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Abstract

Local image features are often used to efficiently represent image content. The limited number of types of

features that a local feature extractor responds to might be insufficient to provide a robust image repre-

sentation. To overcome this limitation, we propose a context-aware feature extraction formulated under an

information theoretic framework. The algorithm does not respond to a specific type of features; the idea is

to retrieve complementary features which are relevant within the image context. We empirically validate the

method by investigating the repeatability, the completeness, and the complementarity of context-aware fea-

tures on standard benchmarks. In a comparison with strictly local features, we show that our context-aware

features produce more robust image representations. Furthermore, we study the complementarity between

strictly local features and context-aware ones to produce an even more robust representation.

Keywords: Local features, Keypoint extraction, Image content descriptors, Image representation, Visual

saliency, Information theory.

1. Introduction

Local feature detection (or extraction, if we want

to use a more semantically correct term [1]) is a

central and extremely active research topic in the

fields of computer vision and image analysis. Reli-

able solutions to prominent problems such as wide-

baseline stereo matching, content-based image re-

trieval, object (class) recognition, and symmetry

detection, often make use of local image features

(e.g., [2, 3, 4, 5, 6, 7]).
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carvalho@dei.uc.pt (P. Carvalho), c.gatta@cvc.uab.es

(C. Gatta)

While it is widely accepted that a good local

feature extractor should retrieve distinctive, accu-

rate, and repeatable features against a wide vari-

ety of photometric and geometric transformations,

it is equally valid to claim that these requirements

are not always the most important. In fact, not

all tasks require the same properties from a local

feature extractor. We can distinguish three broad

categories of applications according to the required

properties [1]. The first category includes appli-

cations in which the semantic meaning of a par-

ticular type of features is exploited. For instance,

edge or even ridge detection can be used to identify

blood vessels in medical images and watercourses
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or roads in aerial images. Another example in

this category is the use of blob extraction to iden-

tify blob-like organisms in microscopies. A second

category includes tasks such as matching, track-

ing, and registration, which mainly require distinc-

tive, repeatable, and accurate features. Finally, a

third category comprises applications such as object

(class) recognition, image retrieval, scene classifica-

tion, and image compression. For this category, it is

crucial that features preserve the most informative

image content (robust image representation), while

repeatability and accuracy are requirements of less

importance.

We propose a local feature extractor aimed at

providing a robust image representation. Our algo-

rithm, named Context-Aware Keypoint Extractor

(CAKE), represents a new paradigm in local fea-

ture extraction: no a priori assumption is made on

the type of structure to be extracted. It retrieves

locations (keypoints) which are representatives of

salient regions within the image context. Two ma-

jor advantages can be foreseen in the use of such

features: the most informative image content at a

global level will be preserved by context-aware fea-

tures and an even more complete coverage of the

content can be achieved through the combination of

context-aware features and strictly local ones with-

out inducing a noticeable level of redundancy.

This paper extends our previously published

work in [8]. The extended version contains a more

detailed description of the method as well as a

more comprehensive evaluation. We have added the

salient region detector [9] to the comparative study

and the complementarity evaluation has been per-

formed on a large data set. Furthermore, we have

included a qualitative evaluation of our context-

aware features.

2. Related work

The information provided by the first and second

order derivatives has been the basis of diverse al-

gorithms. Local signal changes can be summarized

by structures such as the structure tensor matrix or

the Hessian matrix. Algorithms based on the for-

mer were initially suggested in [10] and [11]. The

trace and the determinant of the structure tensor

matrix are usually taken to define a saliency mea-

sure [12, 13, 14, 15].

The seminal studies on linear scale-space repre-

sentation [16, 17, 18] as well as the derived affine

scale-space representation theory [19, 20] have been

a motivation to define scale and affine covariant fea-

ture detectors under differential measures, such as

the Difference of Gaussian (DoG) extractor [21] or

the Harris-Laplace [22], which is a scale (and rota-

tion) covariant extractor that results from the com-

bination of the Harris-Stephens scheme [11] with

a Gaussian scale-space representation. Concisely,

the method performs a multi-scale Harris-Stephens

keypoint extraction followed by an automatic scale

selection [23] defined by a normalized Laplacian

operator. The authors also propose the Hessian-

Laplace extractor, which is similar to the former,

with the exception of using the determinant of the

Hessian matrix to extract keypoints at multiple

scales. The Harris-Affine scheme [24], an exten-

sion of the Harris-Laplace, relies on the combina-

tion of the Harris-Stephens operator with an affine

shape adaptation stage. Similarly, the Hessian-
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Affine algorithm [24] follows the affine shape adap-

tation; however, the initial estimate is taken from

the determinant of the Hessian matrix. Another

differential-based method is the Scale Invariant Fea-

ture Operator (SFOP) [25], which was designed to

respond to corners, junctions, and circular features.

The explicitly interpretable and complementary ex-

traction results from a unified framework that ex-

tends the gradient-based extraction previously dis-

cussed in [26] and [27] to a scale-space representa-

tion.

The extraction of KAZE features [28] is a

multiscale-based approach, which makes use of non-

linear scale-spaces. The idea is to make the inher-

ent blurring of scale-space representations locally

adaptive to reduce noise and preserve details. The

scale-space is built using Additive Operator Split-

ting techniques and variable conductance diffusion.

The algorithms proposed by Gilles [29] and Kadir

and Brady [9] are two well-known methods relying

on information theory. Gilles defines keypoints as

image locations at which the entropy of local inten-

sity values attains a maximum. Motivated by the

work of Gilles, Kadir and Brady introduced a scale

covariant salient region extractor. This scheme es-

timates the entropy of the intensity values distrib-

ution inside a region over a certain range of scales.

Salient regions in the scale-space are taken from

scales at which the entropy is peaked. There is also

an affine covariant version of this method [30].

Maximally Stable Extremal Regions (MSER)[2]

are a type of affine covariant features that corre-

spond to connected components defined under cer-

tain thresholds. These components are said to be

extremal because the pixels in the connected com-

ponents have either higher or lower values than the

pixels on their outer boundaries. An extremal re-

gion is said to be maximally stable if the relative

area change, as a result of modifying the threshold,

is a local minimum. The MSER algorithm has been

extended to volumetric [31] and color images [32]

as well as been subject to efficiency enhancements

[33, 34, 35] and a multiresolution version [36].

3. Analysis and Motivation

Local feature extractors tend to rely on strong

assumptions on the image content. For instance,

Harris-Stephens and Laplacian-based detectors as-

sume, respectively, the presence of corners and

blobs. The MSER algorithm assumes the existence

of image regions characterized by stable isophotes

with respect to intensity perturbations. All of the

above-mentioned structures are expected to be re-

lated to semantically meaningful parts of an image,

such as the boundaries or the vertices of objects, or

even the objects themselves. However, we cannot

ensure that the detection of a particular feature will

cover the most informative parts of the image. Fig-

ure 1 depicts two simple yet illustrative examples

of how standard methods such as the Shi-Tomasi

algorithm [13] can fail in the attempt of providing

a robust image representation. In the first exam-

ple (Fig. 1 (a)–(d)), the closed contour, which is

a relevant object within the image context, is ne-

glected by the strictly local extractor. On the other

hand, the context-aware extraction retrieves a key-

point inside the closed contour as one of the most

salient locations. The second example (Fig. 1 (e)

and (f)) depicts the “Needle in a Haystack” im-
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age and the overlaid maps (in red) representing the

Shi-Tomasi saliency measure and our context-aware

saliency measure. It is readily seen that our method

provides a better coverage of the most relevant ob-

ject.

(a) (b)

(c) (d)

(e) (f)

Figure 1: Context-aware keypoint extractions vs. strictly

local keypoint extraction: 1. Keypoints on a psychologi-

cal pattern: (a) pattern (input image); (b) 60 most salient

Shi-Tomasi keypoints; (c) 5 most salient context-aware key-

points; (d) 60 most salient context-aware keypoints. 2.

Saliency measures as overlaid maps on the “Needle in a

Haystack” image: (e) Shi-Tomasi; (f) Context-aware. Best

viewed in color.

Context-aware features can show a high degree

of complementarity among themselves. This is par-

ticularly noticeable in images composed of differ-

ent patterns and structures. The image in the top

row of Fig. 2 depicts our context-aware keypoint

extraction on a well-structured scene by retrieving

the 100 most salient locations. This relatively small

number of features is sufficient to provide a reason-

able coverage of the image content, which includes

diverse structures. However, in the case of scenes

characterized by repetitive patterns, context-aware

extractors will not provide the desired coverage.

Nevertheless, the extracted set of features can be

complemented with a counterpart that retrieves the

repetitive elements in the image. The image in the

bottom row of Fig. 2 depicts a combined feature

extraction on a textured image in which context-

aware features are complemented with SFOP fea-

tures [25] to achieve a better coverage. In the latter

example, one should note the high complementar-

ity between the two types of features as well as the

good coverage that the combined set provides.

4. Context-Aware Keypoints

Our context-aware feature extraction adopts an

information theoretic framework in which the key

idea is to use information content to quantify (and

express) feature saliency. In our case, a context-

aware keypoint will correspond to a particular point

within a structure with a low probability of occur-

rence.

Shannon’s measure of information [37] forms the

basis for our saliency measure. If we consider a

symbol s, its information is given by

I(s) = − log(P (s)), (1)

where P (·) denotes the probability of a symbol. For

our purposes, using solely the content of a pixel
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Figure 2: Proposed context-aware extraction. Top row:

context-aware keypoints on a well-structured scene (100

most salient locations); bottom row: a combination of

context-aware keypoints (green squares) with SFOP key-

points [25] (red squares) on a highly textured image. Best

viewed in color.

x as a symbol is not applicable, whereas the con-

tent of a region around x will be more appropri-

ate. Therefore, we will consider any local descrip-

tion w(x) ∈ Rn that represents the neighborhood

of x as a viable codeword. This codeword will be

our symbol s, which allows us to rewrite Eq. (1):

I(x) = − log(P (w(x))). (2)

However, in Shannon’s perspective, a symbol

should be a case of a discrete set of possibilities,

whereas we have w(x) ∈ Rn. As a result, to es-

timate the probability of a certain symbol, a fre-

quentists approach might be used. In this case, one

should be able to quantize codewords into symbols.

It is clear that the frequentists approach becomes

inappropriate and the quantization becomes a dan-

gerous process when applied to a codeword, since

the quantization errors can induce strong artifacts

in the I(x) map, generating spurious local maxima.

We abandon the frequentist approach in favor of

a Parzen Density Estimation [38], also known as

Kernel Density Estimation (KDE). The Parzen es-

timation is suitable for our method as it is non-

parametric, which will allow us to estimate any

probability density function (PDF), as long as there

is a reasonable number of samples. Using the KDE,

we estimate the probability of a codeword w(y) as

follows:

P̂ (w(y)) =
1

Nh

∑
x∈Φ

K

(
d(w(y),w(x))

h

)
, (3)

where K denotes a kernel, d is a distance measure,

h is a smoothing parameter called bandwidth and

N = |Φ| is the cardinality of the image domain Φ.

The key idea behind the KDE method is to smooth

out the contribution of each sample x by spread-

ing it to a certain area in Rn and with a certain

shape as defined by the kernel K. There is a num-

ber of choices for the kernel. Nonetheless, the most

commonly used and the most suitable is a multi-

dimensional Gaussian function with zero mean and

standard deviation σk. Using a Gaussian kernel,

(3) can be rewritten as

P̃ (w(y)) =
1

NΓ

∑
x∈Φ

e
(
−d2(w(y),w(x))

2σ2
k

)
, (4)

where h has been replaced by the standard devia-

tion σk and Γ is a proper constant such that the esti-

mated probabilities are taken from an actual PDF.
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Summarizing, our saliency measure will be given

by

m(y) = − log

(
1

NΓ

∑
x∈Φ

e
(
−d2(w(y), w(x))

2σ2
k

))
,

(5)

and context-aware keypoints will correspond to lo-

cal maxima of m that are above a given threshold

T.

For a complete description of the proposed

method, we have to define a distance measure d

and set a proper value to σk. Due to relevance of

these two parameters in the process of estimating

the PDF, they will be discussed in two separate sub-

sections (4.1 and 4.2). Nonetheless, the KDE has

an inherent and significant drawback: the computa-

tional cost. To estimate the probability of a pixel,

we have to compute (4), which means computing

N distances between codewords, giving a computa-

tional cost of O(N2) for the whole image. The com-

putational complexity of the KDE is prohibitive for

images, where N is often of the order of millions.

Different methods have been proposed to reduce the

computation of a KDE-based PDF. Many methods

rely on the hypothesis that the sample distribution

forms separated clusters, so that it is feasible to

approximate the probability in a certain location of

the multivariate space using a reduced set of sam-

ples. Other methods have been devised for the pur-

pose of a Parzen classifier, so that the cardinality

of the training sample is reduced, without chang-

ing significantly the performance of the reduced

Parzen classifier. In our case, none of the two afore-

mentioned strategies can be straightforwardly used

since (i) we cannot assume that the multivariate

distribution forms different clusters, and (ii) we do

not have ground truth labels to use the same strat-

egy as the one defined for Parzen classifiers. We

propose an efficient method that reduces the num-

ber of samples by approximating the full O(N2)

PDF in (4) with a O(N log N) algorithm. A de-

tailed explanation of the speed-up strategy can be

found in Appendix B.

4.1. The distance d

To completely define a KDE-based approach, we

have to define (i) the distance d, (ii) the kernel K,

and (iii) the bandwidth h. These three parame-

ters are interrelated since they will form the final

“shape” of the kernel. As for the distance function

d, we consider the Mahalanobis distance:

d(w(x), w(y)) =
√

(w(x) − w(y))T Σ−1
W (w(x) − w(y)),

(6)

where W =
⋃

x∈Φ w(x) and ΣW is the covariance

matrix of W . Using this distance, any affine covari-

ant codeword will provide an affine invariant be-

havior to the extractor. In other words, any affine

transformation will preserve the order of P . This

result is summarized in the following theorem:

Theorem 1. Let w(1) and w(2) be codewords such
that w(2)(x) = T (w(1)(x))), where T is an affine
transformation. Let P (1) and P (2) be the probability
maps of w(1) and w(2), i.e., P (i)(·) = P (w(i)(·)),
i = 1, 2. In this case,

P (2)(xl) ≤ P (2)(xm) ⇐⇒ P (1)(xl) ≤ P (1)(xm),∀xl,xm ∈ Φ.

Proof: (See Appendix A).

4.2. The smoothing parameter σk

A Parzen estimation can be seen as an interpo-

lation method, which provides an estimate of the

continuous implicit PDF. It has been shown that,
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for N → ∞, the KDE converges to the actual PDF

[38]. However, when N is finite, the bandwidth h

plays an important role in the approximation. In

the case of a Gaussian kernel, σk is the parameter

that accounts for the smoothing strength.

The free parameter σk can potentially vanish the

ability of the proposed method to adapt to the

image context. When σk is too large, an over-

smoothing of the estimated PDF occurs, cancel-

ing the inherent PDF structure due to the image

content. If σk is too small, the interpolated val-

ues between different samples could be low, such

that there is no interpolation anymore. We pro-

pose a method, in the case of univariate distribu-

tion, to determine an optimal sigma σ�
k, aiming at

sufficient blurring while having the highest sharpen

PDF between samples. We use univariate distribu-

tions since we approximate the KDE computations

of a D-dimensional multivariate PDF by estimat-

ing D separate univariate PDFs (see Appendix B).

From N samples w, we define the optimal σk for

the given distribution as

σ
�
k = arg max

σ>0

∫ wi+1

wi

1√
2πσ

d

⎛
⎜⎜⎝e

−(w−wi)
2

2σ2 +e

−(w−wi+1)2

2σ2

⎞
⎟⎟⎠

d w
d w,

(7)

where wi and wi+1 is the farthest pair of consecutive

samples in the distribution. It can be shown that,

by solving (7), we have σ�
k = |wi − wi+1|. It can be

also demonstrated that for σ < |wi − wi+1| /2, the

estimated PDF between the two samples is concave,

which provides insufficient smoothing. Using σ�
k

as defined above, we assure that we have sufficient

blurring between the two farthest samples, while, at

the same time, providing the highest sharpen PDF.

5. CAKE Instances

Different CAKE instances are constructed by

considering different codewords. As observed by

Gilles [29] and Kadir and Brady [9], the notion of

saliency is related to rarity. What is salient is rare.

However, the reciprocal is not necessarily valid. A

highly discriminating codeword will contribute in

turning every location into a rare structure; noth-

ing will be seen as salient. On the other hand,

with a less discriminating codeword, rarity will be

harder to find. We will present a differential-based

instance, which is provided by a sufficiently discrim-

inating codeword. The strong link between image

derivatives and the geometry of local structures is

the main motivation to present an instance based

on local differential information.

We propose the use of the Hessian matrix as a

codeword to describe the local shape characteris-

tics. We will consider components computed at

multiple scales, which will allow us to provide an

instance with a quasi-covariant response to scale

changes. The codeword for the multiscale Hessian-

based instance is

w(x) =
[

t
2
1Lxx(x;t1) t

2
1Lxy(x;t1) t

2
1Lyy(x;t1)

t
2
2Lxx(x;t2) t

2
2Lxy(x, t2) t

2
2Lyy(x, t2)

· · ·

t
2
MLxx(x;tM) t

2
MLxy(x;tM) t

2
MLyy(x;tM)

]T

,

(8)

where Lxx, Lxy and Lyy are the second order partial

derivatives of L, a Gaussian smoothed version of

the image, and ti, with i = 1, . . . , M , represents

the scale.
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6. Experimental Results and Discussion

Our experimental validation relies on a compar-

ative study that includes both context-aware fea-

tures and strictly local ones. We recall that our

context-aware features were designed to provide a

robust image representation, with or without the

contribution of strictly local features.

We compare the performance of our Hessian-

based instance, here coined as [HES]-CAKE, with

some of the most prominent scale covariant algo-

rithms: Hessian-Laplace (HESLAP) [22], Harris-

Laplace (HARLAP) [22], SFOP [25], and the scale

covariant version of the Salient Region detector

(Salient) [9]. The MSER algorithm [2], which has

an affine covariant response, is also included in the

evaluation. All the implementations correspond to

the ones provided and maintained by the authors.

We follow the evaluation protocol proposed by

Dickscheid et al. [39] to measure the completeness

and the complementarity of features. Completeness

can be quantified as the amount of image informa-

tion preserved by a set of features. Complementar-

ity appears as a particular case of completeness: it

reflects the amount of image information coded by

sets of potentially complementary features. Mea-

suring such properties is crucial as the main purpose

of context-aware features is to provide a robust im-

age representation, either in an isolated manner or

in combination with strictly local features.

The metric for completeness is based on local sta-

tistics, which totally excludes the bias in favor of

our context-aware features, since our algorithm is

based on the analysis of the codeword distribution

over the whole image. In fact, this evaluation gives

a hint on the quality of the trade-off between the

context-awareness and the locality of context-aware

features. However, it does not provide a hint on how

features cover informative content within the image

context. If we take the “Needle in a Haystack” im-

age depicted in Fig. 1 as an example, we can claim

that strictly local features can show high complete-

ness scores without properly covering the most in-

teresting object in the scene. Note that such image

representation, despite its considerable robustness,

might be ineffectual if the goal is to recognize the

salient object. Therefore, for a better understand-

ing of the performance of our method, we comple-

ment the completeness analysis with a qualitative

evaluation of the context-awareness.

Repeatability is also considered in our validation.

We measure it through the standard evaluation pro-

tocol proposed by Mikolajczyk et al. [40]. Although

the presence of repeatable features may not always

be a fundamental requirement for tasks demand-

ing a robust image representation, their existence is

advantageous: a robust representation with repeat-

able features provides a more predictable coverage

when image deformations are present. In addition,

repeatable features allow a method to be used in a

wider range of tasks.

Both evaluation protocols deal with regions as lo-

cal features instead of single locations. To obtain

regions from context-aware keypoints, a normalized

Laplacian operator, ∇2Ln = t2(Lxx +Lyy), is used.

The characteristic scale for each keypoint corre-

sponds to the one at which the operator attains an

extremum. This scale defines the radius of a circu-

lar region centered about the keypoint. Note that

the CAKE instance does not solely respond to blob-
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like keypoints: it captures other structures where

scale selection can be less reliable (e.g., edges).

Nevertheless, the combination of [HES]-CAKE with

the normalized Laplacian operator provides robust-

ness to scale changes, despite the resulting method

not being entirely scale covariant. Figure 3 depicts

the extraction of [HES]-CAKE regions using the

Laplacian operator for scale selection.

Figure 3: [HES]-CAKE regions under viewpoint changes.

6.1. Completeness and complementarity evaluation

To measure the completeness of features,

Dickscheid et al. [39] compute an entropy density

pH(x) based on local image statistics and a feature

coding density pc(x) derived from a given set of

features. The measure of (in)completeness corre-

sponds to the Hellinger distance between the two

densities:

dH(pH , pc) =

√
1
2

∑
x∈Φ

(
√

pH(x) −
√

pc(x))2, (9)

where Φ is the image domain. When pH and pc

are very close, the distance dH will be small, which

means the set of features with a coding density pc

effectively covers the image content (the set of fea-

tures has a high completeness). Such metric penal-

izes the use of large scales (a straightforward solu-

tion to achieve a full coverage) as well as the pres-

ence of features in pure homogeneous regions. On

the other hand, it will reward the “fine capturing”

of local structures or superimposed features appear-

ing at different scales (the entropy density takes into

consideration several scales). The dataset contains

six of the seven categories used in the original eval-

uation (Fig. 4). It comprises four categories of nat-

ural scenes [41, 42], the Brodatz texture collection

[43] as well as a set of aerial images. The seventh

category, which is comprised of different cartoon

images, was not made publicly available.

The cardinality of the sets influences the com-

pleteness scores, as sparser sets tend to be less

complete. While it is interesting to analyze the

completeness of sets with comparable sparseness,

one cannot expect similar cardinalities when deal-

ing with different features types. We take such

facts into consideration and, as a result, we per-

form two different tests. The first one corresponds

to the main completeness test, which does not re-

strict the number of features. The second one al-

lows us to make a direct comparison between our

method and the salient regions algorithm by using

the same number of features. Let F[HES]−CAKE(g)

and FSalient(g) be the respective sets of [HES]-

CAKE regions and Salient regions extracted from

an image g. From each set, we extract the n

highest ranked features (both methods provide a

9



  

Brodatz Aerial Forest Mountain Tall building Kitchen

(30 images) (28 images) (328 images) (374 images) (356 images) (210 images)

Figure 4: Example images from the categories in the completeness and complementarity dataset.

well-define hierarchy among features), where n =

min{∣∣F[HES]−CAKE(g)
∣∣ , |FSalient(g)|}.

The parameter settings for our algorithm are out-

lined in Table 1. For the remaining algorithms, de-

fault parameter settings are used.

Table 1: Parameter settings for [HES]-CAKE.

Number of scales 3

ti+1/ti (ratio between successive scale levels) 1.19

t0 (initial scale) 1.4

Non-maximal suppression window 3×3

Threshold None

σk optimal

NR (number of samples) 200

Figure 5 is a summary of the main complete-

ness evaluation. Results are shown for each im-

age category, in terms of the distance dH(pH , pc).

The plot includes the line y =
√

1
2 , which corre-

sponds to an angle of 90 degrees between
√

pH and
√

pc. For a better interpretation, the average num-

ber of features per category is also shown. Regard-

less of the image collection, our context-aware in-

stance retrieves more features than the other algo-

rithms, which contributes to achieve the best com-

pleteness scores. The exception is the Brodatz cate-

gory, which essentially contains highly textured im-

ages. For this category, salient regions achieve a

better completeness score despite the lower number

of regions.

The additional test computes the completeness

scores of context-aware regions and salient regions

for the first 20 images in each category using the

same number of features. The results are summa-

rized in Fig. 6. Here, salient regions achieve bet-

ter results; however, the difference between scores

is not significant. Aerial and Kitchen are the cate-

gories where context-aware features exhibit the low-

est scores. This is explained by the strong presence

of homogeneous regions, which might be part of

salient objects within the image context, such as

roads, rooftops (Aerial category), home appliances,

and furniture (Kitchen category).

Aerial Forest Mountain Tall Building Kitchen

[HES]−CAKE
Salient

Figure 6: Average dissimilarity measure dH(pH , pc) for the

different sets of features extracted over the categories of the

dataset (20 images per category).

Complementarity was also evaluated on the first

20 images of each category by considering combina-

tions of two different feature types. The results are

summarized in Table 2. As expected, any combina-
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Aerial Forest MountainTall Building Kitchen

[HES]−CAKE
Salient
HESLAP
HARLAP
SFOP
MSER

Aerial Forest MountainTall Building Kitchen

[HES]−CAKE
Salient
HESLAP
HARLAP
SFOP
MSER

Figure 5: Completess results. Top row: Average dissimilarity measure dH(pH , pc) for the different sets of features extracted

over the categories of the dataset. Bottom row: Average number of extracted features per image category.

tion that includes [HES]-CAKE regions achieves the

best completeness scores. We give particular em-

phasis to the complementarity between HESLAP

and [HES]-CAKE: both methods are Hessian-based

and yet they produce complementary regions. The

combination of [HES]-CAKE and Salient regions is

also advantageous: the latter provides a good cov-

erage of “busy” parts composed of repetitive pat-

terns.

6.2. Context-awareness evaluation

For a qualitative evaluation of the context-

awareness of [HES]-CAKE regions, we use three im-

ages typically used in the validation of algorithms

for visual saliency detection [44]. Each one of the

test images shows a salient object over a back-

ground containing partially salient elements. Fig-

Table 2: Average dissimilarity measure dH(pH , pc) for differ-

ent sets of complementary features (20 images per category).

Δ represents the difference dH(pH , pc)−min{d1, d2}, where

d1 and d2 denote the average dissimilarity measures of the

two different sets.

[H
E
S
]-
C

A
K

E

H
E
S
L
A

P

H
A

R
L
A

P

S
F
O

P

M
S
E
R

S
A

L
IE

N
T

dH (pH , pc) Δ

• • 0.1028 -0.0352

• • 0.1214 -0.0166

• • 0.1242 -0.0138

• • 0.1246 -0.0134

• • 0.1253 -0.0127

• • 0.1375 -0.0579

• • 0.1550 -0.0404

• • 0.1725 -0.0493

• • 0.1765 -0.0189

• • 0.1789 -0.0165

• • 0.1983 -0.0235

• • 0.2187 -0.0031

• • 0.2274 -0.0366

• • 0.2895 -0.0311

• • 0.2052 -0.0588
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ure 7 depicts the test images, the corresponding

information maps given by the CAKE instance, as

well as the coverage provided by the context-aware

regions when 100 and 250 points are used. In all

cases, our algorithm succeeds in covering distinctive

elements of the salient objects. With 250 [HES]-

CAKE regions, the coverage becomes a relatively

robust image representation in all cases.

6.3. Repeatability Evaluation

The repeatability score between regions ex-

tracted in two image pairs is computed using 2D

homographies as a ground truth. Two features (re-

gions) are deemed as corresponding and, therefore,

repeated, with an overlap error of εR × 100% if

1 −
∣∣Rμ1 ∩R(HT μ2H)

∣∣∣∣Rμ1 ∪R(HT μ2H)

∣∣ < εR, (10)

where Rμ denotes the set of image points in the

elliptical region verifying xT μx ≤ 1 and H is the

homography that relates the two input images. For

a given pair of images and a given overlap error, the

repeatability score corresponds to ratio between the

number of correspondences between regions and the

smaller of the number of regions in the pair of im-

ages. Only regions that are located in parts of the

scene that are common to the two images are con-

sidered. The benchmark is supported by the Oxford

image, which comprises 8 sequences of images, each

one with 6 images, under different photometric and

geometric transformations (Table 3). The repeata-

bility of regions is computed within an overlap error

of 40%, using the first image as a reference.

Table 4 outlines the parameter settings for [HES]-

CAKE. Our method retrieves more features than

Table 3: Image sequences in the Oxford dataset.

Sequence Scene type Transformation

Graffiti well-structured viewpoint change

Wall textured viewpoint change

Boat well-structured

+ zoom + rotation

textured

Bark textured zoom + rotation

Bikes well-structured blur

Trees textured blur

Leuven well-structured lighting conditions

Boat well-structured

+ JPEG compression

textured

its counterparts. Thus, for a fair evaluation of re-

peatability, we defined a threshold that avoids a

discrepancy between the number number of features

retrieved by [HES]-CAKE and the remaining algo-

rithms.

Table 4: Parameter settings for [HES]-CAKE.

Scales 12

ti+1/ti 1.19

t0 (initial scale) 1.19

Non-maximal suppression window 3×3

Threshold 12

(or 3000 points)

σk optimal

Figure 8 reports the results in terms of aver-

age repeatability scores (top plot) and number of

correspondences (bottom row) for each sequence.

Among scale covariant features, HESLAP regions

exhibit a slightly better overall repeatability score,

namely in well-structured scenes (e.g., Bikes) where

blob-like features are more present and well-defined.
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Input image Information map Coverage (100 points) Coverage (250 points)

Figure 7: [HES]-CAKE information maps and extraction results in terms of coverage.

Wall Boat Bark Bikes Trees Leuven UBC

[HES]−CAKE
HESLAP
HARLAP
SFOP
MSER
Salient

Wall Boat Bark Bikes Trees Leuven UBC

[HES]−CAKE
HESLAP
HARLAP
SFOP
MSER
Salient

Figure 8: Repeatability score and number of correspondences with an overlap error of 40% on the Oxford dataset. Top row:

Average repeatability. Error bars indicate the standard deviation. Bottom row: Average number of correspondences. Error

bars indicate the standard deviation.
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HARLAP has a similar performance, yielding the

most repeatable results in textured scenes. The re-

peatability scores of SFOP and [HES]-CAKE are

very similar, yet the latter responds to a higher

number of features. Aside from viewpoint changes,

the repeatability of MSER tends to be lower than

its counterparts. In a direct comparison of infor-

mation theoretic-based methods, we observe that

[HES]-CAKE features are more repeatable than

salient regions. The only two exceptions to this

observation are the results for Trees and Wall se-

quences. Such results are explained by the fact that

both sequences depict highly textured scenes, pro-

viding denser sets of salient regions. As for scale

changes (Boat and Bark sequences), [HES]-CAKE

regions show a sufficiently robust behavior. In the

case of the Bark sequence, only HESLAP features

are more repeatable than the proposed regions.

7. Conclusions

We have presented a context-aware keypoint ex-

tractor, which represents a new paradigm in local

feature extraction. The idea is to retrieve salient

locations within the image context, which means

no assumption is made on the type of structure to

be extracted. Such scheme was designed to provide

a robust image representation, with or without the

contribution of other local features.

The algorithm follows an information theoretic

approach to extract salient locations. The possi-

ble shortcomings of such approach were analyzed,

namely the difficulties in defining sufficiently dis-

criminating descriptors and estimating the informa-

tion of the inherent distributions in an efficient way.

The experimental evaluation has shown that re-

lying on image statistics to extract keypoints is

a winning strategy. A robust image representa-

tion can be easily achieved with context-aware fea-

tures. Furthermore, the complementarity between

context-aware features and strictly local ones can

be exploited to produce an even more robust rep-

resentation.

As for the applicability of the method, we be-

lieve that most of the tasks requiring a robust image

representation will benefit from the use of context-

aware features. In this category, we include tasks

such as scene classification, image retrieval, object

(class) recognition, and image compression.

Appendix A. Proof of Theorem 1

Proof. Let us suppose that P (2)(xl) ≤ P (2)(xm)
(the reasoning will be analogous if we consider the
other inequality). From the definition of probabil-
ity, we have

N∑
j=1

e (−
(w(2)(xl) − w(2)(xj))

T Σ−1

W (2) (w
(2)(xj) − w(2)(xl))

2σ2
k

) ≤

≤
N∑

j=1

e (−
(w(2)(xm) − w(2)(xj))

T Σ−1

W (2) (w
(2)(xj) − w(2)(xm))

2σ2
k

).

Let A be the matrix that represents the trans-
formation T (we assume no translation). Since
ΣW (2) = AΣW (1)AT , the numerators from the ex-
ponents in the first and second members of the in-
equality can be rewritten as

(A(w
(1)

(xl)−w
(1)

(xj)))
T

(AΣ
W (1)A

T
)
−1

(A(w
(1)

(xj)−w
(1)

(xl)))

and

(A(w
(1)

(xm)−w
(1)

(xj)))
T

(AΣ
W (1)A

T
)
−1

(A(w
(1)

(xj)−w
(1)

(xm)),

respectively. By simplifying the previous expres-
sions, we have

((w
(1)

(xl) − w
(1)

(xj)))
T

Σ
−1

W (1) (w
(1)

(xj) − w
(1)

(xl)))
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and

((w
(1)

(xm) − w
(1)

(xj)))
T

Σ
−1

W (1) (w
(1)

(xj) − w
(1)

(xm))).

Thus,

P (2)(x) =
1

|detA|P
(1)(x),∀x ∈ Φ.

From the hypothesis, we have P (1)(xl) ≤ P (1)(xm).

Appendix B. Reduced KDE

As shown by Theorem 1, applying an affine trans-
formation to the codewords does not change the re-
sult of the extractor. We take advantage of this,
and perform a principal component analysis (PCA)
to obtain a new codeword distribution WP , where
elements are denoted by wP (x). In this case, the
inverse of the covariance matrix Σ−1

WP
is a diagonal

matrix, where the elements on the diagonal contain
the inverse of the variance of every variable of WP .
Consequently, we can rewrite the Gaussian KDE in
(4), using the Mahalanobis distance d(·, ·), as an-
other Gaussian KDE with Euclidean distance as

p̃(wP (y)) =
1

NΓ

∑
x∈Φ

e

 
−

∑D
i=1 ai(wP,i(y) − wP,i(x))2

2σ2
k

)
,

(Appendix B.1)

where ai =
√

Σ−1
WP

(i, i), i.e., the square root of

the ith diagonal element of the inverse of covariance
matrix. Equation (Appendix B.1) can be rewritten
as

p̃(wP (y)) =
1

NΓ

∑
x∈Φ

D∏
i=1

e

 
−ai(wP,i(y) − wP,i(x))2

2σ2
k

)
.

(Appendix B.2)

By assuming that each dimension i provides a PDF
that is independent of other dimensions, Equation
(Appendix B.2) can be approximated as follows:

p̃(wP (y)) � 1

NΓ

D∏
i=1

∑
x∈Φ

e

 
−ai(wP,i(y) − wP,i(x))2

2σ2
k

)

� 1

NΓ

D∏
i=1

p̃i(wP,i(y)).

(Appendix B.3)

Note that this approximation is only valid if PCA is

able to separate the multivariate distribution into

independent univariate distributions. This is not

always verified. However, the proposed approxima-

tion works sufficiently well for convex multivariate

distributions, which is the case in all the exper-

iments we have conducted in the paper. There-

fore, we have to compute D one dimensional KDEs

p̃i(wP,i(y)), using the Euclidean distance, which re-

duces a multivariate KDE to D univariate prob-

lems. This step simplifies the computation of dis-

tances between codewords, but still does not re-

duce the number of basic product-sum computa-

tions. Nevertheless, we can approximate the D one

dimensional KDEs to speed-up the process. The

fact that we have univariate distributions will be

profitably used. For the sake of compactness and

clarity, in the next part of the section we will refer

to p̃i(wP,i(y)) as p(w(y)). We will also omit the

constant 1/NΓ and the constants ai.

We can extend the concept of KDE, by giving a

weight v(x) > 0 to each sample, so that the uni-

variate KDE can be rewritten as a reduced KDE:

pR(w(y)) =
∑

x∈ΦR

v(x) e
(
− (w(y) − w(x))2

2σ2
k

)
,

(Appendix B.4)

where ΦR ⊂ Φ. This formulation can be seen as

a hybrid between a Gaussian KDE and a Gaussian

Mixture Model. The former has a large number of

samples, all of them with unitary weight and fixed

σk, while the latter has a few number of Gaussian

functions, each one with a specific weight and stan-

dard deviation.

The goal of our speed-up method is to obtain a

set ΦR with |ΦR| = Nr � N samples that approx-

imate the O(N2) KDE. The idea is to fuse sam-

ples that are close each other into a new sample

that “summarizes” them. Given a desired num-

15



  

ber of samples NR, the algorithm progressively

fuses pairs of samples that have a minimum dis-

tance:

1: ΦR ← Φ

2: v(x) ← 1, ∀x ∈ Φ

3: while |ΦR| > NR do

4: {x̃0, x̃1} ← arg min
x0,x1∈ΦR, x0 �=x1

|w(x0) −
w(x1)|

5: v(x01) ← v(x̃0) + v(x̃1)

6: w(x01) ← v(x̃0)w(x̃0)+v(x̃1)w(x̃1)
v(x̃0)+v(x̃1)

7: ΦR ← (ΦR \ {x̃0, x̃1}) ∪ {x01}
8: end while

The algorithm uses as input the N samples of

the univariate distribution (line 1), giving constant

weight 1 to all the samples (line 2). While the num-

ber of points is greater than the desired number NR

(line 3 to 8), the algorithm selects the pair of sam-

ples that show the minimal distance in the set ΦR

(line 4), and a new sample is created (lines 5 and 6),

whose weight v is the sum of the pair’s weights and

the value w is a weighted convex linear combination

of the previous samples. The two selected samples

are then removed by the set ΦR and replaced by

the new one (line 7).

At first sight, the reduction algorithm seems

may appear computationally expensive (∼ O(N3)),

since a minimum distance over N2
R pairs of points

has to be found. However, w ∈ R, so that w(x)

can be ordered at the beginning of the algorithm

(with cost O(�N log N�)), and the pairs of min-

imum distance can be computed in N subtrac-

tions. Consequently, for each sample x, we have

the respective sample at minimal distance xm and

their distance dm(x) = |w(x) − w(xm)|. This

data can be represented using a self-balancing tree

[45] allowing us to perform deletion and insertions

(line 7), in log N time. Since the samples are or-

dered both in terms of w(x) and dm(x), updating

the distances after deletions and insertions can be

done in O(1). Summarizing, we need to perform

2(N −Nr) deletions and N −Nr insertions, so that

the total cost of the reduction algorithm is propor-

tional to �N log N� + 3(N − Nr) log N , thus being

O(N log N). The total cost to compute pR(w(y))

linearly depends on the desired NR and the number

of dimensions D.

To further speed-up the approximation, we can

use a reduced number of dimensions D̃ < D such

that the first D̃th dimensions of the multivariate

distribution WP cover 95% of the total distribution

variance. This is a classical strategy for dimension-

ality reduction that has provided, in our tests, an

average of 3× further speed-up.
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Highlights:

• No a priori assumption is made on the type of structure to be extracted.

• Suitable for robust image representation.

• Different instances of the method can be created.

• In some cases, context-aware features can be complemented with strictly
local features without inducing redundancy.

• Repeatability scores are comparable to state-of-the-art methods.
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