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Visual complexity influences people's perception of, preference for, and behaviour toward many classes of ob-
jects, from artworks to web pages. The ability to predict people's impression of the complexity of different
kinds of visual stimuli holds, therefore, great potential for many domains, basic and applied. Here we use edge
detection operations and several image metrics based on image compression error and Zipf's law to estimate
the visual complexity of images. The experiments involved 800 images, each previously rated by thirty partici-
pants on perceived complexity. In a first set of experiments we analysed the correlation of individual features
with the average human response, obtaining correlations up to rs = .771. In a second set of experiments we
employed Machine Learning techniques to predict the average visual complexity score attributed by humans
to each stimuli. The best configurations obtained a correlation of rs = .832. The average prediction error of the
Machine Learning system over the set of all stimuli was .096 in a normalized 0 to 1 interval, showing that it is
possible to predict, with high accuracy human responses. Overall, edge density and compression error were
the strongest predictors of human complexity ratings.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

People's preferences for visual objects, scenes, and displays are the
result of various cognitive and affective processes (Chatterjee, 2004;
Leder, Belke, Oeberst, & Augustin, 2004). Research has shown that sev-
eral perceptual features—such as colour, colour combinations, contour,
or symmetry—influence people's visual preferences and affective re-
sponses (Bertamini, Palumbo, Gheorghes, & Galatsidas, in press;
Palmer, Schloss, & Sammartino, 2013; Pecchinenda, Bertamini, Makin,
& Ruta, 2014). One of such features, complexity, is believed to have a
strong impact on preference and affect, given its relation to arousal
(Berlyne, 1971; Marin & Leder, 2013), and has therefore been awarded
central roles in psychological models of aesthetic appreciation (Berlyne,
1971; Fechner, 1876). From a basic science perspective, thus, research
on how the perceptual features that contribute to visual complexity
are processed, and how this processing leads to liking and other affec-
tive responses, increases our understanding of one of our species dis-
tinctive traits: the capacity for aesthetic appreciation. From an applied
perspective, it has implications for the design of architectural spaces
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/115667/2009). Marcos Nadal
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(Heath, Smith, & Lim, 2000; Imamoglu, 2000), advertisements
(Pieters, Wedel, & Batra, 2010), packages (Reimann, Zaichkowsky,
Neuhaus, Bender, & Weber, 2010), web pages (Bauerly & Liu, 2008;
Krishen, Kamra, & Mac, 2008; Lavie & Tractinsky, 2004; Moshagen &
Thielsch, 2010), and in-vehicle navigation devices (Lavie, Oron-Gilad,
& Meyer, 2011), among other domains, where visual complexity im-
pacts both liking and usability.

It has long been believed that two aspects of complexity, order and
variety, determine beauty. From this perspective, beauty emerges
from “unity in variety” (Tatarkiewicz, 1972). The importance of two
different—and sometimes opposing—forces was introduced into exper-
imental psychology by Fechner (1876), who formulated the “principle
of unitary connection of the manifold” (Cupchik, 1986), that argued
that stimuli are pleasing when they adequately balance complexity
and order. Birkhoff (1932) formulated this relation between order and
complexity in mathematical terms, and argued that beauty increased
with order and decreased with complexity. He defined order on the
basis of repetition and redundancy, and complexity as an expression
of numerousness. Eysenck's (1941, 1942) studies on the correlation be-
tween the aestheticmeasure predicted by Birkhoff's (1932) formula and
participants' beauty ratings suggested that both order and complexity
contribute positively to the appreciation of beauty.

Berlyne (1970, 1971)was probably the first to provide a proper psy-
chobiological explanation for the effects of complexity on preference.
Berlyne (1971) posited that the hedonic state resulting from the inter-
action of reward and aversion brain systemswould lead people to prefer
intermediate levels of complexity, whichwas defined according to such
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aspects as pattern regularity, amount of elements, their heterogeneity,
or the irregularity of the forms (Berlyne, 1963, 1970, 1971; Berlyne,
Ogilvie, & Parham, 1968). In Berlyne's framework, order is not orthogo-
nal to complexity, given that disorganization is regarded as a kind of
complexity, together with the amount of elements. Several studies
were conducted to test this hypothesis, employing diverse visual stimu-
li. Recent research has shown that their results were strongly condi-
tioned by the way complexity had been defined, manipulated and
measured (Nadal, Munar, Marty, & Cela-Conde, 2010).

2. Measuring complexity

It has been known for some time now that people's perception of
complexity is not merely a direct reflection of the complexity inherent
to visual stimuli. Attneave (1957) noted that “the amount of informa-
tion contained in a stimulus (from the experimenter's point of view)
may vary greatly without changing the apparent complexity of the
stimulus” (Attneave, 1957, p. 225). Perception is a constructive process.
Although it is based on sensory information, its purpose is not to render
the world as it is, but to provide us with an image that we can under-
stand and is coherent with our prior knowledge about the world. In
order to do so, perception is guided by inference, hypotheses, and
other top-down processes, as well as context, which can strongly influ-
ence the appearance of an object. Gestalt psychologists characterized
several perceptual processes whereby visual features are joined, segre-
gated and grouped to constructmeaningful images, and these processes
have a crucial role in determining perceived complexity (Strother &
Kubovy, 2003).

Even Berlyne (1974) emphasized “The collative variables [including
complexity] are actually subjective, in the sense that they dependon the
relations between physical and statistical properties of stimulus objects
and processes within the organism. A pattern can be more novel, com-
plex, or ambiguous for one person than for another or, for the same per-
son, at one time than at another”. “Nevertheless — he added — many
experiments, using rating scales and other techniques, have confirmed
that collative properties and subjective informational variables tend,
as onewould expect, to vary concomitantly with the corresponding ob-
jective measures of classical information theory” (Berlyne, 1974, p19).

In principle, thus, it should be possible to arrive at a computational
measure of visual complexity. This constitutes an interesting objective
for at least two reasons. In a basic sense, measures of images' intrinsic
complexity would enable determining the perceptual, cognitive or con-
textual features that influence perceived complexity, moving closer or
away from the objective (computational) measure. In an applied
sense, it would allow researchers, designers and engineers to anticipate
participants', consumers' and users' aesthetic and affective responses to
the complexity in their products, ranging from web pages to architec-
tural facades, and including visual displays of all sorts. This would great-
ly save the time and costs related with post-production tests and
surveys.

One of the most popular way of determining visual complexity has
been to derive a set of normative scores by asking large samples of par-
ticipants to rate sets of stimuli on a number of scales, including com-
plexity (Alario & Ferrand, 1999; Bonin, Peereman, Malardier, Méot, &
Chalard, 2003; Snodgrass, 1997). This method, however, has a number
of drawbacks. First, people's rating of complexity can be confounded
by familiarity (Forsythe, Mulhern, & Sawey, 2008) and style (Nadal
et al., 2010). Second, it is only useful for images that have already
been produced, and does not allow the prediction of the perceived
complexity of images whose production is being planned or under
development. In this sense, algorithms representmore fruitful and prac-
tical avenue possibility.

In their study on icon abstractness García, Badre, and Stasko (1994)
developed an algorithmic measure of complexity. This measure took
into account the amount of horizontal, vertical, and diagonal lines, as
well as the number of open and closed figures, and letters in each
icon. McDougall, Curry, and de Bruijn (1999) used the same measure
to quantify the complexity of a new set of figures, and they showed
that it correlated well with people's judgement of visual complexity
(McDougall, de Bruijn, & Curry, 2000). Given how time consuming it
was to calculate this metric, Forsythe, Sheehy, and Sawey (2003) de-
vised an automated system to measure icon complexity. They based
this metric on perimeter detection measures and a structural variability
measure. Their results showed strong correlations between their metric
and the scores provided by García et al. (1994) and McDougall et al.'s
(1999) studies, revealing that it is possible to approximate human
appraisals of complexitywith computational metrics of structural prop-
erties of images.

Themain drawback of this kind ofmetrics is its limited application to
relatively simple and isolated icons and symbols. Algorithmic measures
of complexity for richer stimuli, like pictures from nature, chart displays
and art, have tended to be based on algorithmic information theory
(Donderi, 2006). In short, this theory postulates that the minimum
length of the code required to describe a visual image constitutes a
good measure of its complexity (Leeuwenberg, 1969; Simon, 1972).
Donderi (2003) showed that compressed file size was a good approxi-
mation to this minimum length. Furthermore, JPEG and ZIP compressed
file lengths significantly correlated with subjectively rated complexity
and predicted search time and errors in tasks involving chart displays
(Donderi & McFadden, 2005).

Computational measures have also been applied to attempt to quan-
tify the complexity of artworks. Forsythe, Nadal, Sheehy, Cela-Conde,
and Sawey (2011) examined the correlation between people's judge-
ment of complexity for 800 artistic and nonartistic, abstract and repre-
sentational, visual stimuli and JPEG and GIF compression measures, as
well as with a perimeter detection measure. Their results showed that
the three computational measures significantly correlated with judged
complexity, with GIF compression exhibiting the strongest relation
(rs = .74) and perimeter detection the weakest (rs = .58), though
there were certain differences according to the kind of stimuli.

Marin and Leder (2013) also compared the extent to which several
computational measures correlated with participants' complexity
ratings of different kinds of materials. For a subset of stimuli from
the International Affective Picture System (Lang, Bradley, &
Cuthbert, 2005), they found that TIFF file size (rs = .53) and JPEG
file size (rs = .52) correlated strongest with subjective complexity
ratings. Similarly to Forsythe et al.'s (2011) work, Marin and Leder
(2013) reported that measures of perimeter detection showed
weaker correlations (rs ~ .44). For this set of stimuli, the highest cor-
relations were obtained with an edge detection measure: the root
mean square contrast (RMS), related to the presence of high-
contrast features. In this case, the correlation between complexity
ratings and the images' mean contrast values of the RMS contrast
map was rs = .59. Interestingly, these results were not mirrored in
Marin and Leder's (2013) second experiment, which aimed to exam-
ine the relation between the same measures and human complexity
ratings of 96 representational paintings. For this set, none of the
compressed file size measures correlated significantly with the rat-
ings. In fact, the only measure to correlate significantly with com-
plexity ratings was the standard deviation of the mean values of
edge detection based on phase congruency (rs ~ .38).

The discrepancies between Forsythe et al.'s (2011) and Marin and
Leder's (2013) results probably have to do with the selected materials
and procedure. Whereas Forsythe et al. (2011) excluded affectively
moving images, Marin and Leder (2013) selected the images in the
two aforementioned experiments to accomplish a balanced variation
along the arousal and pleasantness dimensions. The images used by
Forsythe et al. (2011) were selected on the basis of pilot experiments
to cover a broad range of visual complexity, understood in a general
sense as the degree of intricacy; the ones used by Marin and Leder
(2013) were either figure-ground compositions or complex visual
scenes.
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Taking a different approach, Taylor, Micholich, and Jonas (1999) ar-
gued that Jackson Pollock's renowned drip paintings were fractal pat-
terns, and that the fractal dimension of such patterns could be
quantified. Subsequently, Taylor, Micholich, and Jonas (2002) showed
that over a decade the fractal dimension of Pollock's paintings increased
almost linearly. Fractal dimension is a measure of how much space is
filled by a fractal, and could be understood to reflect some form of visual
complexity. Spehar, Clifford, Newell, and Taylor (2003) showed that the
fractal dimension of Pollock's art corresponds to the range of maximum
preference for fractals in natural images and simulated coastlines. Jones-
Smith and Mathur (2006), however, have questioned this use of fractal
dimension in Pollock's artworks.

To the best of our knowledge, the work of Machado and Cardoso
(1998) constitutes the first attempt to use image compression to esti-
mate the human perception of complexity and of aesthetic value. In
this early work they resort to JPEG and Fractal image compression to
judge the aesthetic value of images. To assess the approach, the authors
submit their system to theDesign Judgment Test (Graves, 1948)— a test
designed to determine how humans respond to several principles of
aesthetic order. The percentage of correct answers obtained by the
system depends on its parameterization, ranging from 54.4% to 73.3%,
with an average of 64.9% over the considered parametric interval.
Eysenck and Castle (1971) report average results for art and non-art
students of 64.4% and 60%, with variances below 4%. In later studies
similar approaches were used to generate images of arguable aesthetic
merit (Machado & Cardoso, 2002; Machado, Romero, & Manaris, 2007;
Machado, Romero, Santos, Cardoso, & Pazos, 2007). Machado, Romero,
and Manaris (2007) and Machado, Romero, Santos, et al. (2007) used
an Artificial Neural Network (Rosenblatt, 1958; Rumelhart et al.,
1986) in conjunction with a subset of the features proposed in this
paper, obtaining an average success rate of 71.67% in the Design Judg-
ment Test, while in Machado, Romero, and Manaris (2007) and
Machado, Romero, Santos, et al. (2007) it was used to identify the au-
thor of paintings obtaining, in this case, success rates above 90% for all
considered painters. Although the direct comparison of the results of
these systems to those of humans is tempting, Machado & Cardoso,
(1998), Machado, Romero, and Manaris (2007) and Machado,
Romero, Santos, et al. (2007) refrain from making this comparison,
warning that it can be misleading. Nevertheless, it is reasonable to
state that these results demonstrate the viability of the approach and
are competitive with the ones obtained by humans.

3. Automated measures of complexity

In this section we will present the basic assumptions underlying the
automated measures of image complexity used in this study. We will
first refer to the importance of edges in image perception, then we
will analyse the relation between compression and complexity, and
finally we will present entropy estimates, such as fractal dimension
and Zipf's law metrics.

3.1. Edge detection

Edges in an image usually indicate changes in depth, orientation,
illumination, material, object boundaries, and so on. As such, edge de-
tection is vital for human and computer vision (e.g., Palmer, 1999). It
is thus reasonable to expect that perceived complexity would relate
with two different edge parameters: their quantity and their distribu-
tion across the image. Accordingly, images regarded as complex are ex-
pected to tend to have (i) a greater number and (ii) a less predictable
distribution of edges across the image than simpler images.

Following this line of reasoning, we applied edge detection algo-
rithms in the experiments reported in this paper. This involves
transforming the image into a newonewhere the edges are represented
inwhite and everything else is represented in black (Fig. 1). The number
of pixels that represent edges can be estimated by considering the
average colour of the image resulting from the edge detection step.
We will also estimate the regularity of edge distribution, as described
below, by applying image compression procedures to the results of
edge detection, and by calculating the ZIPF's law coefficients of the
edge-images.
3.2. Complexity and compression

In the scope of Algorithmic Information Theory (AIT), complexity
and compression are intimately related concepts (Salomon, 1997). In-
formally, simple images have redundant information and predictable
data — which can be explored to represent them compactly — and are,
therefore, compressible. In highly complex images, the value of a pixel
cannot be predicted from the remaining ones, no redundancy exists
and, therefore, is incompressible. In other words, a simple object can
be represented compactly while a complex one requires a lengthy
description.

The notions above were expressed formally by Andrey Kolmogorov,
who introduced the notion of descriptive complexity. In simple terms,
The Kolmogorov-complexity, k(x), of an object, x, is the size of themin-
imum programme that encodes x. Unfortunately, Kolmogorov-
complexity is non-computable: while it is conceivable to calculate it
for some particular objects, it is impossible to calculate it in finite time
for a generic object by computational means. As such, in general, the
best that can be attained are estimates of the Kolmogorov-complexity
of an object.

In psychology, the Structural Information Theory (Leeuwenberg,
1968, 1969) evolved in parallel and independently with AIT. Although
SIT has been applied to different domains it is, in essence a theory
about human visual perception. It can be seen as a formalization of
Occam's Razor principle: the best hypothesis for a set of data is the
one that leads to the largest compression, i.e. the simplest. In the context
of visual perception this implies that, when interpreting visual stimuli,
which by default is ambiguous, the brain prefers the simplest interpre-
tation. A recent multidisciplinary overview of perceptual organization
can be found in van der Helm (2014).

Although SIT and AIT share many similarities, namely the fact that
both rely on the notion of descriptive complexity, important differences
exist: (i) SIT distinguishes between structural andmetrical information;
(ii) the outcome of SIT is a hierarchical organization while k(x) outputs
a complexity value; (iii) SIT focuses on a restricted set of regularities
while AIT considers all possible regularities; (iv) due to the previous
point, SIT is computable, while k(s) is non-computable.

While SIT is computable, the application of SIT implies a preliminary
step, encoding the artefact being measured (e.g. an image) as a symbol
string where each symbol refers to a perceptual primitive (van der
Helm, 2004). Thus, a symbolic representation of the artefact is required,
and as such applying SIT to an image implies finding a symbolic repre-
sentation to the image. As such, although insights from SIT are valuable,
using SIT in the context of this work is impossible since we are dealing
directly with visual stimuli (i.e. images represented in pixel format)
and that the conversion of images into an adequate symbolic represen-
tation is still an open problem in computer vision. For these reasons, we
use as primary source of inspiration the concepts of complexity derived
from AIT, which are, in essence, common to SIT.

The size of the minimum programme that encodes an object de-
pends not only on the object but also on the “machine” for which the
programme was built. That is, by definition, complexity depends on
the one encoding, or perceiving, the object. As such, and considering
the purposes of the current study, one should seek Kolmogorov-
complexity estimates that correlate well with complexity as perceived
by humans.

The most popular image compression schemes are lossy, the
encoding of the images involves a loss of detail that is, hopefully, negli-
gible and undetectable by the human eye.



Fig. 1. Examples of the application of Canny (top row) and Sobel (bottom row) edge detection filters to a popular computer graphics testing image, “Lenna”, which is presented on the left.
The images illustrate, from left to right, the horizontal edges, vertical edges and all edges detected by each of the algorithms.
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In this study we will use two lossy compression techniques, JPEG
and fractal encoding, to estimate the perceived complexity of the im-
ages. JPEG encoding relies on the fact that human vision is much more
sensitive to small variations over large areas than to the exact strength
of high-frequency variations (see, e.g., Palmer, 1999). The details of
the JPEG algorithm are not relevant for the scope of this paper, for the
current purpose it is enough to note that: i) The JPEG encoding scheme
is perceptually motivated; ii) in essence, since the image is split in
blocks of 8 × 8 pixels, it is a low-level and local compression scheme,
it does not take advantage of non-local regularities of the image.
While (i) prompts its use in this study, (ii) indicates one of the most
pressing shortcomings of this encoding in this context, whichhas driven
us to consider other encoding schemes. Unlike JPEG, fractal image com-
pression (Fisher, 1995) is a global scheme that takes advantage of the
self-similarities present in the image (see Fig. 2). An image is encoded
through a partitioned iterated function system, which, in simple
terms, represents an image by identifying the similarities between dif-
ferent regions of the image and the transformations (e.g. rotation,
brightness adjustment) required to produce a region from a similar
one. Therefore, it takes advantage of high-level structural information
and non-local regularities, which allows it to use perceptually relevant
Fig. 2. The squares indicate similarities among different areas, though many others exist.
image characteristics such as symmetry, repetition, or even rhythm, to
attain better compression. Due to its properties, we consider that fractal
image compression is aligned with some of the principles and ideas
defended by SIT. It is important to notice that fractal image compression
is a general-purpose compression technique that can be applied to frac-
tal and non-fractal images. The experimental results attained in previ-
ous studies (Machado & Cardoso, 1998; Machado & Cardoso, 2002;
Machado, Romero, & Manaris, 2007; Machado, Romero, Santos, et al.,
2007) indicate the adequacy of fractal image compression for estima-
tion of image complexity.

3.3. Entropy estimations by Zipf's Law

Zipf's law (Zipf, 1949) concerns the frequency of occurrence of nat-
ural phenomena. Informally, a phenomenon follows Zipf's distribution
when the frequency of occurrence is inversely proportional to its rank.
Using natural language as an example, the most frequent word is, ap-
proximately, twice as frequent as the second most frequent word,
three times as frequent as the third most frequent word, and so on.
Zipf's law basedmetrics have been usedwith success in themusical do-
main (Manaris, Vaughan, Wagner, Romero, & Davis, 2003) but the re-
sults of their application in image analysis are, to the best of our
knowledge, inconclusive. The usefulness of Zipf's law based metrics de-
pends on the identification of phenomena that are perceptually
relevant.

4. Objectives of the present research

Here we employ Canny and Sobel edge filters, as well as a series of
estimates used in other scientific studies, to estimate the complexity
of visual stimuli by computational means. In the first set of experiments
(Study 1) we examine the correlation between visual complexity as
rated by human participants and metrics based on JPEG compression,
fractal compression and Zipf's law. The selection of these metrics was
inspired by several studies which associate aesthetic with complexity
(Arnheim, 1966; Machado & Cardoso, 1998; Machado, Romero, &
Manaris, 2007; Machado, Romero, Santos, et al., 2007) and Zipf's law
(Manaris, Purewal, & McCormick, 2002).

In the second set of experiments (Study 2) an artificial neural net-
work is employed to predict the complexity rating assigned by humans
to different images. The Artificial Neural Networks based their predic-
tions on combinations of the metrics and filters, whose individual
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performance had been correlated with human ratings in the course of
the first experimental stage.
5. Study 1: correlation between perceived complexity and automatic
metrics

5.1. Methods

5.1.1. Stimuli
Stimuli were taken from a set of over 1500 images digitalized and

used by Cela-Conde et al. (2004, 2009). The set included abstract and
representational images, some of which were artworks, while others
were not. Representational and abstract stimuli differed with regard to
the presence or absence of explicit content, respectively. Artistic stimuli
included reproductions of renowned artists' paintings, which have been
catalogued and exhibited inmuseums.We took paintings fromdifferent
styles ormovements, namely realism, cubism, impressionism, and post-
impressionism. This choice was guided by the collection Movements in
Modern Art of the Tate Gallery London (Cottington, 1998; Gooding,
2001; Malpas, 1997; Thomson, 1998), and supplemented with 17th
and 18th European paintings. Non-artistic stimuli consisted of photo-
graphs taken from the book series Boring Postcards (Parr, 1999, 2000),
a sample of images from the series of CDs Master Clips Premium
Image Collection (IMSI, San Rafael, CA), used in industrial design, to
illustrate books, and so on, together with some photographs taken by
us. This category, thus, included artefacts, landscapes, urban scenes,
and other familiar visual stimuli that would generally not be considered
for exhibition in museums. Our artistic and non-artistic categories are
analogous to Winston and Cupchik's (1992) distinction of high art ver-
sus popular art. They noted that whereas popular art emphasizes sub-
ject matter, especially its pleasing aspects, High art relies on a broader
range of emotions and knowledge, striving to achieve a balance be-
tween content and style.

These images were either discarded or modified in order to mini-
mize the influence of strange variables on the complexity ratings by
human participants. First, aiming to avoid the impact of familiarity,
only relatively unknown artworks were selected. Second, to avoid the
influence of ecological variables, we eliminated those stimuli that
contained clear views of human figures and human faces, or portrayed
emotional scenes. Third, to reduce the undesired influence of psycho-
physical variables, the resolution of all stimuli was set to 150 ppi, and
their size to 9 by 12 cm. Additionally, the colour spectrumwas adjusted
in all images. For each one, values of extreme illumination and shadow
were adjusted to attain a global tone range allowing the best detail.
Stimuli with a mean distribution of pixels concentrated in both the
left (dark) and right (light) extremes of the histogram were discarded.
Thereafter, the luminance of the stimuli was adjusted to between 370
and 390 lx. Finally, the signature was removed from all signed pictures.
Any stimulus that could not be reasonably modified according to all of
these specifications was discarded.

The final standardized set included 800 images in 5 categories: 262
abstract artistic (AA), 141 abstract non-artistic (AN), 149 representa-
tional artistic (RA), 48 representational non-artistic (RN), and 200 pho-
tographs of natural and human-made scenes (NHS). Examples of each
category are presented in Fig. 3. The set was then divided into 8 subsets
pseudo-randomly to balance stimuli categories across subsets. A group
of 240 participants (112 men and 128 women, whose average age was
22.03, with a standard deviation of 3.75) was randomly divided into 8
subgroups of 30 people. Each subgroup was asked to rate the visual
complexity of one of the stimuli subsets on a 1 to 5 Likert scale, ranging
from very simple to very complex. The average score awarded by each
corresponding subgroup of participants was considered to represent
the value of perceived complexity for each stimulus in the final set.
Stimuli from this set have previously been used by Cela-Conde et al.
(2009), Forsythe et al. (2011), and Nadal et al. (2010).
5.2. Procedure: feature extraction

The feature extraction process implies three steps: (i) pre-
processing, including all the transformation and normalization opera-
tions applied to every input image; (ii) applying filters to each image;
and (iii) calculating statistical measurements and image complexity
estimates.

The first step involved pre-processing the set of 800 stimuli
described in the previous section. All images were individually subject-
ed to a series of transformations before they were analysed. Each image
was loaded and resized to a standard width and height of 256 × 256
pixels, transformed into a three channel image in the RGB (red, green
and blue) colour space, with a depth of 8-bit per channel, and all pixel
values scaled to the [0; 255] interval. This step ensured that all input im-
ages shared the same format and dimensions. Afterwards, each image
was converted into the HSV (Hue, Saturation and Value) colour space,
and its HSV channels were split. Each of these channels was stored as
a 1-channel grey-scale image. From here on we will refer to these
images as H, S and V. A new grey-scale image was also created by
performing a pixel by pixel multiplication of S and V channels and scal-
ing the result to [0; 255]. From here on we will refer to this image as CS
(colourfulness).

The second step was applying filter operations to the images
resulting from the prior one. We used two edge detection algorithms
Canny (1986) and Sobel (1990), which are among the most popular
edge detection algorithms in computer graphics. Both required three
transformation operations: identifying horizontal edges, vertical
edges, and edges in all directions. The edge detection filters were
applied individually to each of the image channels mentioned previous-
ly (H, S, V, CS).

The third stepwas the estimation of complexitymetrics. Themetrics
described here were individually applied to the unfiltered channel-
images and to the six images resulting from the application of Canny
and Sobel edge detection. The set of metrics employed can be divided
into two distinct groups: generic statistical information metrics, which
included average and standard deviation; complexity estimates, which
included JPEG and fractal compression, Zipf rank frequency and Zipf
size frequency (Machado, 2007; Machado & Cardoso, 1998; Machado,
Romero, Cardoso, & Santos, 2005; Machado, Romero, & Manaris, 2007;
Machado, Romero, Santos, et al., 2007).

5.2.1. Average and standard deviation
The average (Avg) and the standard deviation (StD) were calculated

using the pixel intensity value of each image, except for the H-channel
image. Since the H-channel is circular, the average and the standard
deviation were calculated based on the norm and angle of Hue values.
In addition, the Hue angle value was multiplied by the CS value, and
consequentially a norm was calculated using Hue and CS values. It is
important to notice that, like all othermetrics, Avg and StDwere applied
to the filtered and unfiltered images.

5.2.2. JPEG and fractal compression
The rationale for using these methods is the following: JPEG and

fractal compression are lossy compression schemes, i.e., the compressed
image does not exactly match the original, producing a compression
error. All other factors being equal, complex images will tend toward
higher compression errors and simple images will tend toward lower
compression errors. Additionally, complex images will tend to generate
larger files than simple ones. Thus, the compression error and file size
are positively correlated with image complexity. Considering these
factors the complexity estimate of image, i, according to the lossy
encoding scheme, f, is given by the following formula (Machado &
Cardoso, 1998):

Complexity ið Þ ¼ rmse i; f ið Þð Þ � s f ið Þð Þ=s ið Þ;



Category Examples

Abstract
Artistic

Abstract
non-artistic

Representational
artistic

Representational
non-artistic

Photographs of natural 
and human-made scenes

Fig. 3. Examples of stimuli of each category.
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where rmse stands for root mean square error and s is the file size
function.

JPEG and fractal image compression schemes allow the specification
of the maximum tolerated error, which allows specifying the quality of
the encoding.We considered three levels of detail for each scheme, low,
medium, and high for each compression scheme. In the experiments
described here, fractal compression was performed using a quad-tree
fractal image compression scheme (Fisher, 1995).

5.2.3. Zipf rank frequency
Following the same rationale, and informed by work in the musical

domain (Manaris et al., 2003), we also employ Zipf's law-based metrics



Table 1
Descriptive statistics for the complexity ratings awarded by humans to images in each
category.

Category n Min. Max. Mean SD

Abstract artistic 262 1.36 4.94 3.75 0.60
Abstract non-artistic 141 1.06 3.91 1.79 0.51
Representational artistic 149 1.42 4.67 3.45 0.49
Representational non-artistic 48 1.30 4.39 2.74 0.81
Natural and human-made scenes 200 1.24 4.42 2.79 0.67
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(Zipf, 1949). The calculation of the Zipf rank frequency metric requires
counting the number of occurrences of each pixel intensity value in
the image, ordering by the number of occurrences, tracing a rank vs.
number of occurrences plot using a logarithmic scale in both axis, and
calculating the slope of the trend-line and the linear correlation with
the trend-line (Powers, 1998).

5.2.4. Zipf size frequency
This metric was calculated in a way similar to Zipf rank frequency.

For each pixel we calculated the difference between its value and the
value of each of its neighbour pixels. We counted the total number
occurrences of differences of size 1, size 2, …, size 255. We traced a
size vs. number of occurrences plot using a logarithmic scale in both
axis and calculated slope and linear correlation of the trend-line
(Powers, 1998).

After the application of the metrics, the results were aggregated to
form the image feature vectors. The average and standard deviation
for each channel image returned two values, except for the Hue channel
that returned four values for the average and two values for the stan-
dard deviation. The JPEG and fractal compression metrics returned
three values each, corresponding to the three considered compression
levels. Although these metrics were applied to all the images resulting
from the pre-processing and filtering transformations, the JPEG metric
was also applied to the RGB image. As for the Zipf's law based metrics,
the slope of the trend-line (m) and linear correlation (R2) of all grey-
scale images were extracted. In the case of the Hue channel, these met-
rics returned four values each: two considering only the Hue channel
and two considering the Hue and CS channels in conjunction. The com-
bination of pre-processing operations,filters andmetrics yields a total of
329 features per image. For the sake of parsimony these features are
named using a functional notation as follows: metric(filter(channel-
image, bargumentsN), bargumentsN). For instance Fractal(Canny(S,
All), High) refers to the feature resulting from the application of fractal
compression to the image obtained by applying Canny edge detection,
in all directions, to the saturation channel of the original image. The pa-
rameter high specifies that one is using the maximum level of detail
while compressing the image.

5.3. Results

This section presents the correlations between the average complex-
ity score awarded to each stimulus by humans (Nadal et al., 2010) and
the values obtained by the computational features we propose.
Throughout the paper we employ Spearman's correlation measure
Table 2
Features exhibiting the highest correlationwith human ratings across the entire set of images (c
in columns AA to NHS. Numbers within parentheses indicate the number of images in each ca

Metric Feature All AA (262

JPEG JPEG(Sobel(S,All), High) 0.771 0.606
Fractal comp. Fractal(Canny(S,All), High) 0.764 0.577
Zipf rank Rank(Canny(S,All), M) 0.762 0.570
Zipf size Size(Canny(S,All), M) 0.756 0.556
Avg. Avg(Canny(S,All)) 0.762 0.570
StD StD(Canny(S,All)) 0.762 0.570
and, as such, from here on we will simply refer to it by using the term
correlation.

Table 2 summarizes the results of this experiment by presenting, for
each of the six metrics, the feature that obtained the highest correlation
with the average complexity score awarded by humans to each image.
As can be observed, the maximum correlations with the ratings of the
entire set of images (column “All”) are similar for most metrics, with
JPEG(Sobel(S,All), High) attaining the maximum overall correlation,
0.771. The consistency of this set of features is highlighted by consider-
ing the correlation among them, which is always above 0.93. This min-
imum value is obtained by calculating the correlation between
JPEG(Sobel(S,All), High) and Size(Canny(S,All), M). (See Table 1.)

In addition to the correlation to the entire set of images, Table 2 also
reports the correlation for each of the five image categories. The corre-
lations for the subset of representational artistic images are lower
than for other categories, whereas the correlations for the subset of rep-
resentational non-artistic stimuli are the highest.

As can be observed in Table 2, the best overall results — i.e., those
where the correlation between computational estimates and human
ratings is higher—were obtained by applying the edge filters to the Sat-
uration colour channel of the images. This applies for all metrics consid-
ered in this study and constitutes, perhaps, the most striking finding of
this experiment.

Fig. 4 illustrates the application of the Canny filter to three of the im-
ages used in this study. They all belong to the representational non-
artistic subset, and exhibit different levels of complexity. It is clear
from this figure how the higher levels of complexity are associated
with a larger number and dispersion of edges, which are identified by
the edge detection operations.

Table 3 reports the features that provide highest correlations with
the ratings awarded by humans for each combination of filter and col-
our channel. As can be observed, the features using the Saturation chan-
nel yield the best results, followed by the ones using the Value channel.
The results obtained when considering the Hue channel are not as reli-
able, which can be explained by its circular nature that leads to the con-
sideration of non-existing edges, e.g. when the pixel values transition,
directly, from 255 to 0, an edge will be detected, however, this edge
does not exist since the channel is circular. Using edge detection tends
to produce better results than those obtainedwhennofilter is used (col-
umn “No Filter”). The results obtainedwithout edge detection filters are
similar to those reported by Forsythe et al. (2011).

Table 4 is similar to Table 2, however, in this casewe did not employ
edge detection operations. With these settings, the application of fea-
tures based on JPEG compression leads to similar results to those obtain-
ed by Forsythe et al. (2011) using GIF compression estimates.
Specifically, the average correlation for features using JPEG compression
on the V and S channels, without filtering, is 0.701. As is the case with
other metrics explored in this study, the best values are obtained
when using the S channel, where a maximum correlation of 0.743 is
reached. Features based on the fractal compression of the V and S chan-
nels, without filtering, yield an average correlation of 0.608 and a max-
imum correlation of 0.722, obtained with Fractal(NoFilter(S), High).

Considering that a negative correlation is as useful for the purposes
of this study as a negative one, the best correlation obtained using Zipf
olumn “All”). The correlationwith human ratings for each of the five categories is depicted
tegory.

) AN (141) RA (149) RN (48) NHS (200)

0.481 0.393 0.691 0.528
0.520 0.376 0.747 0.536
0.513 0.391 0.755 0.546
0.527 0.393 0.753 0.551
0.513 0.391 0.755 0.546
0.513 0.391 0.755 0.546



Complexity = 4.39 JPEG(Sobel(S,All), High) = 5.9673

Complexity 2.45 JPEG(Sobel(S,All), High) = 4.4659

Complexity = 1.30 JPEG(Sobel(S,All), High) = 2.6968

Fig. 4. Examples resulting from applying the Canny edge detection filter to 3 images of the representational non-artistic category. The original image is shown on the left, with the average
rating awarded by participants in Nadal et al.'s (2010) study. The image on the right is the result of applying the Canny filter to the saturation channel. As can be observed, higher levels of
detail correspond to higher amounts and dispersion of edges.We also present the value of the JPEG(Sobel(S,All),High) feature for each of the images, illustrating how it correlates with the
human perception of complexity.
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rank frequency over the V and S channels without filtering is −0.638,
corresponding to Rank(NoFilter(S), R2), while the average of the abso-
lute values of the correlations is 0.549. Zipf size frequency yields a best
correlation of 0.357 and an average correlation of 0.1363, in the same
conditions.

The average and standard deviation metrics produce poor results
when applied without edge detection filters to the V and S channels,
the best correlation values are −0.464 and −0.286 while the average
values are 0.2794 and 0.2436, respectively.
Table 3
Features exhibiting the highest correlationwith the ratings awarded by humans for each combin
of the Sobel filter for detecting all edges, vertical edges and horizontal edges, respectively. The

Filter/colour SobelAll SobelVertical SobelHorizontal

H 0.682
ZipfSizeM

0.671
FractalHigh

0.661
FractalHigh

S 0.771
JPEGHigh

0.764
JPEGHigh

0.761
JPEGHigh

V 0.715
JPEGHigh

0.718
FractalMedium

0.705
JPEGHigh
Overall these results indicate that JPEG and fractal compressionmet-
rics are robust, yielding good correlations with the average ratings
assigned by humans in a wide set of conditions, even when no edge de-
tection operation is applied. The same cannot be stated for the remain-
ingmetrics, whose performance depends, to a large extent, on the use of
edge detection operations.

Table 4 also shows the average correlation with each of the five
image categories. Previously, see Table 2, considering the images of
the RN category provides the strongest correlations while considering
ation offilter and colour channel. SobelAll, SobelVertical, Sobelhorizontal refer to the application
same applies for the Canny filter.

CannyAll CannyVertical CannyHorizontal No filter

0.624
JPEGLow

0.575
FractalLow

0.566
FractalLow

0.596
JPEGHigh

0.766
JPEGLow

0.737
JPEGHigh

0.719
JPEGHigh

0.743
JPEGHigh

0.708
JPEGHigh

0.711
FractalLow

0.674
JPEGHigh

0.704
JPEGHigh



Table 4
Features that do not use edge detection filters exhibiting the highest correlationwith human ratings across the entire set of images. The correlationwith human ratings for each of the five
categories is depicted in columns AA to NHS. Numbers within parentheses indicate the number of images in each category.

Metric Feature All AA (262) AN (141) RA (149) RN (48) NHS (200)

JPEG JPEG(NoFilter(S),High) 0.743 0.569 0.374 0.377 0.638 0.500
Fractal comp. Fractal(NoFilter(S), High) 0.722 0.554 0.467 0.377 0.622 0.499
Zipf rank Rank(NoFilter(S), R2) −0.638 −0.437 −0.310 −0.065 −0.596 −0.277
Zipf size Size(NoFilter(H + CS), R2) 0.357 0.501 −0.027 −0.040 0.282 0.112
Avg. AVG(NoFilter(V)) −0.464 −0.477 −0.164 −0.089 −0.687 −0.011
StD STD(NoFilter(S)) −0.286 −0.099 −0.307 −0.029 −0.492 −0.057
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those of the RA category provides theweakest. Therefore, although con-
sidering edge information tends to result in higher correlations, the
trend is similar with or without edge information and some image cat-
egories, e.g. RA, appears to be more problematic than others in what
concerns the estimation of image complexity.

Table 5 shows the correlations among the complexity estimates
without using edge detection operations. As it can be observed, in
general, the correlations are inferior to the ones obtained when
using edge detection. The high correlation between the metrics
base on image compression indicates that, although the compression
methods are radically different, they tend to yield highly correlated
values for most images.

5.4. Discussion

As previously mentioned the use of edge detection operators signif-
icantly improves the correlation between the computational estimates
of complexity and the human ratings. This difference is particularly vis-
ible when naive metrics such as Avg. or StD are used, and becomes less
accentuatedwhen image compressionmetrics are employed. In general
image compression techniques tend to attain higher compressions on
smooth images where the value of a given pixel is predictable, in the
sense that it can be estimated by considering the values of the surround-
ing pixels. As such, JPEG and fractal image compression will naturally
tend to compress imageswith a lowpercentage of edges better than im-
ages with a high number. Since the percentage of edges influences the
performance of compression, even when no edge detection operation
is applied, the advantage of using edge detection is bound to be less vis-
ible for these metrics than for the others.

Estimates such asAvg(Canny(s)), rs=0.762, directlymeasure the per-
centage of the pixels of the image that correspond to edges. Although, this
estimate shares similarities with the perimeter detection method
employedby Forsythe et al. (2011) (rs=.58), the experimental results in-
dicate that, in the considered conditions, the number of edges is a better
estimate of image complexity. Typically the best results are obtained
using Canny edge detection, which is expected since it tends to be more
reliable than Sobel edge detection. However, the highest overall correla-
tion, rs =0.771, was obtained using Sobel edge detection and JPEG com-
pression. Although the difference is marginal — the highest overall
correlation attained with Canny edge detection coupled with JPEG com-
pression is 0.766— an explanation is in order. Canny edge detection pro-
duces abrupt transitions between black and white, while Sobel edge
detection tends to produce smoother transitions (see Fig. 1). By design,
JPEG compression deals better with smooth than abrupt transitions. As
Table 5
Correlations among types of metrics. The feature showing the greatest correlation has been se

Metric Feature Human JPEG

JPEG JPEG(NoFilter(S),High) 0.743
Fractal comp. Fractal(NoFilter(S), High) 0.722 0.
Zipf rank Rank(NoFilter(S), R2) −0.638 −0.
Zipf size Size(NoFilter(H + CS), R2) 0.357 0.
Avg. AVG(NoFilter(V)) −0.464 −0.
StD STD(NoFilter(S)) −0.286 −0.1
the fidelity rating increases, the difficulty in dealing with these high fre-
quencies tends to distort the complexity estimate. Thus, although Canny
is amore reliable edge detector, the images resulting from Sobel edge de-
tection are more appropriate for JPEG compression.

The estimates based on saturation (S channel) provide the highest
correlations outperforming those based on value (V channel), which is
an unexpected result. In Fig. 5 we depict several examples from the
dataset, presenting the original image and the results of edge detection
on the S and V channels. As it can be observed, although the results tend
to be similar, in some extreme cases, e.g. the first row of Fig. 5, the dif-
ferences can be considerable. Overall, in the considered experimental
conditions, the analysis of changes in saturation, and consequent edge
detection, appears to provide a better indication of the boundaries
between objects than the analysis of changes in value. Further tests
are required to determine the generality of this result.

The correlations obtained using the JPEG (rs = .743) and Fractal
(rs = .722) compression without a previous edge detection step are
similar to those obtained by Forsythe et al. (2011) using GIF compres-
sion (rs = .74), but higher than those reported by Marin and Leder
(2013), even for their subset of IAPS images using TIFF (rs = .53),
JPEG (rs = .52), PNG (rs = .46), or GIF (rs = .29) compressions.

It is interesting to notice that avg(nofilter(v)) yields a rs = −0.46, a
correlation that is higher (in absolute value) than it would be expected,
since there is no apparent reason to expect that the average valuewould
correlate negatively or positively with complexity. An analysis of the re-
sults allows us to explain this occurrence. The overall correlation of
rs=−0.46 results from a rs =−0.687 for the stimuli of the RN catego-
ry, a rs =−0.477 for the AA category, and correlations close to zero for
the remaining categories (see Table 4). An analysis of the images be-
longing to this category reveals that they are frequently composed of
one or several objects positioned against a background, which is often
of a light colour. Therefore, images filled with objects tend to be darker,
and thus avg(nofilter(v)) will tend to be low, while those where the
background occupies most of the space tend to be lighter, resulting in
high avg(nofilter(v)), which explains the observed correlation.

In general, the proposed estimates perform better for representa-
tional non-artistic images, rs up to .755 (RN); obtain intermediate re-
sults for abstract artistic (AA), abstract non-artistic (AN) and
photographic (NHS) images, rs up to 0.606, 0.527 and 0.551, respective-
ly; and perform theworst for representational artistic images (RA), rs up
to 0.393. Reliably detecting edges of RN images tends to be a straightfor-
ward task. Although somedifficult stimuli exist, the same also applies to
the images in the AN and AA categories. Conversely, reliably detecting
edges of RA and NHS images is, in comparison, a difficult task.
lected for each metric, as described in Table 4.

Fractal C. Zipf rank Zipf size Avg.

984
594 −0.571
301 0.287 −0.290
501 −0.491 0.459 −0.485
13 −0.117 0.280 −0.375 0.384
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Contrasting the results of Tables 2 and 4 confirms that the gains in per-
formancewhen performing edge detection are low for the images of the
RA and NHS categories.

Therefore, if we consider the reliability of edge extraction as an indi-
cator of the quality of our metrics, then we would expect to obtain the
worse results in the RA and NHS categories. As such, what remains to
be explained is the difference in performance between the RA and
NHS categories. Our explanation for this fact is twofold: (i) Reliably
identifying edges on paintings is arguably harder than on photographs
since brushstrokes may introduce low level artefacts that difficult
edge detection, (ii) the semantics of the image arguably have a higher
influence in the perception of complexity in representational artistic
images than in photographs. Further experimentation is necessary to
confirm this interpretation.
Original Image V-Channel Edg

Fig. 5. Examples of stimuli belonging to the dataset (first column); the results of applying Cann
Canny edge detection to the S channel of those stimuli (third column).
6. Study 2: prediction of image complexity using Artificial Neural
Networks

6.1. Methods

6.1.1. Stimuli
Stimuli used in Experiment 2 were the same as in Experiment 1.

Namely, they were 800 images divided into 5 categories: 262
abstract artistic, 141 abstract non-artistic, 149 representational ar-
tistic, 48 representational non-artistic, and 200 photographs of natu-
ral and man-made scenes (see Fig. 3 for examples of each category).
Each stimulus has been rated by 30 participants, though not neces-
sarily the same ones (see methods of Study 1, above, for further
details).
e Detection S-Channel Edge Detection

y edge detection to the V channel of those stimuli (second column); the results of applying
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6.1.2. Procedure
Whereas the aim of Experiment 1 was to analyse the correlation of

each individual estimate with regard to complexity as rated by humans,
Experiment 2 aimed to ascertainwhether the average visual complexity
scores attributed by humans to each stimulus could be approximated by
employing information of several estimates and a machine learning
approach. As such, these experiments aim to answer two important
questions: (i) Is it possible to improve the results reported in Study 1
by combining several estimates? (ii) Is it possible to use computational
methods to learn to predict visual complexity as perceived by humans?

To answer these questions we conducted a series of experiments
where Artificial Neural Networks (ANN henceforth) are used to predict
the average visual complexity scores attributed by humans, based on
the estimates described in the previous section. A thorough introduc-
tion to ANNs is beyond the scope of this paper. Haykin (1994) provides
a comprehensive foundation to those interested in ANN research.

In simple terms, ANNs are computational models inspired by the
brain, and are able to learn. An ANN is a system of interconnected arti-
ficial neurons, which are simplified models of biological neurons.
Being one of the most popular machine learning approaches, ANNs
have been used for a wide variety of tasks including: pattern recogni-
tion, clustering, classification and prediction. To perform such tasks
the ANNs must be trained by exposing them to a set of examples (stim-
uli). Training can be unsupervised or supervised. In unsupervised training
theANNs is exposed to a set of examples and, using an appropriate algo-
rithm, will adapt in order to minimize a cost function that should be a
function of the stimuli and of ANNs' output. In supervised learning,
the model used in the course of the experiments reported here, the
ANN is trained by exposing it to a set of patterns each composed of a
stimulus and of desired response for that stimulus. Using adaptive ma-
chine learning techniques the ANN constructs an internal model of the
training patterns learning to produce the desired response for each
stimulus. Successful learning requires that the ANN is able to generalize,
i.e. producing adequate responses to patterns used for training can be
accomplished through memorization, learning implies that the ANN is
also able to produce adequate responses to patterns that were not
used on its training.

The ANNs used in these experiments have a classical architecture:
they are composed of an input layer of neurons, a hidden layer, and an
Fig. 6. Schematic representatio
output layer. As the names indicate, the input layer determines the
data that is available to the ANN, while the output is the response of
the ANN. The hidden layer is the main responsible for performing the
computations required to convert the input in the desired output.
Based on prior studies (Machado, Romero, & Manaris, 2007; Machado,
Romero, Santos, et al., 2007; Machado et al., 2005), we empirically
chose to include 15 neurons in this layer. Each image is described by
means of the features presented in the Procedure section of Study 1,
and the values of these features feed the input layer. Thus, the ANN
does not “see” the images, it only has access to the corresponding com-
putational visual complexity estimates. Any information that is not cap-
tured by these features is lost. Each neuron of the input layer
corresponds to a feature, and vice-versa. Aiming to test different combi-
nations of features, the input layer has a variable number of neurons.
Fig. 6 shows a schematic example of the topology of ANNs that were
used.

To train the ANNs we used a backpropagation algorithm (Haykin,
1994). This algorithm is based on the idea of back propagation of
error. When exposed to a training pattern the output of the ANN is cal-
culated. Then, this output is compared with the desired response, the
difference between these values is the error. For the experiments de-
scribed in this paper the output of the ANN is compared with the aver-
age visual complexity rating attributed by humans to the image, since
this is what we are trying to approximate. The weights of the connec-
tions between neurons of the hidden and output layer are adjusted to
decrease the error. In the next step, the weights of the connections be-
tween the neurons of the input and hidden layers are also adjusted to
decrease the error associated to each of the neurons of the hidden
layer. During training the ANN is repeatedly exposed to all training pat-
terns until a proper response is achieved. This process implies that the
ANN will progressively adjust in order to reduce the mean square
error (SME henceforth) over the training set. However, we report the
average error and the correlation between the response of the ANN
and the visual complexity scores attributed by humans, it is important
to notice, that the ANN is trained to minimize the SME, not the correla-
tion. A better prediction from the point of view of SME can, in some cir-
cumstances, give raise to lower Spearman correlation. Therefore,
improvements in terms of correlation are attained indirectly. The train-
ing parameters are presented in Table 6, and were also determined
n of the ANNs' topology.



Table 6
Training parameters.

Parameters Configuration

Cycles 250
Output function Identity
Initial weights Random, [−0.1; 0.1]
Training function Back propagation
Learning rate 0.1
Admissible error 0.01
Maximum error 0.015
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empirically (Machado, Romero, & Manaris, 2007; Machado, Romero,
Santos, et al., 2007; Machado et al., 2005).

We used a cross-validation procedure for training and validation.
This procedure involves dividing the set of 800 patterns (one for each
image) into 10 sets of the same size (80 images). Training and validation
of the network is performed 10 times. In each case, one of those 10 sets
is used as a validation set and the other 9 as training sets. That is to say,
in each repetition the network is trained using 720 patterns learning to
predict the average complexity rating attributed by humans from the
supplied features for these 720 patterns. After training, the adequacy
of thismodel is validated by assessing its performance on the remaining
80 instances (whichwere not used for training). The process is repeated
10 times. Thus, all patterns are used once for validation and 9 times for
training.

6.2. Results

In this section we describe the results obtained using different com-
binations of features as input of the ANNs. Based on these inputs the
ANNs are trained to predict the average complexity scores awarded by
the human participants. We report the average error — i.e., the average
difference between the target and predicted complexity values — and
the correlation between the predictions of the ANNs and the average
human response. All the results reported in this paper refer to the per-
formance obtained in validation, i.e. the performance of the ANNs on
patterns that were not used in their training. The performance over
training instances is, obviously, significantly higher, however, as previ-
ously explained, performance over training instances is not indicative
of learning.

Table 7 reports the results obtained using 4 different combinations
of features. As can be observed, the first three configurations (NET1,
NET2 and NET3) achieve an average error close to 0.1 in a normalized
0 to 1 interval, which corresponds to average error of 0.4 on the 1 to 5
scale used in the study, and a correlation above 0.8. These results are
better than those achievable when using individual features, indicating
that the ANNs were able to (i) extract relevant information from the
supplied features; (ii) combine this information in meaningful ways.
As a base for comparison, and as a control experiment, we trained an
ANNs using only basicmetrics (mean and standard deviation) andwith-
out edge detection filters. The results obtainedwhen using this configu-
ration, NET4, are clearly worse than those produced by the rest of the
predictors and close to correlations obtained when using the individual
Table 7
Results obtained with different combinations of features.

Colour channels With complexity metrics

With filters Without fi

All colour channels NET1
Input: 329
Spearman: 0.833
Avg. error: 0.095

NET2
Input: 47
Spearman
Avg. error

Saturation NET5
Input: 84
Spearman: 0.791
Avg. error: 0.104

NET6
Input: 12
Spearman
Avg. error
metrics of mean and standard deviation. These results confirm the ones
presented in the previous section: as expected, these metrics are insuf-
ficient to predict visual complexity as perceived by humans.

The first of combinations, NET1, contains all the metrics, filters and
colour channels extracted by the systemdescribed in the Procedure sec-
tion of Study 1, amounting to a total of 329 input feature values for each
image. This network leads to the best results, with an average error of
0.095 and a correlation of 0.833.

The second combination (NET2) does not take advantage of the edge
detection filters. The results are slightly worse than the previous combi-
nation. They clearly demonstrate that the complexitymetrics are able to
extractmeaningful information evenwhen no edge detection operation
is performed. The third combination (NET3), uses the edge detection fil-
ters but it does not take advantage of the complexity estimates pro-
posed in this study (i.e. it only uses the mean and standard deviation
metrics). The performancewhen using this configuration is comparable
to the one obtained when using the NET2 configuration. The fact that
NET1 yields better results than NET2 and NET3 also indicates that al-
though there is a significant overlap between edge detection and the
complexitymetrics, in the sense that they capture similar types of infor-
mation, this overlap is not total and that their combination provides
added value.

The experiments reported in the previous section indicated that the
Saturation channel wasmore informative than Value channel, which, in
turn, wasmore informative than the Hue channel. Table 7 also presents
the results obtained when considering the saturation channel alone. As
can be observed, the results are inferior to those attainable when using
the information gathered from the three colour channels. This indicates
that although the Saturation channel is themost useful for predicting vi-
sual complexity, the ANNs are able to explore the information gathered
from the other channels to improve their predictions.

Table 8 summarizes the performance of different ANN configura-
tions for each of the four categories of stimuli. In terms of average pre-
diction error the ANNs performed better on the Abstract Non-Artistic
category, closely followed by the Abstract Artistic and Representational
Artistic categories. Theworse performanceswere obtained in the Repre-
sentational Non-artistic and Photographs of Natural and Human-made
Scenes categories. The highest correlations were observed in the Ab-
stract Artistic and Representational Non-artistic categories, followed
by the Abstract Non-Artistic, Photographs of Natural and Man-made
Scenes, and Representational Artistic.

Comparing these correlations with those obtained using the
JPEG(Sobel(S)) feature reveals that, for all categories, the NET1–NET3
configurations were able to improve the correlation with human's per-
ception of visual complexity through the exploration of the information
provided by different features. This improvement is particularly visible
for the Abstract Artistic and Abstract Non-Artistic categories — which
also obtained the lowest average prediction errors.

It is interesting to notice that although the correlation results for
Representational Non-artistic stimuli is the highest, the average error
is also high. This result, although unexpected, can be easily explained:
Representational Non-artistic stimuli only account for 6% of the total
number of stimuli (48 out of 800), therefore the ANNs have not been
Without complexity metrics

lters With filters Without filters

: 0.806
: 0.103

NET3
Input: 70
Spearman: 0.809
Avg. error: 0.103

NET4
Input: 10
Spearman: 0.471
Avg. error: 0.152

: 0.782
: 0.108

NET7
Input: 14
Spearman: 0.766
Avg. error: 0.110

NET8
Input: 2
Spearman: 0.343
Avg. error: 0.169



Table 8
Performance of the different ANN configurations for each category of stimuli in termsof average error and correlation. The correlations obtainedusing the JPEG(Sobel(s)) feature are shown
on the right for comparison purposes.

Average error Correlation

NET1 NET2 NET3 NET4 NET1 NET2 NET3 NET4 JPEG(Sobel(S))

All (800) 0.095 0.103 0.103 0.152 0.833 0.806 0.809 0.471 0.771
AA (262) 0.076 0.081 0.077 0.107 0.750 0.739 0.729 0.477 0.606
AN (141) 0.074 0.075 0.078 0.088 0.597 0.585 0.481 0.328 0.481
RA (149) 0.087 0.087 0.086 0.092 0.398 0.397 0.432 0.163 0.393
RN (48) 0.099 0.088 0.099 0.166 0.753 0.779 0.717 0.372 0.691
NHS (200) 0.104 0.112 0.110 0.138 0.587 0.573 0.581 0.016 0.528
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exposed to sufficient examples to fine-tune their predictions for this
category. This interpretation is confirmed by the fact that the NET2 con-
figuration, which uses fewer inputs, obtained better results than the
NET1 configuration. Thus, in simple terms, the number of training pat-
terns is insufficient for the ANNs to learn how to take advantage of the
additional data and hence performance decreases (it is well-
established that, in general, as one increases the number of inputs the
number of training patterns should also increase to allow the ANNs to
explore the additional information).

Although the average error for Representational Artistic images is
low, the correlation results for this category are the worst, and there is
not a significant improvement in correlation over the results obtained
with the feature that yield the highest correlation. Thus, although the
ANNs were able to predict the visual complexity of these stimuli with
reasonably high precision, they are unable to accurately rank them.
Our interpretation is that the considered set of features is not sufficient
to accurately rank these stimuli in terms of complexity and we
hypothesise that this is linked with the influence that the semantics as-
sociated with these stimuli may have on human's perception of visual
complexity. Our explanation for the results obtained for the Photo-
graphs of Natural and Human-made Scenes category are, in essence,
similar.

6.3. Discussion

The configuration that yields the best overall results both in terms of
average prediction error and correlation with the average visual com-
plexity scores attributed by humans is NET1. This is an expected result
since this configuration uses all available information— i.e. the 329 fea-
tures— as input. The NET2 and NET3 configurations obtain comparable
results but use different data as input. NET2uses all computational com-
plexity estimates but no edge detection filterswhile NET3 uses edge de-
tection filters and the average and standard deviationmetrics. Although
this indicates that there is a significant overlap among the information
provided by the inputs for NET2 and NET3 — i.e. that the different fea-
tures are assessing the same information by different means — the fact
that NET1 outperforms both indicates that the overlap is not total.

The configurations that only use information gathered from the sat-
uration channel, NET5 to NET8, obtain worse performance that those
that have access to the features gathered from the three colour chan-
nels. Showing that, although the saturation channel is the most infor-
mative for the prediction of visual complexity, the additional
information present in the Value and Hue channels can be used to im-
prove the ANNs' predictions. The results highlight the intrinsic limita-
tions of processing the Hue channel, which is circular, with the set of
metrics and filters proposed in this study.

Overall, the results of Study 2 demonstrate that it is possible to im-
prove upon the correlation results obtained when using individual fea-
tures by combining the information provided by different features.
Moreover, they demonstrate that it is possible to use Machine Learning
techniques, ANNs in this case, to learn to combine the information pro-
vided by different features, which is an important result.

The computational prediction of the average visual complexity
scores attributed by humans to each stimulus by means of ANNs is
one of the novel contributions of this study. The average prediction
error using the best ANN configuration was 0.095 in a normalized 0 to
1 interval, which corresponds to an average prediction error of 0.4 in
the 1 to 5 scale used when gathering human responses. Given the vari-
ability of human's responses we consider this prediction error to be
acceptable.

These results become particularly relevant when the experimental
conditions are taken into consideration. Typically, to attain good results,
ANNswith a number of inputs of this magnitude should be trainedwith
thousands (or tens of thousands) of training patterns. Thus, training sets
of 720 patterns are far from ideal. Additionally, the trainingpatterns cor-
respond to four different categories of stimuli and the number of stimuli
belonging to each category varies significantly. Ideally the number of
stimuli of each class should be equal. Having unbalanced training sets
can significantly hinder learning due to the underexposure of the
ANNs stimuli of the classes with lower cardinality. This effect is visible
in the analysis of the results described in the previous section
concerning the performance of the ANNS on different categories.

Considering these limitations, it becomes reasonable to infer that
improvements, both in terms of average prediction error and correla-
tion, could be attained if onewas using a training setwithout this short-
comings and specifically designed for Machine Learning purposes.

7. General discussion

Over the last decade, the interest in developing robust computation-
al measures of visual complexity has gained momentum (e.g. Donderi,
2003, 2006; Forsythe et al., 2003, 2008, 2011; Marin & Leder, 2013;
Palumbo, Ogden,Makin, & Bertamini, 2014). This line of research is driv-
en by two interrelated goals. The first of these is to produce accurate
predictions of humans' impression of visual complexity of objects,
scenes, or designs. For basic psychological research, such measures
have the potential to significantly reduce time and costly resources
(e.g. participants, laboratory space andmaterials) invested in preparing
sets of visual stimuli to obtain complexity pre-ratings, to select images
representing a given range of complexity (e.g. Cela-Conde et al., 2004,
2009), and so forth. For applied research, such measures could provide
straightforward, fast, accessible, and easily implemented indications of
people's aesthetic and affective responses to products, devices, and de-
signs, as well as their behaviour, and ability to use and interact with
them (Bauerly & Liu, 2008; Krishen et al., 2008; Lavie et al., 2011;
Reimann et al., 2010).

The second goal of this line of research is to understand the psycho-
logical construction of perceived complexity, in terms of the visual fea-
tures and cognitive processes it relies on. Computational measures
contribute to this research with two complementary questions:
(i) why do human and computational measures agree to the extent
that they do? (ii) Why do they disagree to the extent that they do? In
answer to the first question, the computational measures of complexity
can be used to model the human response to complexity, under the as-
sumption that highly accurate predictors indicate processes (e.g. edge
detection) or features (e.g. contrast, saturation) that are relevant to
both human- and computer-generated complexity values. In answer
to the second question, the computational measures can be used to
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identify the factors that bias humans' experience of visual complexity
away from the complexity present in the image. There is evidence sug-
gesting that the same image can be experienced as more complex or
simpler depending on its familiarity (Forsythe et al., 2008), artistic ap-
pearance (Forsythe et al., 2011; Marin & Leder, 2013; Nadal et al.,
2010), content (Marin & Leder, 2013), or context (Tinio & Leder,
2009). That is to say, the experience of visual complexity is constructed
on the grounds of visual features present in the object, but not solely.
The perceiver's knowledge, experience, and understanding of the visual
object also come into play. Why this happens—even when participants
are requested to strictly focus on the visual features of complexity—and
how this happens, are questions that remain open to research.

Obviously, the success of the aforementioned goals rests on the qual-
ity of the computational estimations of complexity. In the two studies
presented here, we have examined the performance of a series of met-
rics and edgedetection operations in estimations of humanparticipants'
visual complexity of images. Themetricswere based on image compres-
sion error and Zipf's law. For edge detection we relied on Canny (1986)
and Sobel (1990) filters. The experiments involved 800 images belong-
ing to 5 different categories. Thirty participants had previously rated
each of these images on perceived complexity.

In a first set of experiments we assessed the correlation between in-
dividual computational features and human's perception of complexity.
The experimental results indicate that edge detection, even when
coupled with naive metrics, yields strong correlations with human's
perception of visual complexity (see Results section of Study 1). Taking
into account the relevance of edge detection in the early stages of
(human) visual perception, we consider that this result provides in-
sights for the neurological basis of the perception of visual complexity.

When no edge detection operationswere used, the onlymetrics that
provided satisfying correlationswere the ones based in image compres-
sion. The obtained results (rs = .743) are comparable to those obtained
by Forsythe et al. (2011) when using GIF compression (rs = .74), fur-
ther attesting the viability of using image compression techniques in
this context. Our results share, however, somewhat different from
those reported byMarin and Leder (2013). In the case of their IAPS sub-
set of stimuli, most of the correlations range between rs = .46 and rs =
.53, but in the case of their set of artworks, therewere no significant cor-
relations between complexity ratings made by human participants and
any of the image compression metrics. The stimuli used in the experi-
ments reported in the present study are the same as those used by
Forsythe et al. (2011), and different to those used by Marin and Leder
(2013). This suggests that, with regard to highly complex artistic depic-
tions, the correlation between image compression and human ratings
might be sensitive to the process used to assemble the stimuli set, in-
cluding the way complexity is defined and manipulated (Nadal et al.,
2010), the range of complexity represented in the set, the inclusion or
exclusion of images depicting affective scenes varying in arousal and
pleasantness, or the inclusion or exclusion of images depicting human
themes. Further studies are required to determine whether such proce-
dural options modulate the performance of the metrics, the human rat-
ings, or both.

The estimates based on saturation (S channel) provided the highest
correlations, closely followed by those based on value (V channel). This
result is unexpected and further testing is required to determine if it is
generalizable or if it results from the specificities of the experimental
settings.

In a second set of experimentswe usedmachine learning techniques
to learn to predict visual complexity from a set of computational fea-
tures. The experimental results show that, through machine learning,
it is possible to combine the information provided by several features
to produce better estimates than those obtained when using individual
features (rs = 0.833 vs. rs = 0.771). Moreover, the average difference
between the predictions of the system and the average visual complex-
ity scores attributed by humans to each stimulus is below 0.4 in a 1 to 5
interval (0.095 in a normalized 0 to 1 interval). As far aswe are aware of,
this is the first study where machine learning techniques are used to
predict human's perception of visual complexity.

We tested ourmachine learning systemwith different combinations
of inputs, concluding that the one that performed better was the one
that had access to all of the proposed features. The results obtained
when using edge detection and naive features are comparable to those
obtained when image compression without edge detection. This indi-
cates that there is a significant overlap in the information gathered by
these features, but also that the overlap is not total since using all the
features yields better results.

An analysis of the performance of the machine learning system on
different categories of stimuli reveals that the difficulties in accurately
predicting the visual complexity of Representational Artistic images
and Photographs of Natural and Man-made Scenes may be linked with
the influence that the semantics of the image has on human's percep-
tion of visual complexity.

As previously mentioned (see Discussion section of Study 2) the use
of machine learning techniques recommends the availability of a signif-
icantly larger number of stimuli, which should also be distributed equal-
ly among the different categories. Further testing will address these
limitations by considering well-balanced and broader set of stimuli.
Likewise, features based on image salience, texture analysis and colour
distribution, among others, can also provide additional information
and contribute to better estimates.

To conclude, in this study we have presented ways to estimate
people's perception of visual complexity in sceneswith greater accuracy
than previous ones (e.g. Forsythe et al., 2011). Our results indicate that
edge density and compression error are the best predictors of partici-
pants' complexity ratings, suggesting that the perceptual and cognitive
processes involved in detecting edges and dealing with non-
redundant information play crucial roles in the subjective experience
of complexity. Nevertheless, this experience seems to be influenced, to
a certain extent, by semantic aspects, leading to variations in the accura-
cy of predictions depending on image category (e.g. photograph, art-
work). Finally, as shown by our machine learning study, the most
accurate predictions are produced via the combination of multiple
image features, suggesting that the perception of visual complexity
emerges from the interaction of several dimensions (Berlyne et al.,
1968; Nadal et al., 2010).
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