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ABSTRACT
A comparison and a performance evaluation of 3D interest
point detectors based on the structure tensor matrix under a
medical image registration context is presented. The study
regards the distinctiveness and the repeatability rate exhibited
by the detectors onmedical images as the fundamental criteria
for selecting a detector to be the support of a registration task.
We empirically assess those requirements under the specifici-
ties of medical image analysis and registration.

Index Terms— Interest Points, Landmark-based Regis-
tration, Invariant Features, Medical Image Registration.

1. INTRODUCTION

Common solutions to computer vision problems involving
tasks such as image registration, tracking, image retrieval
or camera pose estimation often rely on low-level feature
detection methods. The main motivation for that strategy
has its basis on the intrisic properties of the features that let
foresee an efficient and robust detection. Interest points, i.e.,
pixel locations exhibiting some singularity with respect to
their neighborhoods have been largely studied in the litera-
ture and pointed out as appropriate features to be the support
of image registration methods mainly due to their efficiency,
distinctiveness and invariance (or co-variance) when dealing
with geometric and photometric transformations [1]. In the
context of medical image registration (MIR), interest point
detection has been suggested as an alternative to the detection
of anatomical landmarks (salient and accurately locatable
points of the morphology of the visible anatomy [2]), avoid-
ing, therefore, the need of user interaction. Regardless the
modality, the dimensionality or the observed anatomy, medi-
cal images usually do not exhibit frequent considerably high
variations in intensity as we often see in other types of images.
Hence, one cannot expect interest points to be abundant in
those images. However, the reduced number of such features
reveals itself as an advantageous characteristic that should
be taken into account when pondering the foundations of a
MIR method; the distinctive locations irregularly present on
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images, assured by means of some criterion, provide a suit-
able underlying support for point-based registration. Generic
comparisons of local features often refer to MIR as a task de-
manding an effective feature detection, however those studies
do not consider its unique characteristics. The fundamental
aim of this paper is to study 3D interest point detection in the
MIR context, not by giving a comprehensive review of those
algorithms under the specific environment, but by answering
to questions that appear as essential on the choice of a par-
ticular detector: (i) how repeatable are interest points under
certain conditions? (ii) How distinctive are interest points on
medical images? (iii) Does MIR impose improved interest
point detection methodologies? Thus, we set the structure
tensor matrix of an intensity image, which is the basis of nu-
merous 2D interest point detectors, as the starting point of our
study and provide a mathematical framework to review inter-
est point detection and to analyze it under the specificities of
MIR. It is worth noting that the choice of the aforementioned
solutions as a subject of analysis relies on their straightfor-
ward extension to any dimension n ≥ 3 and on the well
known high repeatability rate results in the presence of image
rotation, translation, noise addition or illumination changes.
The low computational complexity exhibited by those meth-
ods is another key feature to consider. That constraint is
even more critical, for example, in computer guided surgery
scenarios in which real-time automatic landmark detection is
demanded.
For a better reading, Section 2 introduces some of the defini-
tions, notations and remarks that will be followed throughout
this document. Section 3 reviews four interest point detection
functions based on the structure tensor matrix. In Section 4,
we present and analyze the results of experiments required to
assess the performance of the detectors. Finally, in Section 5,
conclusions are driven.

2. PRELIMINARIES

Herein, the terms interest point and landmarkwill be adopted,
the latter will refer to an interest point in a medical imaging
context or some other reference point on a medical image. By
considering the definition of interest point, several solutions
can be regarded as interest point detectors, just as long they
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provide a reliable measure of the singularity of points with
respect to their vicinities. Thus, a possible generic and coarse
definition of an interest point detector could be the following:

Definition 2.1 ((Local) interest point detector) Let I : D ⊂
R

n → R
m be an image (D is a compact set). A (local) in-

terest point detector is a real-valued function f defined over
a given pixel location x ∈ D and a certain window Ω about
the aforementioned location, such that if x and y are interest
points, it will be possible to define an equivalence relation
by means of f such that the locations x and y belong to the
same equivalence class.

To dissipate the vagueness of definition 2.1, we can say that
most of the detectors identify interest points as the locations
where f is above a certain threshold. The structure tensor
matrix - a representation of local image gradient information,
- is known to be one effective description of local patterns.

Definition 2.2 (Structure tensor matrix) Let I be a n-
dimensional single channel image. The structure tensor
matrix of I at the image point x is the n × n matrix T which
results of the averaged outer product of the image gradients:

T (x) = (ω ∗ ∇xI∇T

x I)(x), (1)
where ω is the weighting function and∇xI is the gradient of
I at x.

The spectral structure of T captures the local signal changes
along the principal directions: the order of magnitude of the
eigenvalues is proportional to the gradient variation along
them. Since the determinant of T , which is the product of
all eigenvalues, exhibits large values at these locations, one
can think of that operator as a detector that identifies inter-
est points as the locations that are above a given threshold.
In fact, most of the detectors based on the aforementioned
matrix rely on the determinant or the trace of T .

3. INTEREST POINT DETECTORS

To simplify the notation, we neglect the dependence of the
detectors on I and Ω. In the solutions described below, the
gradient is obtained from a smoothed version of I: L(x, δ) =
(Gσ ∗ I)(x), where Gσ denotes a Gaussian kernel with stan-
dard deviation σ. Moreover, we rewrite T as AT WA, where
A = [aij ] ∈ R

m×n , with aij = ∂
∂xj

L(xi, σD); xi are
the points from the discretized support set of ω and W =
[wij ] ∈ R

m×m denotes the diagonal weighting matrix, i.e.,
wii = ω(x − xi). In Eqs. (2-6), λi, i = 1, . . . , n, represent
the eigenvalues of T in non-decreasing order.
In [3], Noble suggests a modified version of the widely used
Harris-Stephens detector [4] that does not contain the original
tuning parameter, overcoming the need of manually tuning it:

f1(x) :=
det(AT WA)

ε + trace(AT WA)
=

∏n
i=1 λi

ε +
∑n

i=1 λi

, (2)

where ε denotes an arbitrary small positive constant. By ne-
glecting the trace of T , Rohr [5] proposes an alternative de-
tector relying exclusively on the determinant of T :

f2(x) := det(AT WA) =

n∏
i=1

λi. (3)

Both of the aforementioned measures imply the exclusion of
points that convey a less discriminant information: those ex-
hibiting a large difference between the eigenvalues. For that,
the following threshold is used:

det(AT WA)

( 1
n

trace(AT WA))n
=

∏n
i=1 λi

( 1
n

∑n
i=1 λi)n

. (4)

The Shi-Tomasi algorithm [6] detects interest points via Eq.
(5). By imposing f3(x) ≥ λ, where λ ∈ R

+ is a sufficiently
large threshold, we are selecting points whose corresponding
structure tensor matrix exhibits eigenvalues that do not dif-
fer by several orders of magnitude, which in terms of visual
patterns, corresponds to select those that show high intensity
variations in several directions.

f3(x) := λmin(AT WA) = λ1 (5)
The Kenney et al. detector [7] for the Schatten p-norm, with
p ∈ [1,∞], identifies interest points using the following func-
tion:

f4(x) :=
1

‖(AT WA)−1‖p

=
1

p

√∑n
i=1

1
λ

p
i

. (6)

The latter detector arises as an explicit attempt to select loca-
tions that convey a better repeatability in the presence of im-
age rotations and translations; the method selects points that
have a small condition number with respect to translations,
and consequently, to rotations [8]. It is also worth mentioning
that f1, n

√
f2, f3, and f4 are equivalent modulo the choice of

a convenient matrix norm [9].

4. RESULTS AND DISCUSSION

The detectors described above have been evaluated on syn-
thetic1 and real 3Dmedical images depicting different anatom-
ical scenes. The dataset comprised magnetic resonance (MR)
brain images, wrist and feet computerized tomography (CT)
scans. Table 1 summarizes the image modalities and ob-
served anatomical scenes used in the experimental setup. The
detectors were implemented with integration and derivation
scales2, σI and σD , respectively, set to 1.5; ε, the constant for
f1, was set to 0.05 and, for f4, p was set to 3. We have explic-
itly neglected the threshold given in (4) in order to yield more
distinctive results for f1 and f2. Preliminary experiments
have shown that the removal of unsignificant points (pure
edge points) via (4) has a tendency to produce less distinctive
patterns and less repeatable points as well, since edge points

1Available at http://www.bic.mni.mcgill.ca/brainweb/.
2A Gaussian kernel was used as the weighting function.
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are removed and they tend to be less prone to distortions
conveyed by noise addition or geometric transformations.
Herein, unlike most of the generic evaluations of detectors,
the repeatability rate is not directly assessed; our primordial
objective is to analyze the behavior of a point based registra-
tion technique in which the studied local features are given
as landmarks. The chosen registration algorithm was the
Coherent Point Drift (CPD) method, a probabilistic solution
that can deal with non-linear non-rigid transformations. For
a detailed description of the method, we refer to [10]. Fig.
1 illustrates the different detection results on a slice of a hu-
man brain MR volume used in the experiments. One can see
that results are slightly different. Although some landmarks
appear to be identified by more than one detector, the repeata-
bility rate computed among the sets of 500 landmarks, in a
1.5-neighborhood, shows that results are diverse as outlined
in Table 2, where r is the repeatability rate function [11] and
Vfi
, i = 1, . . . , 4, denotes the set of landmarks detected by

fi.
Set Description Size Remarks
D1 6 brain MR 181 × 217 × 181 Synthetic images

images T1-, T2-weighted
1 mm slice thickness

0%,3% and 5% (noise levels)
D2 1 brain MR 448 × 512 × 20 T1-weighted

image 3 mm slice thickness
D3 1 knee MR 512 × 512 × 24 PD-weighted

image 4 mm slice thickness
D4 1 wrist CT

scan
512 × 512 × 27 2 mm slice thickness

D5 1 feet CT 512 × 512 × 30 1 mm slice thickness
scan 30 first slices out of 250

Table 1. Dataset for the experiments outlined in Section 4.

(a) (b)

(c) (d)

Fig. 1. Results of landmark detection for a MR image of a
human brain (slice 12) using the following interest point de-
tectors: (a) f1; (b) f2; (c) f3; (d) f4.

r(·, ·, 1.5) Vf2
Vf3

Vf4

Vf1
69.4% 49.6% 56.6%

Vf2
29.6% 34.6%

Vf3
88.6%

Table 2. Repeatability rate results among the sets of interest
points detected on the test image D2.

4.1. Distinctiveness Evaluation

Distinctiveness has been assessed by measuring the informa-
tion content conveyed by the results of detection, a procedure
analogous to the one presented in [11] where this criterion
was introduced. The goal is to analyze the patterns at interest
points and see how distinctive they are. To describe the neigh-
boorhood of interest points, we have computed the 3D-SIFT
descriptors [12] at each interest point location, providing an
invariant representation of the region. The information con-
tent is the entropy exhibited by these invariants for a set of
points. In the experiment, 400 interest points, uniformly dis-
tributed, were randomly selected over each image. Tables 3
and 4 summarize the results for the distinctiveness of the de-
tectors. For the set D1 and the modalities T1, T2 and CT, we
present the average information content.

Dataset f1 f2 f3 f4

D1 0.49 0.51 0.5 0.4
D2 0.6643 0.6589 0.8895 0.6339
D3 0.3589 0.3671 0.3256 0.3648
D4 0.6740 0.6874 0.6749 0.6863
D5 0.4528 0.4623 0.4249 0.4646

Table 3. Results of distinctiveness in terms of information
content for different modality datasets and detectors.

Modality f1 f2 f3 f4

T1 0.59 0.56 0.69 0.57
T2 0.41 0.5 0.37 0.29
PD 0.36 0.37 0.33 0.36
CT 0.56 0.57 0.55 0.58

Table 4. Results of distinctiveness in terms of information
content for different anatomical datasets and detectors.

4.2. Non-Rigid Interest Point Based Registration Evalua-
tion

To analyze interest point based registration results and, by in-
ference, conclude on the performance of each of the detectors
under a MIR context, the evaluation has to focus on registra-
tion results. However, it should reflect the performance of the
detectors rather than the registration technique. Therefore, by
adopting the CPD algorithm, we have decided to set the pa-
rameters required by the method not according to the given set
of points, but solely based on the transformation. The analysis
has been performed by identifying 500 interest points on each
test image. The landmarks sets initially detected were defined
as the reference point sets. For each pair of set of points, the
reference and the template set, corresponding, respectively, to
interest points detected on the original image and on its trans-
formed version, a registration of the template set, TR, onto the
reference set, R, has been performed. Results were analyzed
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by computing r(R, TR, 1.5), the repeatability rate between
the given sets in a 1.5-neighborhood. Concerning the trans-
formations, we have applied either small arbitrary rotations
to the volumes along the 3 axis (min. of 00, max. of 30) or
added Gaussian noise (μ = 0, σ2 = {0.00001, 0.00003}) to
each axial slice of the test images. For any of the rotated vol-
umes that we have registered onto the original ones, we have
set β, the parameter that controls the smoothness of the trans-
fomation, to 2. When dealing with noisy images, β has been
lowered to 0.1. The discrepant values were selected in order
to yield local smooth transformations in the case of noise and
rigid ones in the case of rotation. In all experiments, the third
parameter from the registration method, σ, which represents
the initial standard deviation in the Gaussian Mixture Model
that is fitted to one of the sets of points, was set to 1. Tables
5 and 6 outline the results of registration in terms of repeata-
bility rate applied to rotated and noisy images after 100 and
200 iterations. For space reasons, we will not display all the
results, although they will be discussed.
Rot. (deg.) Set 100 iter. 200 iter.
x y z f1 f2 f3 f4 f1 f2 f3 f4

0 0 3 D1 88.9% 85.6% 77.4% 85.7% 89.1% 89% 84.8% 86.9%
D2 39.4% 46% 35.4% 36.2% 93.2% 92% 87.6% 91.4%
D3 78% 76% 74.6% 77% 93.4% 92.8% 88.8% 91.8%
D4 41.6% 38.6% 48.2% 47.6% 83% 81.6% 79% 83%
D5 45.6% 33.2% 27.8% 28.2% 89% 89.2% 84.4% 86.6%

Table 5. Results in terms of repeatability rate for registered
rotated volumes (average rates for the set D1).

Gaussian Set 100 iter. 200 iter.
noise
μ σl f1 f2 f3 f4 f1 f2 f3 f4

0 0.00001 D2 5.6% 5% 6% 9.4% 88.8% 90.4% 88.6% 91.4%
D3 11.6% 12% 11.4% 14.2% 95.4% 93.2% 92.6% 98.4%
D4 8.2% 7.6% 9.8% 12.4% 91% 87.4% 93.8% 99%
D5 5.6% 5.8% 4.6% 7.2% 93.4% 92% 92.2% 94.6%

Table 6. Results in terms of repeatability rate for registered
noisy volumes.
We have performed an additional set of experiments on syn-
thetic images that were generated with different levels of
noise calculated relative to the brightest tissue. Table 7 sum-
marizes the repeatability rate results after a registration of
the noisy images onto the noise free ones. The number of
iterations was again set to 200.

Noise Modality f1 f2 f3 f4

3% T1 93.6% 93.4% 92.8% 100%
T2 94.6% 93.4% 91.6% 100%

5% T1 93.4% 94.2% 93.2% 100%
T2 93.6% 90.8% 93.2% 100%

Table 7. Results in terms of repeatability rate for registered
noisy synthetic volumes.

4.3. Discussion

From the observation of the results of the experiments de-
scribed in 4.1 and 4.2, an important conclusion to be drawn is
that finding an appropriate detector to support MIR in such a

context as the one depicted herein is still an open issue. The
suitability exhibited by f4 can be enhanced if we rely also on
a reliable local description, although it will imply a consider-
able increase of computational complexity. Furthermore, the
detector requires 200 iterations in the CPD algorithm to yield
better results. f1 and f2 tend to exhibit a similar performance
and have shown to be stable in the presence of noise and im-
age rotations, however if we apply the suggested threshold,
their performance could decrease. f3 exhibits the most het-
erogeneous results in terms of performance; one elucidative
example is the different level of distinctiveness exhibited for
the T1 and T2-weighted tomographies from our dataset.

5. CONCLUSIONS

We have performed a comparative study on interest point de-
tectors under a medical image registration context, relying on
gradient-based solutions known for their robustness to com-
mon image distortions and a low computational complexitty
as well. Our experimental setup comprised several modali-
ties of medical images depicting different anatomical scenes.
The analysis has relied on the registration results supported
by the feature detectors and on their distinctiveness. Results
have shown a slight outperformance of the Kenney et al. de-
tector, which is more suitable to deal with noisy images. In
addition, the method exhibits more homogeneous results re-
garding both criteria when compared to the remaining ones.
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