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By definition, local image features provide a compact representation of the
image in which most of the image information is preserved. This capability
o↵ered by local features has been overlooked, despite being relevant in many
application scenarios. In this paper, we analyze and discuss the performance
of feature-driven Maximally Stable Extremal Regions (MSER) in terms of the
coverage of informative image parts (completeness). This type of features re-
sults from an MSER extraction on saliency maps in which features related to
objects boundaries or even symmetry axes are highlighted. These maps are
intended to be suitable domains for MSER detection, allowing this detector to
provide a better coverage of informative image parts. Our experimental results,
which were based on a large-scale evaluation, show that feature-driven MSER
have relatively high completeness values and provide more complete sets than
a traditional MSER detection even when sets of similar cardinality are consid-
ered.

c� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Local image feature detection has been a prolific research
topic in the fields of computer vision and image analysis,
mostly due to the fundamental role it plays in a number of
prominent tasks. Local feature detection is often found as the
first step of e↵ective algorithms targeted at solving a diversity
of problems such as wide-baseline stereo matching, camera cal-
ibration, image retrieval, and object recognition. Using a sparse
set of locally salient and potentially overlapping image parts –
the so-called image features – o↵ers two immediate advantages:
(i) the existence of many and possibly redundant patches en-
sures robustness; (ii) by keeping only informative image parts, a
compact image representation is constructed and, subsequently,
the amount of data for further processing is reduced. Depend-
ing on the application domain, there are other properties that
local features should exhibit. For example, for matching tasks,
it is fundamental to have repeatable and accurate features. That
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is, the detector should accurately respond to the “the same”
features on two di↵erent images of the same scene, regardless
of the underlying image transformation. Additionally, features
should be distinctive, i.e., the patterns in the immediate sur-
roundings of the features should show a significant degree of
variation among themselves. Such property allows local fea-
tures to be easily distinguished through the use of local descrip-
tors.

Given the importance of repeatability in a wide range of
application domains, most studies on local feature detection
have been focused on the design of repeatable detectors. Cur-
rently, there are various algorithms (e.g., Harris- ,Hessian-
A�ne (Mikolajczyk and Schmid, 2004) or HarrisZ (Bellavia
et al., 2011)) which are able to detect features with a high re-
peatability rate even in the presence of severe image transfor-
mations, such as viewpoint changes.

The introduction of robust local descriptors (e.g.,
SIFT (Lowe, 2004), SURF (Bay et al., 2008), or
sGLOH (Bellavia et al., 2010)) has contributed to set a
new paradigm in local feature detection. Besides matching
patches on an individual basis, the combination of local
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descriptors and local features has enabled the construction
of robust image representations (Tuytelaars and Mikolajczyk,
2008), which is particularly useful to solve problems in which
a semantical interpretation is involved, such as the tasks of rec-
ognizing objects, classifying scenes, or retrieving semantically
equivalent images. Unlike repeatability, the study of robust
and compact image representations by means of local features
has been overlooked. This could be partially explained by the
success of dense sampling-based representations (Fei-Fei and
Perona, 2005; Bosch et al., 2007; Tuytelaars and Schmid, 2007;
Tola et al., 2008) in object and scene recognition, which is a
simpler strategy that uses local descriptors densely sampled on
a regular grid.

While dense sampling is a well-established and successful
strategy for object and scene recognition, there are other appli-
cation domains, namely emerging ones, that could benefit from
robust and simultaneously compact (sparse) image representa-
tions via local features. The development of inexpensive cam-
eras and storage has boosted the creation of significantly large
image and video databases. In such databases, search and re-
trieval mechanisms only make sense if they are e�ciently per-
formed (Mansour et al., 2014; Araujo et al., 2014). The use
of local-feature based robust image representations might be a
starting point to ensure such e�ciency. This scenario empha-
sizes the importance of analyzing the completeness of features
as well as the complementarity between di↵erent types of fea-
tures. Here, completeness means the amount of image infor-
mation preserved by the local features (Förstner et al., 2009;
Dickscheid et al., 2011), whereas complementarity reflects how
di↵erent two or more types of features are.

In the large-scale completeness and complementarity test
performed by Dickscheid et al. (2011), the Maximally Stable
Extremal Regions (MSER) (Matas et al., 2002) showed remark-
able overall results: they had significantly higher complete-
ness values compared to other types of local features of similar
sparseness. In fact, the MSER completeness values were com-
parable with the ones of Salient Regions (Kadir et al., 2004),
which appear in a substantially higher number.

In this paper, we extend the study on feature-driven Max-
imally Stable Extremal Regions (fMSER) (Martins et al.,
2012a,b), which are a derivation of MSER features and aimed
at overcoming some limitations of a regular MSER detection.
Our main goal is to analyze the completeness and complemen-
tarity of di↵erent fMSER. In other words, we are interested in
assessing the potential suitability of this type of features for
application domains requiring robust image representations via
the use of local features. As a result, we present a large-scale
evaluation test in which fMSER and MSER are studied in terms
of completeness and complementarity.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces definitions and notations that will be followed
throughout this document and presents the motivation behind
the construction of feature-driven MSER. Section 3 covers the
derivation of several instances of fMSER features from stan-
dard MSER. An evaluation of the completeness and comple-
mentarity of feature-driven MSER is presented in Section 4.
Finally, conclusions and perspectives are given in Section 5.

2. Background and Motivation

Boundary-related semi-local structures such as edges and
curvilinear shapes are known for being more robust to inten-
sity, color, and pose variations than typical interest points (e.g.,
corner points). Some local feature detectors explicitly or im-
plicitly take advantage of this robustness by detecting stable
regions from semi-local structures, such as the Edge-based Re-
gions (EBR) detector (Tuytelaars et al., 1999; Tuytelaars and
Gool, 2004), which is based on edge detection, or the Principal
Curvature-Based Regions (PCBR) detector (Deng et al., 2007),
which is based on line detection. These two examples use the
detection of boundary-related structures to generate the final re-
gions. The Maximally Stable Extremal Regions (MSER) detec-
tor (Matas et al., 2002) implicitly takes advantage of the robust-
ness of boundary-related structures without detecting them. In
fact, the MSER detector is in its essence an intensity-based re-
gion detector dealing with connected components and extract-
ing extremal regions that are stable to intensity perturbations.

The use of boundary information in the construction of local
features is not only advantageous in terms of robustness. The
semantic meaningfulness of boundary information is equally
relevant, as it allows local features to capture informative im-
age parts, which contributes to the construction of intuitive ob-
ject representations (Kokkinos and Yuille, 2008).

When the goal is to ensure a robust image representation in
an e�cient manner via the use of local features, the MSER de-
tector appears as a suitable option. Extremal regions can be
enumerated in almost linear time, which makes the MSER de-
tector one of the most e�cient solutions for local feature detec-
tion. Additionally, the results from the large-scale completeness
evaluation performed by Dickscheid et al. (2011) showed that
MSER features provide a relatively robust image representation
despite their sparseness.

Feature-driven MSER (Martins et al., 2012b) were initially
proposed as an attempt to overcome the typical shortcomings
of a standard MSER detection, namely the lack of robustness
to blur, the reduced number of regions, and the biased prefer-
ence towards round shapes (Kimmel et al., 2011). By detecting
more regions on informative parts of the image, feature-driven
MSER represent an improvement over standard MSER in terms
of completeness.

Fig. 1: An example of standard MSER detection. Either the
boundaries of objects or other contours are responsible for de-
lineating MSER features. For a better visualization, the original
MSER were replaced by fitting ellipses.
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2.1. Maximally stable extremal regions

A�ne covariant regions can be derived from extremal re-
gions. In the image domain, an extremal region corresponds
to a connected component whose corresponding pixels have ei-
ther higher or lower intensity than all the pixels on its bound-
ary. Extremal regions hold two important properties: the set
of extremal regions is closed under continuous transformations
of image coordinates as well as monotonic transformations of
image intensities. The Maximally Stable Extremal Regions de-
tector responds to extremal regions that are stable with respect
to intensity perturbations (see Fig. 1). For a better understand-
ing of the MSER detector, we introduce the formal definitions
of connected component and extremal regions (Neumann and
Matas, 2012).

A connected component (or region) Q in D is a subset of
D for which each pair of pixels (p,q) 2 Q2 is connected by a
path in Q, i.e., there is a sequence p, a1, a2, . . . , am,q 2 Q such
that p ⇠ a1, a1 ⇠ a2, . . . , am ⇠ q, where ⇠ is the equivalence
relation defined by (p ⇠ q) () max{|p1 � q1| , |p2 � q2|}  1
(8-neighborhood).

We define the boundary of a region Q as the set @Q = {p 2
D\Q : 9q 2 Q : p ⇠ q}. A connected component Q inD is an
extremal region if 8p 2 Q,q 2 @Q : I(p) < I(q) or I(p) > I(q).

LetQ1, Q2, . . . , Qi�1, Qi, Qi+1 . . . be a sequence of extremal
regions such that Qk ⇢ Qk+1, k = 1, 2, . . . . We say that Qi is
a maximally stable extremal region if and only if the stability
criterion

⇢(k,�) =
|Qk+� \ Qk |
|Qk |

(1)

attains a local minimum at i, where � is a positive integer de-
noting the stability threshold. As the area ratios are preserved
under a�ne transformations, ⇢ is invariant with respect to a�ne
transformations. Consequently, MSER features become covari-
ant with this type of geometric transformations.

2.1.1. Advantages
As already mentioned in the introductory section, MSER

tend to provide a good coverage of informative image parts,
despite their typical sparseness. In addition, MSER can be e�-
ciently detected. Extremal regions can be enumerated in almost
linear time, which is a significant advantage of the MSER de-
tector over other a�ne covariant regions detectors. Note that
other popular algorithms for the detection of a�ne covariant
features are usually more computationally expensive. For ex-
ample, Harris-A�ne and Hessian-A�ne algorithms (Mikola-
jczyk and Schmid, 2004) detect initial points in linear time;
however, this task is complemented with an automatic scale se-
lection and an a�ne shape adaptation algorithm whose com-
plexity is O(p(s + k)), where p is the number of initial points,
s is the number of scales, and k is the number of iterations re-
quired for shape adaptation (Mikolajczyk et al., 2005).

2.1.2. Disadvantages
In the large-scale comparative study on a�ne covariant re-

gions performed by Mikolajczyk et al. (2005), MSER and
Hessian-A�ne features showed higher repeatability scores.

However, the MSER detector showed an inconsistent perfor-
mance: blurred sequences of images as well as textured se-
quences produced less repeatable features. The low repeatabil-
ity scores in the above-mentioned conditions is a well known
downside of MSER detection. The sensitiveness to image blur
can be explained by the undermining e↵ect that blur has on
the stability criterion: by applying di↵erent levels of blur, we
change the area of extremal regions. Additionally, as the blur-
ring e↵ect increases, the number of extremal regions decreases.
As for textured scenes, they are not a suitable domain for MSER
detection since intensity perturbations cause an irregular area
variation of extremal regions in busy parts of the image. The
preference for round shapes is another downside of this detec-
tor (Kimmel et al., 2011).

2.1.3. Derivations and applications

Over the years, di↵erent derivations of the MSER detector
have been proposed. For example, the MSER algorithm has
been modified to deal with volumetric (Donoser and Bischof,
2006a) and color images (Forssén, 2007). Some authors
have proposed e�ciency enhancements (Murphy-Chutorian
and Trivedi, 2006; Donoser and Bischof, 2006b; Nistér and
Stewénius, 2008) or a muti-resolution version (Forssén and
Lowe, 2007).

With regard to applications, MSER features have been used
in several heterogeneous tasks, such as matching (Forssén and
Lowe, 2007), tracking (Donoser and Bischof, 2006b), road traf-
fic sign recognition (Greenhalgh and Mirmehdi, 2012), or text
detection (Chen et al., 2011), among others.

3. Feature-driven Maximally Stable Extremal Regions

The ideal image for the MSER detector is the one that is
well-structured, with uniform regions separated by strong in-
tensity changes (Tuytelaars and Mikolajczyk, 2008). A feature-
driven MSER is a region resulting from an MSER detection
on a saliency map in which boundary-related features are high-
lighted. To perform robust text detection, Chen et al. (2011)
followed a similar strategy, which consisted of performing an
edge-enhanced MSER detection based on the Canny edge de-
tector (Canny, 1986). In our case, a simple and straightforward
highlighting such as a single-scale edge highlighting will not
be advantageous. To illustrate this, we can think of a measure
of the edge response such as the gradient magnitude computed
at a single scale. Figure 2 depicts a feature-driven MSER de-
tection based on a single-scale gradient magnitude under the
presence of blur induced by de-focus. In the example given,
one can observe that the proposed feature highlighting neither
reduces the typical sparseness of standard MSER nor improves
the robustness to blur. An edge response computed at a single
scale is rarely su�cient to capture the presence of all the bound-
aries in a scene. In addition, the induced blur weakens the edge
response.
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Fig. 2: Using the gradient magnitude to detect feature-driven
MSER on images 1 and 3 of Bikes sequence (Mikolajczyk et al.,
2005). Top row: feature-driven MSER; bottom row: standard
MSER.

Another alternative is to consider feature highlighting via
anisotropic di↵usion (Perona and Malik, 1990). With an
anisotropic di↵usion, there is the clear advantage of preserving
details and simultaneously blurring noise, which appears to be
ideal for constructing a suitable domain for MSER detection.
Nonetheless, anisotropic di↵usion has a relatively high com-
putational complexity. One of our aims is that feature-driven
MSER detection preserves the major advantages of a standard
MSER detection, which means that the computational complex-
ity of the whole method should be kept low. Such requirement
hinders the use of non-linear scale spaces, even if we consider
more e�cient solutions to anisotropic di↵usion (e.g., Grewenig
et al., 2010).

Given the constraints in terms of computational complex-
ity, we opt for a linear (Gaussian) scale-space representation
in which we highlight boundary-related features and simulta-
neously delineate smooth transitions at the boundaries. On one
hand, the feature highlighting allows us to have well-defined
boundaries, which tends to increase the number of stable ex-
tremal regions with respect to intensity perturbations. On the
other hand, the existing smoothness at the boundaries attenu-
ates the undermining e↵ect that blurring has over the MSER
detector.

The saliency maps in which the boundary-related features are
highlighted are given by the following equation:

F(x) =
NX

i=1

�k
i S (x,�i), (2)

where N denotes the number of scales, �i is the i-th scale, with
�i = ⇠�i�1

0 (⇠ 2 R+, �0 > 1), i.e, scale varies in a geomet-
rical sequence, S (x,�i) measures the response of a boundary-
related feature at pixel x and scale �i and k is the parameter
required to construct normalized scale-space derivatives (Lin-
deberg, 1994).

The feature-driven MSER detector can be seen as a hybrid
between the MSER algorithm and the PCBR detector, since
we make use of structural information (shapes) to define suit-
able domains for MSER detection. The idea is to combine

the advantages of PCBR detection (explicit use of structural
information) with the advantages of MSER detection (com-
putational e�ciency, repeatability, and accuracy) and simulta-
neously overcome some of the major limitations of the latter,
namely the lack of robustness to blurring and the biased pref-
erence for round shapes. We present three di↵erent ways of
highlighting boundary-related features, namely edges and lines.

3.1. Edge highlighting

To highlight edges, we explore two di↵erential-based mea-
sures. For our purpose, there is not a clear advantage of one
measure over the other. In fact, even though they highlight the
same structure, they can be combined in the construction of sets
of complementary fMSER.

3.1.1. Edge highlighting (version 1)
Let L(:,�) be a smoothed version of an image I by means

of a Gaussian kernel G at the scale �, i.e., L(x,�) = G(�) ⇤
I(x). The edge strength can be found by measuring the gradient
magnitude,

S g(x,�) = |rL(x,�)| def
=
q

L2
x(x,�) + L2

y(x,�), (3)

where Lx and Ly denote the first-order partial derivatives of L in
the x and y directions, respectively.

3.1.2. Edge highlighting (version 2)
The second measure is based on the eigenvalues of the struc-

ture tensor matrix. Near edges, at least one of the eigenvalues
is large, while in flat areas, both values tend to zero. This sug-
gests the use of the maximum eigenvalue – �2 – as a measure
of edge strength. However, the range of values found for the
maximum eigenvalue is considerably wide. To obtain a more
balanced output, the natural logarithm is used (Kovacs and Szi-
ranyi, 2011):

S µ(x,�) = max{0, log(�2(µ(x,�)))}, (4)

where µ(x,�) is the structure tensor matrix computed at pixel x

and scale �:

µ(x,�) def
= G(�) ⇤

"
L2

x(x, s�) LxLy(x, s�)
LxLy(x, s�) L2

y(x, s�)

#
. (5)

In (5), the parameter s is a real value in the range ]0, 1] required
to keep the derivation scale lower than the integration scale.

3.2. Line highlighting

To highlight curvilinear structures, the principal curva-
ture (Deng et al., 2007) is used. The measure for line high-
lighting is derived from the Hessian matrix:

H(x,�) def
=

"
Lxx(x,�) Lxy(x,�)
Lxy(x,�) Lyy(x,�)

#
, (6)

where Lxx, Lxy and Lyy are the second order partial derivatives
of L, a Gaussian smoothed version of image I. The principal
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Fig. 3: Proposed feature highlighting. Darker structures in the saliency maps are the most salient ones. The parameters ⇠ and �0
were set to 1 and 4

p
2, respectively. For edge highlighting based on the eigenvalues of the structure tensor matrix, the factor s (Eq. (5)

) was set to 0.5.

curvature, which highlights curvilinear structures is either given
by

Pmax(x,�) = max(0, �2(H(x,�))) (7)

or
Pmin(x,�) = min(0, �1(H(x,�))), (8)

where �1 and �2 denote the minimum and maximum eigenval-
ues, respectively. Note that (7) and (8) respond to complemen-
tary structures: the former responds to dark lines on a brighter
background, whereas the latter detects brighter lines on a dark
background. Our line highlighting measure uses the principal
curvature measure to detect darker lines on a bright background.
However, the measures defined in (7) and (8) can be used inter-
changeably:

SH (x,�) = max{�2(H(x,�)), 0}. (9)

3.3. Saliency maps

In Fig. 3, we depict the proposed feature highlighting us-
ing several scales. These three instances of the proposed fea-
ture highlighting provide well-defined boundaries accompanied
with smooth transitions. It is readily seen that any of the three
saliency maps preserves the structural information of the image
and adds some smoothness to the scene (the number of scales
and the number of scales play an important role in the definition
of blur). While the two types of edge highlighting mainly cap-
ture and accentuate objects boundaries, the proposed line high-
lighting provides a clearer structural sketch of the scene (Deng
et al., 2007). At first glance, the blur induced by the feature
highlight is an undesirable property, as it tends to reduce the
localization accuracy of the objects. However, this type of blur
becomes advantageous in recognition tasks, namely object class
recognition in which intra-class variations are desirable.

4. Comparative Evaluation

As already mentioned, we are primarily interested in ana-
lyzing the completeness and complementarity of fMSER fea-
tures. In our previous works, we showed that these regions
appear in higher number than standard MSER and since they
tend to cover salient image elements, fMSER features will be
more complete. However, our previous studies have never been
focused on analyzing the completeness of fMSER and MSER
features when there is not a discrepancy in the number of de-
tected regions. Here, we will perform a large-scale complete-
ness and complementarity evaluation using a similar number of
regions.

We followed the evaluation protocol proposed by Dickscheid
et al. (2011) to measure the completeness as well as the com-
plementary of feature-driven MSER. This comparative study
is complemented with the analysis of the coverage of globally
salient elements.

The dataset used in the evaluation (Fig. 4) comprised four
categories of natural scenes (Fei-Fei and Perona, 2005; Lazeb-
nik et al., 2006), the Brodatz texture collection (Brodatz, 1966),
and a set of aerial images. This set of image categories corre-
sponds to the dataset used by Dickscheid et al. (2011), with
the exception of a collection of cartoon images, which was not
made publicly available.

To measure completeness, Dickscheid et al. (2011) compute
an entropy density pH(x) based on local image statistics and a
feature coding density pc(x) derived from a given set of features
(see Appendix A). The (in)completeness measure corresponds
to the Hellinger distance between the two densities:

dH(pH , pc) =

s
1
2

X

x2D
(
p

pH(x) �
p

pc(x))2, (10)

whereD is the image domain. When pH and pc are very close,
the distance dH will be small, which means the set of features
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Brodatz Aerial Forest Mountain Tall building Kitchen
(30 images) (28 images) (328 images) (374 images) (356 images) (210 images)

Fig. 4: Example images from the categories in the dataset for completeness and complementarity evaluation.

with a coding density pc e↵ectively covers the image content
(the set of features has a high completeness). Such metric pe-
nalizes the use of large scales (a straightforward solution to
achieve a full coverage) as well as the presence of features in
pure homogeneous regions. On the other hand, it will reward
the “fine capturing” of local structures or superimposed features
appearing at di↵erent scales.

We built the saliency maps with ⇠ = 1, �0 =
4
p

2, and N = 12.
For the edge highlighting based on the eigenvalues of the struc-
ture tensor matrix, the size of the local (derivation) scale was
set to half of the size of the integration scale (s=0.5 in Eq. (5)).
The stability threshold � was set to 7 for all the instances of the
fMSER, whereas for the MSER detector, this parameter was
set to 5. The minimum and maximum region areas were set
to 30 and 1% of the image area, respectively. We only consid-
ered MSER and fMSER features whose ⇢ was lower than 1.0.
These parameter settings allowed us to have a similar number
of regions among the di↵erent type of features. Note that the
saliency maps produced by the proposed feature highlighting
allow us to capture more extremal regions than the luminance
channel of an image, as shown in Fig. 5.

The implementation of the MSER detector corresponds to the
code provided by Vedaldi and Fulkerson (2008). For fMSER
features, this code was modified to deal with images whose in-
tensity values vary in a range di↵erent from {0,. . . ,255}, since
the saliency maps intensity values might be greater than 255.
To compute the coding and entropy densities, we used the code
provided by Dickscheid et al. (2011). The number of scales
used to compute the entropy density was 6 (default value).
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Fig. 5: Number of extremal regions provided by the saliency
maps (edge-, edge2-, line-MSER) and the luminance channel
(MSER) for the di↵erent categories of the dataset. Error bars
indicate the standard deviation.

Figure 6 summarizes the results of our completeness eval-
uation. For reference, we have also included Salient Regions
results in these plots. The main conclusion to be drawn from
the plots is is that any instance of fMSER detection provides
us a more complete set of features than the one comprised of
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Fig. 6: Completeness results. Top row: Average dissimilarity
measure dH(pH , pc) for the di↵erent sets of features extracted
over the categories of the dataset. Bottom row: Average number
of extracted features per image category. Error bars indicate the
standard deviation.

standard MSER, even when the number of regions is similar.
In all categories, with the exception of Brodatz, we observe
that MSER features are the least complete regions. Among
feature-driven regions, it is not clear the advantage of one in-
stance over the other ones. The three instances provide simi-
lar completeness values, although they are slightly higher than
the ones obtained with the Salient regions detector, which pro-
vides a considerably higher number of features. edge2-MSER
results are particularly worth of note: they appear in lower num-
ber in the Mountain category; however, they are the most com-
plete instance of fMSER. The results for Brodatz category are
explained by the fact that it only contains highly textured im-
ages, which enables the creation of very small and duplicated
extremal regions in the saliency maps. In either cases, the re-
gions were discarded.

To assess complementarity, we constructed all possible com-
binations of pairs of MSER and fMSER features for the first 20
images of each category. Figure 7 depicts the completeness val-
ues for the di↵erent combined sets of features. Overall, these
combinations are advantageous. An important observation to be
drawn from the plot is that there is some redundancy between
MSER and line-MSER features. Despite the latter showing a
good coverage of informative parts, as seen in Fig. 6, the com-
bination of both type of features is the least advantageous. This
result is partially explained by the fact that line-MSER features
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are detected on a map that provides a clearer structural sketch
of the image; therefore, the extracted regions will not di↵er
too much from the ones extracted from the luminance channel.
On the other hand, the combination edge2-MSER+line-MSER
tends to yield the most complete results.
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Fig. 7: Complementarity results. Average dissimilarity measure
dH(pH , pc) for the di↵erent sets of combined features extracted
over the categories of the dataset.

We complemented our evaluation with an analysis of the
coverage of globally salient image parts in the first 20 images
of each category. By computing the Hellinger distance be-
tween the feature coding density and a density derived from
the map given by the Boolean Map-based Saliency (BMS)
model (Zhang and Sclaro↵, 2013), we were able to measure the
coverage of globally salient parts. Figure 8 summarizes these
results.
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Fig. 8: Average dissimilarity measure dH(BMS , pc) for the
di↵erent sets of features extracted over the categories of the
dataset.

For this type of coverage, fMSER features outperform MSER
ones, being the exception the case of highly textured images
(Brodatz). Among fMSER features, edge-MSER and line-
MSER usually have the best performance. Conversely, the re-
sults show that the coverage of globally salient elements pro-
vided by edge2-MSER is slightly worse. Such fact is explained
by the existence of noisier and less accurate edge maps, which
can lead to extremal regions anchored at homogeneous regions.

5. Conclusions and Perspectives

Feature-driven Maximally Stable Regions were initially pro-
posed as an attempt to overcome some of the typical shortcom-
ings of a standard MSER detection, namely the lack of robust-
ness to blur and the reduced number of regions. This is achieved
by using a particular type of saliency maps as the input image
for MSER detection. In these maps, boundary-related features

are simultaneously highlighted and delineated under smooth
transitions. As for the number of regions, the novel features
are in a substantially higher number than standard MSER ones.
The study presented in this paper showed that the feature-driven
regions do not only provide a better coverage of the informative
content when the number of feature-driven regions is higher but
also when a similar number of regions is used.

Since these regions can be obtained from di↵erent boundary-
related features, it is fundamental to measure the level of com-
plementarity among the various instances. Although they tend
to provide similar regions, there is still some complementarity
that can be exploited, as shown by our study.

As for the applicability of feature-driven MSER, we believe
that image compression is a particularly interesting domain.
This is not only due to the fact that they capture the most in-
formative parts (robust representation) but also to the fact that
an e�cient algorithm is responsible for their detection. Cloud-
based compression and image set compression are two current
and relevant problems related to image compression where the
use of fMSER features could be exploited. In both scenarios,
compact robust image representations are usually obtained via
the use of local descriptors. By computing such descriptors over
fMSER features, one can e�ciently obtain robust representa-
tions with a reduced number of regions per image.

Appendix A. Feature coding and entropy densities

The entropy density pH is computed from local image
patches with di↵erent sizes (scales). It is assumed that these
patches represent a larger image, i.e., an N⇥N patch is part of a
periodic image with period N in both directions. In addition, an
image is considered to be a noisy version of a Gaussian process.
From these assumptions, the entropy of an image patch g can
be derived as follows:

H(g) =
1
2

log2(2⇡ exp(
det⌃gg

�2
n

)), (A.1)

where ⌃gg represents the covariance matrix of the intensity val-
ues in g and �2

n is the noise variance. The determinant of ⌃gg

is derived from the power spectrum P(u) = |DCT (g(x))|2, i.e.,
det⌃gg =

Q
u\{0} P(u), where 0 is the DC coe�cient. By as-

suming that the powerspectrum is additively composed of the
powerspectra of the signal and the noise, the following estimate
of the power spectrum can be used:

P̂(u) = max(P(u) � �2
n, 0), (A.2)

and (A.1) becomes

H(x) =
1

2N2

X

u\{0}
max(log2(2⇡ exp(

P̂(u)
�2

n
)), 0). (A.3)

The entropy at a pixel x will be obtained from the patches en-
tropy. If H(x,N) is the entropy of a pixel x based on a patch of
size N, the entropy at pixel x is

H(x) =
SX

s=1

H(x, 1 + 2s), (A.4)
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where s 2 {1, . . . , S } denotes the scale. Finally, the density pH

is computed through normalization:

pH(x) =
H(x)

P
y2D H(y)

. (A.5)

The feature coding density pc is computed for a given set of
features F . It is assumed that a feature f 2 F can be charac-
terized by its location m f and its scale � f (or ⌃ f in the case
of a�ne covariant features). A Gaussian distribution spreading
over the image domain is used to represent a region covered by
a local feature. It is also assumed that c( f ) bits are required to
represent a feature f . Such assumptions lead to the coding map

c(x) =
X

f2F
c( f )G(x,m f ,⌃ f ), (A.6)

where G denotes an anisotropic Gaussian kernel. The final cod-
ing density pC is the result of a normalization:

pc(x) =
c(x)

P
y2D c(y)

, (A.7)

which allows us to compare both densities.
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