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Abstract

This paper describes an adaptive spatial masking technique
for frequency-based image watermarking schemes. The
strategy consists of defining minimum and maximum
allowable pixel perturbations. These minimum pixel
perturbations, defined as constraints of an optimal water-
mark embedding problem, are obtained from measuring
the effects in terms of inaccuracy of the most damaging
interpolation methods over images. By including these
perturbations, the robustness of watermarking schemes is
improved: the watermark strength in images regions which
are less vulnerable to distortions is increased.
The effectiveness of the proposed scheme is illustrated
with experiments made on two watermarking algorithms
where the described masking technique was applied.
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1 Introduction

Digital watermarking consists of hiding information into
digital content such as videos, images, audio or text; and
later, extract or simply detect the hidden data. Some of
the basic requirements on a digital watermarking scheme
are imperceptibility and robustness to attacks [1]. The first
requirement means that a human cannot distinguish the
existent differences between the data and the watermarked
data, while the latter one is described as the ability to
maintain or recover the watermark, despite being manipu-
lated by attacks such as geometrical transformations, lossy
compression, or common signal processing operations. In
order to ensure robustness, the watermark information is
usually redundantly distributed over many samples (pixels
in image and video) of the host data, however maintaining
imperceptibility.

Several image watermarking algorithms based on
perceptual models of the Human Visual System (HVS)
have been proposed in order to provide the best trade-off

between robustness and imperceptibility, i.e., to give
the maximum watermark strength without making it
perceptible to the human eye. Most of these methods rely
on the use of contrast thresholds that are the measure of
sensitivity of the HVS for different spatial frequencies
[2][3][4][5][6]. For instance, in [6] is defined a new
contrast measure adapted to natural scene images, called
isotropic local contrast, based on the work of Peli [7]. The
contrast masking of the HVS is then modeled according
to isotropic local contrast by means of visual experiments
and the strength of the watermark is adjusted according to
the defined contrast masking model, during the embedding
stage.

Besides defining the levels of imperceptibility, it
is important to establish which image regions are less
sensitive to distortions caused by common watermark
attacks in order to improve the robustness of the scheme.
An interesting video watermarking strategy exploiting this
issue was suggested in [8]; the watermark was locally
embedded into sub-frames which exhibited lower expected
distortions. These regions were obtained by computing
the average value of distortion bound over each sub-frame,
i.e., the maximum absolute value difference between the
intensity of a pixel and the intensity of the pixels in the
nearest neighbourhood. Obviously, sub-frames which
exhibited lower average values were the selected ones.

The spatial masking strategy described in this paper
is a variation of the techniques presented in [9] and [10].
Besides the definition of maximum pixel perturbations,
it takes into account which regions are less affected by
distortions. Regions where interpolation reveals to be more
accurate, it will be imposed a higher watermark strength,
however satisfying the imperceptibility constraints defined
for those regions. The main idea behind this approach is to
provide more robustness to attacks such as interpolation.

The remainder of the paper is organized as follows:
Section 2 describes the proposed spatial masking method.
In Sections 3 and 4 are described watermarking algorithms
where the spatial adaptive masking was applied. Section 5



shows some experimental results and, finally, in Section 6,
conclusions and future research directions are given.

2 Proposed spatial masking

Based on a Stationary Generalized Gaussian Image Model
with an auto-covariance functionRx = σxI, which takes
into account local features of the image, Voloshynovskiy
et al. [11] introduced the Noise Visibility Function (NVF),
which was the starting point for a spatial masking technique
proposed by the same authors. In their method, the NVF of
an imageI(k, l) was computed at each pixel position:

NV F (k, l) =
w(k, l)

w(k, l) + σ2
x

, (1)

where w(k, l) = γ[η(γ)]γ 1
‖r(k,l)‖2−γ , r(k, l) =

I(k,l)−I(k,l)
σx

, η(γ) =

√

Γ( 3

γ
)

Γ( 1

γ
)

andΓ(t) =
∫ +∞

0 e−uut−1du

is thegamma function. Once the Noise Visibility Function
had been computed, themaximum pixel perturbation was
obtained for each pixel:

∆p(k, l) = (1 + K · CST (I(k, l))) · (1 − NV F (k, l)) · S0

+NV F (k, l) · S1,
(2)

whereS0 and S1 were real positive scalars defining the
maximum pixel perturbations in textured and flat regions,
respectively,K was a positive scalar andCST was thecon-
trast sensitivity threshold at the luminance valueI(k, l),
given in terms of the change of luminance divided by the
luminance as defined in [9]. Since distortions are less vis-
ible in textured areas, and the NVF tends to 0 in these re-
gions, while in flat regions it tends to 1;S0 should be higher
thanS1. In [9], S0 is about 30, whileS1 is about 3, andK
is 5, which means that the allowable distortion is increased
by 5 in textured regions where the luminance level is high.
Thus, given a watermarked versionIw(k, l) of an original
imageI(k, l), its watermark is considered imperceptible if
inequality (3) holds.

|Iw(k, l) − I(k, l)| ≤ ∆p(k, l) (3)

Besides the imperceptibility constraints (3), it is pos-
sible to define minimum perturbations that will increase
the robustness of the embedded watermark. The choice of
these perturbations is based on the fact that image regions
with small spatial gradients (where interpolation is more
accurate), the amount of distortion available to perform
attacks is reduced [8].

Let I(k, l), 1 ≤ k ≤ m, 1 ≤ l ≤ n, be an 8-bit image
or the luminance channel of a RGB image. Thenearest
neighbouring of pixel (i, j) is defined as follows:

N (i, j) = {(k, l) : |k − i| ≤ 1, |l − j| ≤ 1, (k, l) 6= (i, j)}
(4)

In order to evaluate the effects of interpolation’s inaccu-
racy, like in [8], the maximum distance between values of
nearest neighbouring pixels is computed at each pixel po-
sition:

Y (i, j) = max
(k,l)∈N (i,j)

|I(k, l) − I(i, j)| (5)

We decided to measure the effects of interpolation from (5)
because when an intensity valueI(i, j) is replaced by an-
other valueÎ(i, j) through bilinear interpolation or near-
est neighbour interpolation – which are the most dam-
aging methods, namely due to aliasing [12] –, we have
∣

∣

∣
Î(i, j) − I(i, j)

∣

∣

∣
≤ Y (i, j). Therefore, the regions where

Y (k, l) exhibits lower values correspond to the regions
where interpolation is more accurate, while the ones where
Y (k, l) exhibits larger values, indicate that they are more
affected by the errors of interpolation methods and distor-
tion attacks, despite being the regions where the level of the
watermark imperceptibility is higher, as depicted in Figure
1. This result suggests that the minimum pixel perturbation
should be higher in regions whereY (k, l) is lower. In order
to obtain these perturbations, we define (6).

Ỹ (i, j) =
Y (i, j)

255
(6)

The minimum pixel perturbation at pixel(i, j) will be

∆q(i, j) = (1 − Ỹ (i, j)) · S2, (7)

where S2 is a real positive scalar, slightly smaller than
the factorS1 defined in (3). By imposingS2 ≤ S1, we
will have ∆q(i, j) ≤ ∆p(i, j), since∆q(i, j) ≤ S2 and
∆p(i, j) ≥ S1.

The minimum pixel perturbation is added to the con-
straint (2), yielding (8).

∆q(k, l) ≤ |Iw(k, l) − I(k, l)| ≤ ∆p(k, l) (8)

Similarly to the schemes proposed in [9] and [10], the ro-
bustness of the watermark can be increased by solving a
constrained optimization problem whose optimal solution
is the maximum strength value satisfying the constraints
defined in (8). Therefore, the constrained optimization
problem to solve is:

maximize α

subject to
|Iw(k, l) − I(k, l)| ≤ ∆p(k, l)
|Iw(k, l) − I(k, l)| ≥ ∆q(k, l)
0 ≤ Iw(k, l) ≤ 255
αl ≤ α ≤ αu,

(9)

whereα is the strength of the watermark andαl, αu are the
minimum and maximum values ofα, respectively.
Unlike the optimization problems formulated in [9] and
[10], this one cannot be solved by the Simplex method,



since the inclusion of the minimum pixel perturbations con-
straints – which are non-convex –, makes impracticable to
treat the problem as a linear programming one. Conse-
quently, the problem is solved as a non-convex non-linear
constrained optimization problem.
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Figure 1. (a) original image; (b) NVF of (a); (c) maximum
distance between values of nearest neighbouring pixels in
(a); (d) absolute difference between (b) and (c).

3 Algorithm I

The watermarking strategy described in this section is a
straightforward additive frequency-domain scheme and it
intends to illustrate how the spatial masking suggested in
the previous Section can be applied to methods which em-
bed the watermark into a transform domain. A canonical
scale at embedding and detection stages will be used in or-
der to exemplify the effects of interpolation over the water-
mark detection.

3.1 Watermark embedding

Given an imageI(k, l), 1 ≤ k ≤ m, 1 ≤ l ≤ n, the water-
mark embedding stage includes into the following steps:

1. ResizeI(k, l) to the canonical sizep × p, yielding a
new imageICan(k, l).

2. Compute∆p(k, l) and ∆q(k, l), the maximum and
minimum pixel perturbation ofICan(k, l), respec-
tively.

3. Compute the Discrete Fourier Transform (DFT) of
ICan(k, l). Let F (u, v) be the obtained result.

4. ExtractM(u, v), the magnitude ofF (u, v).

5. Generate a bimodal pseudo-random sequencew =
{wi : wi ∈ {−1, 1}, i = 1, . . . L} from a keyk.

6. Pseudo-randomly selectL coefficients satisfying (10),
based on the keyk.

f1 ≤
√

u2 + v2 ≤ f2 (10)

7. ObtainMw(u, v), the modified magnitude after the
watermark embedding. To embed the watermark, each
selected magnitude coefficient is changed such that:

Mw(ui, vi) = M(ui, vi)(1 + αiwi),i = 1 · · ·L,

(11)
Mw(−ui,−vi) = Mw(ui, vi),i = 1 · · ·L, (12)

whereαi is thei-th component of the optimal solution
of the minimization constrained problem (13), which
is an adaptation of (9) to this algorithm.

minimize −
∑L

i=1 αi

subject to
|IDFT (Fw(u, v)) − ICan(k, l)| ≤ ∆p(k, l)
|IDFT (Fw(u, v)) − ICan(k, l)| ≥ ∆q(k, l)
0 ≤ IDFT (Fw(u, v)) ≤ 255
0 ≤ αi ≤ 1

(13)

8. Compute the Inverse Discrete Fourier Transform
(IDFT) of Fw(u, v). Let the result be denoted as
ICanw

(k, l).

9. ResizeICanw
(k, l) to a m × n image, yielding

Iw(k, l), the watermarked version ofI(k, l).

3.2 Watermark detection

Given an imageI ′(k, l), 1 ≤ k ≤ m′, 1 ≤ l ≤ n′, the
detection process is as follows:

1. ResizeI ′(k, l) the canonical sizep×p. LetI ′Can(k, l)
be the result image.

2. ComputeF ′(u, v), the DFT ofI ′Can(k, l).

3. ExtractM ′(u, v), the magnitude ofF ′(u, v).

4. Generate a pseudo-random sequencew = {wi : wi ∈
{−1, 1}, i = 1, . . . L} from a keyk.

5. Pseudo-randomly selectL coefficients satisfying (10),
based on the keyk.

6. Compute the similarity coefficient (14) betweenw and
M and compare it to a thresholdT in order to mini-
mize both false alarms and false rejections.

S(w, M) =

∑L

i=1 wiM(ui, vi)
∑L

i=1 M(ui, vi)2
(14)

If S(w, M) is greater thanT , the detector reports that
the watermark is present.



4 Algorithm II

The algorithm described herein is based on the scheme pro-
posed by [13]. It intends to provide robustness to geomet-
rical distortions. The resilience to this kind of attacks is
achieved by inserting the watermark into a domain which is
rotation, scaling and translation (RST) invariant. To obtain
a RST invariant domain, the following steps are performed:

1. Compute the log-polar mapping (LPM) of the image
with its centroid as the origin.

2. Apply a 2-D Discrete Fourier Transform to the log-
polar version of the image.

3. Extract the magnitude of the Fourier Transform which
is invariant to rotation, scaling and translation.

Besides the watermark strength being set adaptively, the
main difference between this method and the one proposed
by [13], relies on the point which is selected as the origin
of the LPM. In [13], it is proposed to perform the log-polar
mapping with the centroid of a circular region as the ori-
gin, instead of the whole image region. This centroid is
obtained by calculating first the image centroidG0. Then,
the centroid of a circular region with radiusr and center
G0 is computed. The new pointG1 is used as the origin
of a circular region with radiusr and the centroidG2 of
this region is computed.G1 is compared toG2; if they
coincide, the process stops, otherwise, it is repeated until
they converge on the same point. The aim of this strategy
is to have an invariant point as the origin of log-polar coor-
dinates system, despite the geometrical distortions that the
image might have suffered. However, experiments showed
that this method is time-consuming and it is unstable when
the image suffers attacks like cropping. So, the image cen-
troid is used instead. It exhibits a more than reasonable
stability when dealing with some geometric distortions

Due to lack of space, we refer to [13] for a more de-
tailed description of the properties of the Log-Polar map-
ping and the Discrete Fourier Transform, and how they can
be applied to obtain a RST invariant domain.

4.1 Watermark embedding

The embedding stage consists of obtaining a RST invari-
ant domain and embed the watermark into it. Given the
image to mark, the embedding process starts by comput-
ing the image centroid. To provide some robustness to
lossy compression and common image processing distor-
tions, the centroid is computed over a low-pass filtered ver-
sion of the image. By doing this, the centroid becomes
invariant to some distortions created by these operations.
The next step is to convert the image into its LPM version
such as the image maximum and minimum pixel perturba-
tions, with the image centroid as the origin. At this stage,
any rotation on Cartesian coordinates is converted into a
cyclic shift. The LPM is then followed by a 2-D Fourier

Transform. Its magnitude is taken to make a domain which
is also invariant to rotations. Then, a watermark generated
from the copyright owner’s keyk as described in (15) is
embedded into the RST invariant domain.

w = {wi : wi ∈ {−1, 1}, i = 1, . . . l} (15)

The l magnitude coefficients, wherel is the watermark
length, satisfying

f1 ≤
√

ρ2
i + θ2

i ≤ f2 (16)

are selected to embed the watermark. The selection of these
coefficients is based on the copyright owner’s keyk which
generates a permutation of the coefficients satisfying (16)
and takes the firstl coefficients from the permutation vec-
tor. To embed the watermark, the selected magnitude coef-
ficientsM(ρi, θi) are changed such that:

Mw(ρi, θi) = Mw(−ρi,−θi) = M(ρi, θi)(1 + αiwi),
(17)

whereαi is the is thei-th component of the optimal solu-
tion of the minimization constrained problem adapted from
(9) to this particular algorithm. Thus, givenFw(ρ′, θ′), the
DFT of the LPM of the marked image;LPMI(ρ, θ), the
original image LPM;LPM∆p(ρ, θ) andLPM∆q(ρ, θ),
the LPM version of the maximum and minimum perturba-
tions, respectively; the optimization problem to solve is:

minimize −
∑l

i=1 αi

subject to
|IDFT (Fw(ρ′, θ′)) − LPMI(ρ, θ)| ≤ LPM∆p(ρ, θ)
|IDFT (Fw(ρ′, θ′)) − LPMI(ρ, θ)| ≥ LPM∆q(ρ, θ)
0 ≤ IDFT (Fw(ρ′, θ′)) ≤ 255
0 ≤ αi ≤ 1

(18)
Once the watermark has been computed, the inverse

operations are performed. However, the inverse LPM (con-
verting log-polar map coordinates into Cartesian coordi-
nates), such as the LPM, induces the inevitable interpola-
tion errors, leading to a loss of image quality. So, to avoid
this situation, the ILPM is only applied to the watermark
signal and finally added to the given image.

4.2 Watermark detection

The detection scheme has the same initial operations as the
embedding scheme. Thus, a low-pass filter is first applied
to the image and then, its centroid is computed. The second
step consists of computing the LPM of the image. Then, the
2-D DFT is applied to the image LPM and its magnitude
is extracted. The watermark sequence is then generated
from the copyright owner’s keyk. A set of selected coef-
ficients satisfying (16), is selected according to the strat-
egy described in the embedding scheme and, finally, the
correlation coefficient (19) is computed and compared to
a thresholdT in order to minimize both false alarms and



false rejections.

ρ(w, M) =

∑l
i=1(wi − w)(M(ρi, θi) − M)

∑l

i=1(wi − w)2
∑l

i=1(M(ρi, θi) − M)2

(19)
Thus, ifρ(w, M) is greater thanT , the detector reports that
the watermark is present.

5 Experimental Results

To test the described watermarking scheme in Section 3
and, consequently, the proposed spatial masking, the im-
age ”Cameraman” (a gray-scale image of size 256 by 256)
was watermarked and some attacks were performed over it.
Two watermarked versions of the image were created: one
was the result of an embedding procedure using the pro-
posed spatial masking, while the other one, was the result
of embedding the same watermark, but ignoring the mini-
mum pixel perturbations during the perceptual mask analy-
sis. Figure 2 depicts the original image and its watermarked
version using algorithm I and the proposed spatial mask-
ing technique. On these experiments, the watermark length

(a) (b)

Figure 2. (a) original image; (b) watermarked image using
algorithm I.

was set to 200 and the canonical size was set to 200 by 200
pixels. The attacks included scaling (from a scale factor
of 0.1 to 2.5, using nearest neighbour, bilinear and bicubic
interpolation methods), lossy compression. According to
Figures 4 and 3, it is possible to conclude the robustness
of the scheme to these attacks. Concerning JPEG compres-
sion, the watermark was successfully detected down to a
quality factor of 15%, and it was able to survive to a wide
range of scale changes. When compared to the results ob-
tained with the same algorithm, but ignoring the minimum
pixel perturbations, it is readily seen that the introduction of
the aforementioned perturbations increased the robustness
of the scheme.

The proposed spatial masking technique was also
tested on algorithm II. In this case, the image ”Peppers”
(a 200 by 200 RBG image) was watermarked. Like in the
previous tests, two watermarked versions of the test image
were created. Figure 5 depicts the original image and its
watermarked version using algorithm II and the proposed

spatial masking technique. In these last experiments, the
watermark length was set to 500 and the sampling rates
on angular and radial direction were both set to 300. The
attacks included only rotation. Figure 6 depicts the detec-
tion performance of the proposed solution under rotation
attacks. The increase of robustness to rotation attacks, by
adding minimum pixel perturbations, is not so meaning-
ful. However, the successive loss of information due to
the conversion to LPM and its inverse operation, during the
embedding stage of algorithm II, explains the observed re-
sults.

6 Conclusions and future work

In this paper was proposed the introduction of minimum
pixel perturbations constraints into a spatial masking tech-
nique based on the Noise Visibility Function. These min-
imum pixel perturbations are a result of measuring the ef-
fects of distortions on image regions: the ones which are
more resilient to distortions will have higher minimum
pixel perturbations, while regions which are more vulner-
able to distortions, will have lower pixel minimum pixel
perturbations. By defining these minimum pixel perturba-
tions and deriving the maximum pixel perturbations from
the Noise Visibility Function, it is possible to develop an
optimal embedding watermarking scheme, where regions
which are less affected by distortions can be more per-
turbed after the watermark insertion, however maintaining
the good levels of imperceptibility imposed by the maxi-
mum pixel perturbations.

According to the experiments, the inclusion of mini-
mum pixel perturbations improves the robustness of the de-
scribed watermarking schemes against attacks such as ro-
tation, scaling and lossy compression.

Further research directions include applying the pro-
posed masking strategy to a DCT embedding technique and
to exploit some methods related to constrained optimiza-
tion in order to improve the effectiveness of the optimiza-
tion problem, since tends to exhibit a high computational
cost and some solutions are sub-optimal.
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Figure 3. Similarity coefficients for several scaled versions
of the watermarked image, using: (a) bilinear interpolation;
(b) nearest neighbour interpolation; (c) bicubic interpola-
tion.
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Figure 4. Similarity coefficients for several JPEG quality
factors.
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Figure 5. (a) original image; (b) watermarked image using
algorithm II.
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Figure 6. Correlation coefficient for several rotation angles.


