
generative process:

1) Draw a topic βk from βk ∼ Dirichlet(η) for k = 1 . . .K
2) For each document d:

a) Draw topics proportions θd such that θd ∼
Dirichlet(α)

b) For each word wd,n:
i) Draw topic assignment zd,n ∼

Multinomial(θd)
ii) Draw word wd,n ∼ Multinomial(βzd,n )

The parameters α and η are hyperparameters that indicate
respectively the priors on per-document topic distribution and
per-topic word distribution, respectively. Thus, wd,n are the
only observable variables, all the others are latent in this mode.
For a set of D documents, given the parameters α and η, the
joint distribution of a topic mixture θ, word-topic mixtures β,
topics z, and a set of N words is given by:

p(θ, β, z,w|α, η) =
K∏
k=1

p(βk|η)
D∏
d=1

p(θd|α)

N∏
n=1

(
p(zd,n|θd)p(wd,n|βk, k = zd,n)

)
Broadly speaking, the training task is to find the posterior

distribution of the latent variables (the per-document topic pro-
portions θd, the per-word topic assignments zd,n and the topics
βk) that maximize this probability. As with most generative
models, the exact inference of such values is intractable to
compute, therefore approximate inference techniques are used,

namely Markov Chain Monte Carlo methods (e.g. Gibbs sam-
pling), or variational inference, or Expectation-Maximization
(EM). For further details on this procedure please refer to
the original article of David Blei and colleagues [1] and to
practical implementation documents (e.g. GenSim [20]).

With a trained LDA topic model, one can apply the same
general procedure to assign topics to every new document
through euclidian projection on the topics [1], which is gener-
ally a very fast procedure.

A final remark relates to the document representation that is
typically adopted for LDA and similar techniques, known as
the bag-of-words representation. Having a dictionary with W
different words, this representation translates each document
into a vector with dimensionality W , where each element
contains the frequency of a dictionary word observed in the
document. This technique obviously disregards the original
order of words in the text, being based purely on word counts.

D. Hierarchical models
A hierarchical model aims to capture effects at two or more

levels [21]. The top level represents the most general param-
eters (e.g. global mean and intercept), and the lower levels
introduce effects specific to sub-populations. . In our case,
we first break down a hotspots impact into non-explainable
and explainable components. The non-explainable component
represents all excessive demand for which we cannot find
explanations online. Its existence is more obvious in days
without any eventsThis does not correspond to the residual on
a regression model since we do not assume it to be normally
distributed with 0 mean.. In the second level, the explainable
component is expanded into a summation of individual event
contributions.

Since this model is a summation of several individual
sub-models, it is an additive model. We apply the Bayesian
framework to estimate its parameters, using the Infer.NET
platform [2], hence the title Bayesian hierarchical additive
model.

III. IDENTIFYING OVERCROWDING HOTSPOTS

There is no well-defined threshold above which we identify
overcrowding. The intuition is that it should happen whenever
the supply (e.g. buses) is insufficient to satisfy the demand
(e.g. travelers), which leads to heavily loaded vehicles or to
denied boarding. The latter is non-observable from our dataset,
as are estimates of bus or train loading. Therefore we resort
to indirect measurements such as total number of arrivals.

In order to cope with demand fluctuations, transport systems
are generally designed with reasonable spare capacity, so we
need to define the point above which we consider the system
under stress. For any given study area and point in time, we
define such points to correspond to the 90% percentile, i.e.
whenever the number of arrivals exceeds such threshold, over-
crowding is occurring. This threshold choice is based on our
intuition and experience combined with discussions with local
experts. However, our main contribution is methodological
and all principles should remain the same if choosing another
threshold.
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Fig. 1. Overcrowding hotspots detection and measurement.

We quantify the impact by summing up the excess amount
of arrivals above the median line in a continuous time frame,
discretized by 30 minutes intervals. Figure 1 visualizes this
calculation. On 24-12-2012, there were 3 hotspots in this area
(Singapore Expo). There were two simultaneous events during
several hours (Megatex, related to IT and electronics; and
Kawin-kawin makan-makan 2012, an event about Malay food
and lifestyle products).

Whenever hotspots are both short in time and have a small
relative impact (e.g. below 5% of the mean, only 30 minutes),
we remove them as they should not represent a problem for
the transportation system.

Our dataset consists of 4 months of smartcard public trans-
port data from Singapores EZLink system. This is a tap-in/tap-
out system for both buses and subway (MRT), which means
we can infer both departure and arrival locations for any trip.
For the purposes of this specific study, we selected trips that
start/end in 3 areas that are sensitive to multiple special events:
Stadium; Expo; and Esplanade. The Stadium area is dominated
by two venues, the Singapore Indoor Stadium and the Kallang
theatre. The Expo consists of a single large venue, but it
commonly hosts multiple unrelated events simultaneously. The
Esplanade has 47 venues and is a lively tourist area near the
business district. It has several shopping malls nearby and sits
in front of the iconic marina bay of Singapore.

In Table I, we show some descriptive statistics from these
areas:

TABLE I. GENERAL STATISTICS: AVERAGES (+-σ) AND TOTALS.

Area Average daily Avg. daily Nr. Avg. hotspot
arrivals events hspts impacts

Stadium 4120.4(+-1015.9) .2(+- .49) 103 382.9(+-680.0)
Expo 14797.5(+-5851.3) 2.5(+- 2.0) 70 2836.7(+-4846.3)
Esp. 4788.7(+-930.5) 17.0(+-6.4) 102 231.6(+-430.8)

IV. RETRIEVING POTENTIAL EXPLANATIONS FROM THE
WEB

For each overcrowding hotspot we want to find a set of
possible explanations from the web. Two general techniques
exist to capture such data automatically: Application Program-
ming Interfaces (APIs) and screen scraping. The choice of
technique depends on the website. Some websites provide an
exhaustive API that we can use to retrieve the data while with
other sites we need to resort to page by page screen scraping.
In either method, access may be restricted or prohibited by
terms of service, therefore we implement individual event data
retrievers for each website only whenever it is so permitted.
We use 5 different websites: eventful.com, upcoming.org,
last.fm, timeoutsingapore.com and Singapore Expos website
singaporeexpo.com.sg.

For potential duplicate entries that share the same venue/area
and day, we use the Jaro-Winkler string distance [22] with a
conservative threshold (e.g. ¿ 85% similarity) to identify and
merge them. Whenever we find different textual descriptions,
we concatenate them.

Each event record contains title, venue, web source, date,
start-time, end-time, latitude, longitude, address, url, descrip-
tion, categories, and event price. Unfortunately, this informa-
tion also contains noise. For example, start and end times are
often absent or “default” (e.g. from 00:00 to 23:59), and the
same sometimes happens with latitude/longitude (e.g. center of
the map). The latter can be corrected by using the venue name,
but for the former, we could not determine any particular times.
As a consequence, each such event is potentially associated to
any impact hotspot of the corresponding day and area.

The description text is run through a latent dirichlet allo-
cation (LDA) process as explained in Section II-C One key
parameter for this process is the number of topics. We tested
a range of values from 15 to 40 and found that the value
of 25 yielded the best model results. We assume this value
for the remainder of the paper. The other parameters, the α
and η priors, were kept as default (1.0/(number of topics)). To
confirm this was a safe choice, we ran several iterations with
different initial α and η priors and they generally converged
to similar outcomes.

For each event, we capture two online popularity indicators:
the number of Facebook likes and the number of hits in Google
of the event title query. We retrieve the Facebook page with
a semi-automatic procedure: we follow the event URL (which
is sometimes a Facebook page) in search of candidate pages.
Whenever there is more than one candidate, we manually select
the correct one. For Google hits, we search with the event title
within and without quotes (yielding two separate features).

In Table II, we summarize general statistics of this dataset.

TABLE II. GENERAL STATISTICS ON DATA FROM THE INTERNET.

Source. Nr. events Nr. Text desc. Retrieval
study areas categories size (+-σ) type

Eventful 1221 28 1112.3 (+-1337.1) API
Expo 58 28 124.9 (+-159.5) scraper

upcoming 181 13 2423.9 (+-5362.7) API
last.fm 11 - 901.2 (+-1037.5) API
timeout 568 49 411.8 (+-866.6) scraper
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We can see that the most comprehensive ones are eventful
and timeout, while the one with more detailed descriptions is
upcoming. Expo homepage and last.fm have much less, yet
very directed information, the former contains all events that
happen in Expo (thus a relevant filter in itself) while the latter
is only focused on music events.

V. BAYESIAN HIERARCHICAL ADDITIVE MODEL

The individual event contributions are not observed (i.e.
they are latent), but we do know they contribute to the global
observed impact. We will also assume that individual impacts
are mutually exclusive (e.g. no one attends two events), in-
dependently distributed and that there will be a parcel that
is unexplainable, i.e. some trips will neither be related to the
extracted events nor to the usual commuting patterns. Thus,
we say that a hotspot impact, h, is given by3 h = a+b, where
a is the non-explainable component and b is the explainable
one. b is a summation of the k events, ek. Formally, we define
a and b in the following way:

a ∼ N (αT xa, σa) (1)

b =

K∑
k=1

ek,with ek ∼ N (βT xek , σk) (2)

where xa, α and σa are respectively the attributes, parameter
vectors and variance for the non-explainable component, a.
The explainable part, b, is determined by a sum of event
contributions, ek, the second level of our linear model. Each
xek corresponds to the individual attributes of event k (e.g.
topic-assignments, categories, Facebook likes, etc.), and β
and σk correspond to the event attributes’ parameters and the
variance associated with that event, respectively. At both levels
we assumed a Gaussian distribution for the non-explainable
and individual event contributions.

The functional form of the components a and ek follows a
linear model, and we will continue to use this form for this
paper. In future work, we intend to extend our work to non-
linear models. Note that the general diagram (of Figure 2) will
still hold while only functional form of individual components
need to be changed.

For the remainder of this section, we apply the Bayesian
framework [23], which relies on three concepts: the likelihood
function, or the probability that a model with a specific set of
parameters predicts the observed data; the prior, that represents
assumptions with respect to model components (e.g. variables,
parameters); and the posterior, that provides the probability
distribution of the model parameters or other variables of
interest after observing the data. A major advantage of this
framework is that it provides a distribution of values as
opposed to a single estimate for each variable of our model.
For example, the estimation of a classical linear regression
model will result in a set of individual parameter values. Each
prediction consists of a single new value, while its Bayesian

3For clarity of notation, we will simplify the full notation, hr,j = ar,j +
br,j as h = a + b, throughout the article, where r would be the area index,
and j the hotspot index.

k events

tod dow
dist cats topics ghits likes

∑
h

𝛂1
𝛂2

β 1
β 2 β 3 β4 β5

β6 β7

a
ek

Observed variable

Non-observed variable

xa
xek

b

Fig. 2. Plate notation for our model. Legend: tod=time of day; dow=day of
week; dist=distance of bus/train stop to venue; cats=categories; topics=lda
topics; ghits=Google hits; likes=Facebook likes; a=non-explainable part;
ek=explaining components. wi and αj= are model parameters.

counter-part results in a probability distribution of values for
the parameters and for the predictions themselves.

While we could simply use the most probable values of each
distribution and reduce it to a non-Bayesian model, we risk
losing critical information. In our example, by simply choosing
the most probable values for the parameters we can obtain
predictions for the totals, as in a classic linear regression.
However, we can go further by obtaining a distribution of
values for totals as opposed to a single point estimate. Since
we have these observed totals, we know how well our model
is tuned (a good model should provide high probability to the
observed value). More importantly, we can use this information
to revisit the parameter distributions again to select values
that are more consistent with the totals. In practice, for each
hotspot the observed totals work together with the parameter
distributions to adapt the model to the most likely values. This
feedback mechanism is possible with the Bayesian framework,
and is embedded in the Infer.NET platform [2].

The advantages and challenges of the Bayesian framework
in comparison with other machine learning approaches have
been discussed extensively elsewhere and are beyond the scope
of this paper. For further information, we recommend the book
of Christropher Bishop [23].

In Figure 2 we graphically present our model. Arrows
indicate conditional dependence (e.g. a depends on xa), and
nodes correspond to variables. Some are observed (e.g. the
sum, h), others are non-observed (e.g. event contributions ek).
Rectangles, or plates, are used to group variables that repeat
together. This representation is known as plate notation [24].
We recall that our main goal is to obtain the values for a
and ek, and that they sum up to h. This relationship can be
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represented through their joint probability distribution4:

p(h, a, e|α,β,X)

= p(h|a, e)p(a|α, xa)
K∏
k=1

p(ek|β, xek) (3)

where we define e = {e1, ..., eK} and X = {xa, xe1 , ..., xeK}
for compactness. It may be helpful to note the relationship
between Figure 2 and the expansion on the right hand side of
the equation, where we can see the conditional dependences.
The likelihood function for the observed sum h is:

p(h|α,β,X) =

∫∫
p(h, a, e|α,β,X) da de

=

∫∫
p(h|a, e)p(a|α, xa)

K∏
k=1

p(ek|β, xek) da de

By making use of the Bayes rule, we can define the joint
posterior distribution of the parameters:

p(α,β|h,X) =
p(h|α,β,X)p(α)p(β)∫∫
p(h|α,β,X)p(α)p(β)dαdβ

(4)

The integral in the denominator is the normalization factor
and p(α) and p(β) are the priors, which will follow a standard
Gaussian distribution (N (0, 1)).

We can finally estimate the posteriors for a and e as:

p(a|h,X) =

∫
p(a|α,X)p(α|h,X)dα (5)

and
p(e|h,X) =

∫
p(e|β,X)p(β|h,X)dβ (6)

where we use equations 1 and 2 for p(a|α,X) and
p(e|β,X), respectively, and p(α|h,X) =

∫
p(α,β|h,X)dβ

and p(β|h,X) =
∫
p(α,β|h,X)dα.

We implemented this model in the Infer.NET framework
[2], which has the necessary approximate Bayesian inference
and Gaussian distribution treatment tools that help make it
computationally efficient. We made our code freely available1.

VI. MODEL VALIDATION

A. Synthesized data experiments
Since we have access to total values but not to the individual

contributions, we need to determine how to validate the model.
First, we need to test the model as if we had observed
individual contributions. We do this by generating simulated
data that complies with our assumptions. Afterwards, in the
next section, we test how well our model fits with respect to
the total (observed) values.

If we cluster the events dataset (from Section IV) using the
events characteristics, we end up with sets of events that are
somehow related in feature space. We assume that each cluster
centroid is manually or randomly assigned its own impact. This
value represents the impact of a hypothetical event that does

4Since e deterministically dictates b, we replaced b by e from the beginning.

not necessarily exist in the database. Next, we assign impacts
to the real events using the distance to their cluster centroid,
c. For each event e, its impact is determined by dist(e, c)−1.

With this procedure, we are not forcing our model structure
into the data (i.e. we are not assigning specific parameter
values to α and β), instead we use similarity between events
to introduce consistency, regardless of area or day.

The individual impacts of simultaneously occurring events
are summed and the resulting value is affected by some
percentage of noise (N (0, 0.1∗b)). The final result is provided
in our model as the observed hotspot impact. The obtained
individual impacts are then compared to the ground truth
(simulated) values according to three error statistics: the mean
absolute error (MAE) provides the absolute magnitude of the
error for each impact; the root relative squared error (RRSE)
shows the quality of the model relative to a naive predictor
based on the average of all observations for that venue; the
correlation coefficient (CC) provides insight for how our model
results are correlated with the ideal results.

Table III shows the results for the areas of Stadium, Expo
and Esplanade.

TABLE III. SYNTHETIC DATA RESULTS

Area MAE RRSE CC
Stadium 410.3 0.21 0.99

Expo 145.0 0.45 0.89
Esplanade 708.1 0.56 0.85

Our model performs differently depending on the area. In
Stadium, to the model replicates well the contributions, which
is not surprising since this area is more homogeneous than the
others (often with only one event in a day). Despite being much
more heterogeneous, the Expo and Esplanade models have
significant correlation coefficient and considerably outperform
the average based predictor.

B. Real data experiments
The observations that we have consist of total hotspot

impacts according to Section III. We now want to test our
model’s capability of recovering such aggregated impacts
without knowing the individual impacts, it will only count
with the known features such as location, day of week, event
type, topics, etc. (vectors xa and xek as described in Figure
2). We do this by first estimating the parameters (α and β)
with a subset of the observations (training set) then generating
the aggregated hotspot impacts with the remaining subset (test
set). We apply the 10-fold cross-validation methodology (see
e.g. [23]). We use the same error metrics as in the previous
section. Table IV shows the summary of the results.

TABLE IV. REAL DATA RESULTS

Area MAE RRSE CC
Singapore Indoor Stadium 271.7 0.55 0.68

Singapore Expo 2002.7 0.69 0.84
Marina Promenade 192.6 0.84 0.41

A hotspot can last for many hours, which may lead to large
arrival totals, particularly in the Expo and Esplanade areas.
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Thus, the relevance of MAE is difficult to assess. However,
the values for RRSE and CC in these areas indicate that the
model is able to provide good performance, while the results
for the Esplanade are less conclusive.

Notice that this task is not what the model was designed
for. The total observed sum is not a deterministic constraint
anymore, now it becomes an extra unknown. Yet, this exercise
serves the validation of our model by allowing us to compare
the sum totals (now estimated) with the observed ground
truth. Notwithstanding this more complicated task, it is able to
approximate the totals well in two of the cases (Stadium and
Expo). If our model assumptions were wrong, we would expect
the predictions to be considerably off, because the magnitude
of the totals varies according to the time duration of the hotspot
and because the individual event proportions could be wrong.
The specific Esplanade case will be analyzed in the following
section.

VII. EXPLAINING HOTSPOTS

The ultimate goal of our algorithm is to break down each
overcrowding hotspot into a set of explanatory components.
In this section, we present the results for our entire dataset.
Previously, we validated individual component predictions
through a synthetic dataset and the aggregated totals with the
observations. Now we do not have observations on individual
events, and even if we had access to individual participation
data (e.g. through ticket sale statistics), it would not necessarily
reveal the correct number of public transport users for that
specific event. Thus, our evaluation is now qualitative.

Figures 3, 4 and 5 illustrate some of the results5. For
each hotspot, we show the global impact (inner circle) and
the breakdown (outer circle). The area size of the inner
circle is relative to the maximum hotspot impact observed
in that location in our dataset. The outer circle contains as
many segments as potential explanatory events plus the non-
explainable component (in red). For example, on 2012-11-10,
Expo had a high impact hotspot (top left diagram in Figure
3) comprised of 8 different events, with roughly the same
size. The non-explainable component was small (red segment).
Alternatively, on 2012-11-19, the same area had 2 events, one
of which explains almost half of a relatively small hotspot as
compared to the previous case.

For Stadium and Expo, we can see that the non-explainable
component is generally smaller than the explainable one and
that the breakdown is not evenly distributed. This happens
because the model maximizes consistency across different
events. For example, two similar events in two occasions will
tend to have similar impacts although the overall totals and
sets of concurrent events may be different.

Cases with multiple hotspots in the same day are worth
attention. In Figure 3, Expo had 3 hotspots on 2012-11-
11, with minor fluctuations in the impacts and individual
breakdowns. There were 10 different medium sized events that
spanned the course of the day. Conversely, in Stadium (Figure
4) the hotspots for 2013-02- 22 have differing behaviors. There
was a fanmeet event with a Korean music and TV celebrity

5Full set in https://dl.dropboxusercontent.com/u/1344277/PereiraEtAl2014.zip.

Total hotspot impact

Non explainable component

Fig. 3. 12 events from Expo area.

that started at 20:00 (we note that the largest impact is between
17:30 and 21:00). While the algorithm is confident in the first
hotspot, it leaves the second hotspot mostly unexplained.

The Esplanade area (Figure 5) shows unclear patterns. A
careful examination of the data shows that sometimes there
are multiple small events announced for that area, from game
watching nights at bars to theatre sessions. Outliers exist (e.g.
concerts) but the algorithm would probably need more outlier
cases to extract them. Nevertheless, it shows capability of
ruling out insignificant events and assigns 0 impact to them.

Let us now analyze a few cases in detail, In Figure 6, we
show the hotspot breakdown of Figure 1 according to our
model. We note that it was Christmas eve and there were two
events: Megatex, an IT and electronics fair; and Kawin-kawin
makan-makan, a Malay products event. Our model proposes
that the majority of the impacts relate to the electronics event,
which is intuitively plausible, particularly on the day before
Christmas and knowing that Singapore has a well-known tech-
savvy culture.
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Total hotspot impact

Non explainable component

Fig. 4. 12 events from Stadium area.

In Figure 7, we show the breakdown of a single hotspot,
from 12:30 to 14:30 (the other 2 were filtered out due to
small impact and duration). This was a tennis event, “Clash
of Continents 2012”, and most people arrived for the last
final matches. The “Dance drama opera warriors” was held
at 20:00 at the Kallang theatre. Intuitively, , we may expect an
international sports event to attract more people than a classical
music event. This is an example where the text description can
play a role. If it were a pop concert (also music) and a local
basketball game (also sports), the results could be drastically
different.

Finally, Figure 8 represents again the most challenging case
for our model, the Esplanade. Kalaa Utsavam is an Indian arts
festival with multiple events that, when aggregated together,
generate the largest impact. Intuitively, this is plausible given
Singapores Indian population and culture. However, the results
are very clear. For example, “Ten years shooting home” is
a photography contest event that may not have elicited as
many people as the “International Conference on business
management and information systems”. Regardless of this
subjective analysis, a longer timeline and an improved data
cleaning should increase the quality of this model.

VIII. DISCUSSION

Our model was designed to explain hotspots that were
already observed, but it can be used as a demand predictor
as could be used in real data experiments. However, in order

Total hotspot impact

Non explainable component

Fig. 5. 12 events from Esplanade area.

Hotspots impact

Event impacts:

Megatex  kawin-kawin 2012 Non-explainable
644   0       0

847   14      0

2159   1326      1032

11:00—12:30

13:00—14:00

15:00—22:00

Time

Fig. 6. Impact breakdown for Expo 2012-12-24 (same as Figure 1).
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Hotspot impact

Event impacts: 12:30h—14:30h

Non-explainable

Clash of Continents 2012

Dance Drama Opera Warriors

476

428

0

Event titleQuantity

Fig. 7. Impact breakdown for Stadium 2012-11-25.

to do so, the model would need to be extended with a few
key features: a time series component to cope with seasonality
effects; a habitual behavior component to account for baseline
demand; and a spatial correlations component to deal with
demand variations in other areas (e.g. competing simultaneous
events). Each of these extensions deserve particular attention
and are more data greedy (e.g. need for larger time win-
dow; information about school holidays, weather forecast) and
changes to the model itself.

The current model is linear at both levels. It is simple to
estimate yet contains all necessary components to prove our
concept. However, the problem at hand lends itself to non-
linearities. For example, online popularity will hardly have a
linear relationship with real demand (e.g. an artist with millions
of likes/Google hits may not attract proportionally more people
than another one with thousands). One of our next steps will
be to extend the model with a Gaussian Processes component
at the second level (individual impacts).

The definition and quantification of hotspots is also a
component of our methodology. With negligible changes other
than data availability, we can apply it to breakdown influence
of events in trips by origin/destination, bus lines, different
mode (e.g. taxi), or even go beyond the transport domain
(e.g. cell-phone usage, food consumption, credit card usage,
water, energy). Generally the model applies to any analysis
of large crowds, aggregated both in time and space, under the
assumption that these are partially caused by events announced
on the web.

Hotspot impact

Event impacts: 9:30h—18:30h

Non-explainable

Kalaa Utsavam 2012

Kuo Pao Kun: A Life of Practice (theatre)

SLO — Mother Daughter Wife and Lover (opera)

SRT Holiday Programme — Fantastic Mr Fox (theatre)

Travel and Make Money Seminar

The Romance of Magno Rubio (theatre)

Ten Years of Shooting Home (photography)

Int. Conf. on Business Management and Information Systems

128

697

247

238

145

128

123

116

115

Event titleQuantity

Fig. 8. Impact breakdown for Esplanade 2012-11-23.

IX. CONCLUSIONS AND FUTURE WORK

We presented a machine learning model that classifies ag-
gregated crowd observations into explanatory components. We
extract candidate explanations from the Internet and assume
that aside from habitual behavior such as commuting, these
crowds are often motivated by public events announced on the
Web. Since we do not have individual event observations, we
treat them as non-observed, or latent, variables.

This model has a two-layer structure, and each one is a sum
of components. At the top level, we consider explainable and
non-explainable components, and at the lower level, we disag-
gregate the explainable component into possible explanations
retrieved from the Internet.

We tested this hierarchical additive model on a public
transport dataset from the city-state of Singapore. We identified
overcrowding hotspots by comparing the observed people
counts (bus or subway arrivals) with a conservative threshold
(90% quantile) at 30 minutes intervals. We quantified the
hotspots by summing consecutive “excessive” counts. For
each hotspot we retrieved the potential explanations from
several event announcement websites and extracted relevant
available information such as event title, category, venue, and
description. We applied Latent Dirichlet Allocation (LDA) [1]
to extract topics from the text descriptions.

All these features were organized together in our Bayesian
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hierarchical additive model, which was implemented on the
Infer.NET framework [2]. Results with synthetic data show
that the model retrieves the correct results with a correlation
coefficient (CC) of at least 85% and a root relative squared
error (RRSE) below 56%. Results with real data show that the
same model recovers the observed total impacts with a CC
between 41.2% and 83.9% and RRSE between 55% and 85%.
A qualitative analysis on a case study in Singapore shows that
the results of the hotspot impacts breakdowns into different
possible explanation are intuitively plausible.
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