
Evotype: From Shapes to Glyphs

Tiago Martins
CISUC, Department of

Informatics Engineering,
University of Coimbra,

3030 Coimbra, Portugal

tiagofm@dei.uc.pt

João Correia
CISUC, Department of

Informatics Engineering,
University of Coimbra,

3030 Coimbra, Portugal

jncor@dei.uc.pt

Ernesto Costa
CISUC, Department of

Informatics Engineering,
University of Coimbra,

3030 Coimbra, Portugal

ernesto@dei.uc.pt

Penousal Machado
CISUC, Department of

Informatics Engineering,
University of Coimbra,

3030 Coimbra, Portugal

machado@dei.uc.pt

ABSTRACT

Typography plays a key communication role in the contem-
porary information-dense culture. Type design is a central,
complex, and time consuming task. In this work we develop
the generative system to type design based on an evolu-
tionary algorithm. The key novel contributions are twofold.
First, in terms of representation it relies on the use of assem-
blages of shapes to form glyphs. There are no limitations
to the types of shapes that can be used. Second, we ex-
plore a compromise between legibility and expressiveness,
testing different automatic fitness assignment schemes. The
attained results show that we are able to evolve a wide va-
riety of alternative glyphs, making the proposed system a
viable alternative for real-world applications in the field of
type design.

CCS Concepts

•Computing methodologies → Genetic algorithms;
Generative and developmental approaches; Object recog-

nition; Supervised learning by classification;

Keywords

evolutionary computation; evolutionary design; genetic al-
gorithms; deep learning; type design

1. INTRODUCTION
The contemporary view of typography contrasts with the
popular International Typographic Style that emphasises
objectivity, cleanliness, readability, and the use of grotesque
typefaces, such as Akzidenz-Grotesk, for almost all design
projects [9]. We subscribe to the contemporary view, thus

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20 - 24, 2016, Denver, CO, USA

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908907

supporting that there is no universal typeface that can fit ev-
ery unique design project, and that the selection of the type-
face should take into account the specificity of each design
project. This standpoint, along with the key communication
role of typography in the contemporary information-dense
culture, continuously increases the demand for innovative
type design work. This, in turn, increases the need for good
technological means that can assist the designer in the long
laborious process of type design.

We consider that conventional computational design tools
offer insufficient support to design exploration during the
early conceptual stages of the type design process. We also
consider that most of the prominent software design tools
tend to bias and limit the designers, who become accustomed
to work and think in terms of the primitives that these tools
provide, the work-flow they induce, and the boundaries, im-
plicit or explicit, that they establish.

As a result, the outcome of the design project tends to
be, at least partially, shaped by the tools, leading to visual
tendencies. Therefore, we argue that it is as important to
master and exploit the tools at hand, as it is to challenge
those tools, by modifying them or inventing new ones that
suit unique ideas and design projects.

In this paper, we give a step forward of our work Evotype

[11], an evolutionary system for type design. It employs Evo-
lutionary Computation (EC) and Machine Learning (ML)
techniques to automatically generate alternative designs for
glyphs (see figure 1). In this context, a glyph consists in a

Figure 1: Text written using a font evolved by the
proposed system.

261

specific design intended to represent a readable character.
For instance, the lowercase letter ‘e’ can be embodied by
different glyphs, e.g. e, e, e, e, e, e, e.
The system is intended to provide the designer with a wide

range of alternative designs as stimuli for inspiration, work-
ing in a mind-opening way and promoting new ideas. We
consider that taking advantage of the creative power of EC
promotes the exploration of the vast design space of innova-
tive glyph designs, amplifying the range of possibilities and
providing support to the designer in the early stages of the
design process. Therefore, our goal is to develop a tool that
aids the designer. The analysis of the impact of the tool,
and of its outcomes, on the creative and production process
of the designer is beyond the scope of this paper, but will
be considered in future work.
The main contribution presented herein is a generative

system capable of automatically creating glyphs using shapes.
Other contributions include: (i) a generic evolutionary archi-
tecture composed of the evolutionary and evaluation mod-
ules for the generation of designs, e.g. glyphs, using shapes;
(ii) the combination of Deep Learning (DL) with distance
metrics to assign fitness; and (iii) an investigation into the
interplay between legibility and expressiveness.
The remainder of this paper is organised as follows: sec-

tion 2 summarises the related work, focusing on applications
of evolutionary techniques towards the design of glyphs; sec-
tion 3 thoroughly explains the behaviour of the proposed
system; section 4 describes the experimental setup; section 5
provides the analysis of the experimental results; finally,
section 6 presents our conclusions and directions for future
work.

2. RELATED WORK
EC has been successfully applied in creative domains for the
exploration of innovative solutions (e.g., [10]). Nonetheless,
as far as we know, only a few evolutionary approaches for
type design exist.
Butterfield and Lewis [1] employ Interactive Evolution-

ary Computation (IEC) to present populations of deformed
letters. The letters of a given typeface are individually de-
formed by implicit surface primitives encoded in the geno-
type of each candidate individual. Lund [8] uses IEC to
evolve the settings for a parametric typeface. Each param-
eter controls a particular visual characteristic of the type-
face. Levin et al. [7] present the interactive system Alphabet

Synthesis Machine that allows the user to generate abstract
letterforms. The system employs a Genetic Algorithm (GA)
to evolve a population of letterforms according to fitness
metrics obtained from an initial seed glyph provided by the
user. Unemi and Soda [14] propose an IEC-based system
for the design of Japanese Katakana glyphs. The glyphs
are constructed from simple elements that are controlled
by parameters encoded in the genotype, and drawn along
a pre-defined skeleton. Schmitz [12] presents the interactive
program genoTyp, in which typefaces can be generated ac-
cording to genetic rules. The program allows the user to
experiment with the breeding of existing typefaces as well
as the manipulation of their genes, i.e. vertexes. Kuzma
[5] investigates the potential of IEC by implementing the
Font Evolving System, which allows the user to interactively
evolve fonts. Yoshida et al. [15] present the system Personal

Adapted Letter. An Interactive Genetic Algorithm (IGA) is
employed to modify the parts that define a typeface. These

parts are manually defined in an earlier stage. In Martins
et al. [11] we present the first iteration of Evotype that em-
ploys a GA to evolve glyphs for the Roman alphabet using
line segments. In this early iteration, we already employ an
automatic fitness assignment scheme to guide the evolution-
ary process.

Although some applications of evolutionary techniques for
type design exist, most of them have limitations. Nearly
all rely on user evaluation. The user is asked to manu-
ally guide the evolutionary process by selecting the favourite
solutions in each generation until an acceptable one is ob-
tained. Therefore, these approaches suffer from the well-
known limitations of IEC, namely the user fatigue, the con-
sequent loss of interest, and inconsistent evaluation. Ad-
ditionally, some approaches require pre-existing typefaces
(e.g., [1, 12, 5]) or skeletons (e.g., [14]), the drawing of initial
seed glyphs (e.g., [7]), the creation of parametric typefaces
(e.g., [8]), or the identification of letter parts (e.g., [15]).
Finally, parametrised approaches can overly influence their
outcome, since all users start from the same base, and thus
are not flexible enough. The same is observed in approaches
that provide a limited range of visual elements to create the
glyphs (e.g., [11]).

From our analysis of the shortcomings of the related work
in evolutionary type design we have extracted two main ob-
servations that guided the development of the research pre-
sented in this paper: (i) fitness assignment should be auto-
matic, freeing the user from the need to evaluate hundreds
of populations; and (ii) more than providing a final and fully
functional typeface, the system should aid the designers by
providing them typeface sketches that can be further refined.

3. THE APPROACH
The starting point of the proposed system is the idea of
automatic assembling visual components to create glyphs
for various characters. The system takes as input a Scalable
Vector Graphics (SVG) file containing a set of shapes that
the system uses to construct glyphs.

Figure 2: Snapshot of the system. A demo video can
be seen at cdv.dei.uc.pt/2016/evotype-system.mov.

Figure 2 shows a snapshot of the system. The graphic user
interface of the system is simple, as it is designed for exper-
imental purposes. Nonetheless, it already provides the user
with the necessary means to import his/her own shapes, to
generate glyphs in an autonomous way, and to export them

262

to vector files. While the glyphs are being generated, the
user can browse throughout all alternative designs and even
write sentences with them, allowing him/her to test their
readability.
The system integrates two modules: (i) the generation

module that implements a GA to create candidate glyphs
(see subsection 3.1), and (ii) the evaluation module that im-
plements automatic fitness assignment schemes to evaluate
the glyphs provided by the first module (see subsection 3.2).

3.1 Evolutionary System
The system employs a GA to generate alternative glyph de-
signs. A GA is a stochastic search procedure inspired in the
natural selection principle and in genetics [2]. In short, a
GA improves a set of candidate solutions, which are initially
generated at random, by iteratively employing methods of
selection of the most promising for reproduction with varia-
tion. In this work, a candidate solution consists in a glyph
design.
The GA is implemented to evolve glyphs for various char-

acters. This is accomplished by evolving different popula-
tions in parallel, one for each character. Therefore, for in-
stance, to evolve glyphs for the letters A, B, and C, the
system evolves three different populations, each one being
composed of glyphs that represent one character.

3.1.1 Representation

The glyphs evolved by the system are constructed from shapes
provided by the user. The construction of the glyphs in-
volve the translation, rotation, scaling, and mirroring of the
shapes. The whole construction plan of each glyph is en-
coded in its genotype, wherein each gene encodes one shape,
as well as its position, angle, scale, and if it is mirrored (see
figure 3). A square grid is used to constrain the position of
the shapes. Note that the order of the genes in the genotype
is irrelevant at the phenotype level.

{ (E,X,Y,A,S,M), (E,X,Y,A,S,M), ... (E,X,Y,A,S,M) }

Gene 1 Gene 2 Gene N

Figure 3: Genotype encoding. The genotype com-
prises a set of genes that consist in tuples with the
attributes: shape (E), x-coordinate (X), y-coordinate
(Y), angle (A), scale (S), and mirrored (M).

3.1.2 Variation Operators

New glyphs are created throughout the evolutionary pro-
cess by applying variation operators such as mutation and
recombination.
Mutating a candidate glyph involves stochastic modifica-

tions of some parts of its genotype. The mutation operator
consists of three procedures: deletion, replacement, and in-
sertion of genes. Each of them can occur separately with
a certain probability. Therefore, the mutation operator can
start by deleting a randomly chosen gene that is encoded in
the genotype; then it can proceed with the replacement of
genes; and lastly, it can insert a new randomly generated
gene. The deletion and insertion of genes cause the varia-
tion of the number of genes encoded in the genotype, thus
allowing the emergence of glyphs with different degrees of
complexity.

The mutation operator is applied in a way that ensures that
the genotype remains valid after mutation. A genotype is
considered valid if (i) the number of genes and the values of
the encoded attributes remain within preset ranges; (ii) all
its genes are different; and (iii) the shapes represented by
its genes are located inside the bounds of the grid.

For recombination, an uniform crossover operator is im-
plemented. Two offspring are generated by sequentially
copying genes with the same probability from one of the
two parents. Since the genotypes of the parents can have
different lengths, the crossover operator shuffles the genes
inside each genotype before recombining them.

3.2 Evaluation
We adopt an automatic fitness assignment scheme to au-
tonomously guide the evolutionary process. In this work we
test three different fitness functions, which are detailed in
this subsection.

3.2.1 Root Mean Square Error

The first fitness function evaluates a candidate glyph based
on its visual similarity to an existing glyph. The similarity
between two glyphs is calculated using a Root Mean Square
Error (RMSE) method that measures how close the candi-
date glyph is to the reference glyph on a pixel-by-pixel basis.
Thus, for a candidate image C and a target image T we have,

RMSE(C, T) =

√

∑

SC

i=1
(ci − ti)2

SC

(1)

where SC is the size of image C.
To guide evolution we create a fitness function that is suit-

able for maximisation. Furthermore, we apply a logarithmic
scaling operation (see subsection 3.2.3), which results in the
fitness function depicted in equation 2.

fitRMSE(C, T) = log2

(

1 +
1

1 + RMSE(C, T)

)

(2)

3.2.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are a type of Deep
Neural Networks (DNNs) that have been used successfully
in image classification and recognition tasks [6]. The main
characteristic of a CNN is the usage of convolutional and
pooling layers, which provides feature extraction and di-
mensionality reduction in training [3]. Each layer can be
seen as a filter from which features are extracted and learnt.
In recent years, it has consistently attained good results in
several supervised image related classification tasks [4, 13].

Since we are interested in evolving a legible composition of
shapes, the recognisability of each glyph becomes an impor-
tant factor. As such, we develop and train CNN classifiers
for character recognition. The output of each classifier in-
dicates its confidence in recognising a given input image as
its desired character. An output of 1 indicates total confi-
dence while an output of 0 indicates the opposite. As such,
to guide evolution we employ the following fitness function,
which also includes a logarithmic scaling operation:

fitCNN(C) = log2(1 + CNN(C)) (3)

263

3.2.3 Hybrid

The third fitness function consists in a weighted sum of the
values returned by the two previous fitness functions. The
theoretical optimum is a glyph that simultaneously max-
imises fitRMSE and fitCNN based fitness. However, this can
be impossible and, in those circumstances, we want evolu-
tion to find a compromise between these two components,
avoiding solutions that focus only on one of these fitness
measures. The inclusion of the logarithmic scaling operation
is intended to address this issue, promoting the improvement
of fitness through the exploration of both criteria. As one of
the components increases, e.g. the fitCNN, the gains in fit-
ness decreases, meaning that it becomes more advantageous
to focus on the improvement of the component that is far-
ther from the maximum value, promoting the discovery of
compromise solutions.
The hybrid fitness function is as follows:

fitHybrid = w0 × fitRMSE(C, T) + w1 × fitCNN(C), (4)

where w0 and w1 specify the weights given to each compo-
nent.

4. EXPERIMENTAL SETUP
We perform experiments on the proposed system with three
major goals in mind. First, we assess if, and to what extent,
the system can generate glyphs for different characters using
a given set of shapes. Second, we investigate the impact of
the use of different fitness functions (see subsection 3.2) on
the quality of the resulting glyphs. Finally, we analyse the
variety of the glyphs that can be generated.
In the experiments presented in this work, we evolve glyphs

for all the uppercase letters of the Latin alphabet. We
experiment the generation of glyphs using several sets of
shapes, however, due to space limitations, the results pre-
sented herein are produced using the shapes shown in fig-
ure 4. The experimental parameters used in these experi-
ments are summarised in table 1.

Figure 4: Experimental shapes.

As target font for fitRMSE, we choose one of the most used
fonts of the Google Fonts platform, that is Roboto. More
specifically, we use the medium style of this font.
Concerning the classifier, we train a CNN based on the

topological model of the Alexnet model of [4] as an off-the-
shelf topology. The Alexnet model is a CNN with five con-
volutional layers, with max-pooling layers, and three fully-
connected layers with a final 1000-way softmax, known for
attaining the best result on ILSVR 2012 competition in im-
age recognition, and for its contribution to the development
and training of CNNs.
Based on the preliminary experiments [11], we isolate each

character and train against random images. The underlying
idea is for the CNN to learn the features of each character
against other types of images and not exclusively against
the other characters in order to create a general purpose
character classifier. Thus, we train 26 classifiers with two
classes: positive and negative. For the positive class dataset,
we gather a total of 537 Latin fonts served by Google Fonts1.

1github.com/google/fonts

Runs

Generations

Population size

Elite size

Selection method

Tournament size

Recombination rate

Mutation del. rate

Mutation replac. rate

Mutation insert. rate

Glyph grid size

Max. genes

Allow overlaps

Rotation angles

Scales

30

200

100

1

Tournament

2

0.7

0.05

0.05

0.05

13 ≈ 13

8

No

8

1; 2

Solver

Epochs

Learning rate

Learning rate policy

Momentum

Positive samples

Negative samples

RMSE target font

Hybrid w0

Hybrid w1

Stochastic Gradient

1000

0.01

Drop 0.1 every

0.9

200

200

Roboto Medium

0.5

0.5

Descent (SGD)

500 epochs

Evolutionary System CNN Training

Evaluation

Table 1: Experimental parameters.

The negative class dataset is built with Creative Common
images from Flickr by searching with the following keywords:
random, images, and photos. The images of both datasets,
are resized to 32 by 32 pixels and converted to greyscale.
The remaining relevant training parameters are presented
in table 1. For each glyph, 200 instances of the positive and
negative sets are randomly selected for training purposes.
After training, we test the networks against the remaining
instances of the positive and negative dataset: 347 and 3871,
respectively. The average accuracy attained for the training
dataset is 0.998 and for the test dataset is 0.9975.

5. EXPERIMENTAL RESULTS
In this section we present and analyse the experimental re-
sults. First, we focus on the analysis of the evolution of
fitness when using different fitness functions. Then, we ex-
amine how the use of different fitness functions affects geno-
type length and shapes diversity throughout the evolution-
ary process. Finally, we consider the visual appearance of
the evolved glyphs.

Figures 5, 6, and 7 depict the evolution of fitness of the
best individuals throughout the generations of the runs con-
ducted using, respectively, fitRMSE, fitCNN and fitHybrid as
fitness functions. The values that these individuals would
obtain with the remaining fitness functions are also calcu-
lated and plotted, which allows us to examine, for instance,
how evolving with the goal of maximising fitRMSE affects
fitCNN and fitHybrid.

As it can be observed from the perusal of these charts, the
EC algorithm is able to optimise the fitness function, guid-
ing evolution. They also reveal that maximising fitCNN is
significantly easier than maximising the other fitness mea-
sures. Analysing the evolution of fitCNN and fitHybrid in
the runs guided by fitRMSE allows us to state that using
fitRMSE is sufficient to attain, in the long run, high values
for all fitness functions. The same cannot be stated for the
runs where fitCNN is used to guide evolution. In these runs
the EC engine quickly finds glyphs that the CNN classi-
fies, with certainty, as belonging to the desired class, which
causes early convergence. Although fitRMSE and fitHybrid at-
tain relatively high scores, they never reach their maximum
values. Finally, as expected, when fitHybrid is used to guide
evolution, high values for all fitness functions are attained

264

0.4

0.8

1.0

0.5

0.6

0.7

0.9

Generation

0 20010050 150

RMSE

CNN

Hybrid

Figure 5: Evolution of the fitness of the best individ-
ual across generation, when using fitRMSE to guide
evolution. The results are averages of 30 runs.

0.4

0.8

1.0

0.5

0.6

0.7

0.9

Generation

0 20010050 150

RMSE

CNN

Hybrid

Figure 6: Evolution of the fitness of the best indi-
vidual across generation, when using fitCNN to guide
evolution. The results are averages of 30 runs.

0.4

0.8

1.0

0.5

0.6

0.7

0.9

Generation

0 20010050 150

RMSE

CNN

Hybrid

Figure 7: Evolution of the fitness of the best individ-
ual across generation, when using fitHybrid to guide
evolution. The results are averages of 30 runs.

in few generations, and, in the long run, values close to their
respective maximums are obtained.

In what concerns the fitness of the best individuals of the
last generation, the differences among the runs conducted
with fitRMSE and fitHybrid are almost not noticeable for any
of the fitness measures that we consider. However, differ-
ences can be perceived in terms of the dynamics of the runs,
particularly in the initial generations. There are also dif-
ferences both in terms of dynamics and final fitness values
between the runs guided by fitCNN and the remaining ones.

Generation

0 20010050 150

8

3

4

5

6

7

G
e
n
o
ty
p
e
 l
e
n
g
th

RMSE

CNN

Hybrid

Figure 8: Progression of the genotypes’ length of the
fittest glyphs over the generations. The visualised
results are averages of 30 runs.

Figure 8 depicts the evolution of the length of the genotypes
of the fittest glyphs. As it can be observed, due to the need
of matching a given target as precisely as possible, the runs
guided by fitRMSE and fitHybrid tend to use a high number of
shapes. In contrast, the glyphs evolved in the runs guided
by fitCNN only need to be recognised as the desired glyph,
meaning that a fewer number of shapes is needed.

Generation

0 20010050 150

0.75

0.50

0.55

0.60

0.65

0.70

S
h
a
p
e
s
d
iv
e
rs
it
y

RMSE

CNN

Hybrid

Figure 9: Progression of the shapes’ diversity of the
fittest glyphs over the generations. The visualised
results are averages of 30 runs.

Finally, we focus on the diversity of the set of shapes used,
calculating the percentage of the shapes of the set provided
by the user that is used in the fittest individual of each gen-
eration. As figure 9 shows, the runs based on fitCNN result
in glyphs using a less diversified set of shapes. The runs
using fitRMSE result in glyphs with an intermediate degree
of shapes diversity, while the ones evolved using fitHybrid are
the ones that promote the use of a more diversified set of
shapes. An explanation for the observed differences follows.
When using fitCNN, the EC engine is only required to evolve

265

glyphs recognised as the target character, there is no reason
to believe that such glyphs will be composed of a varied set
of shapes, since the repetition and transformation in terms
of position, scaling and rotation of a single shape is suffi-
cient to meet this requirement. When fitRMSE is employed,
it becomes necessary to use a more diversified set of shapes
to match, as precisely as possible, the target image, since
different areas of the image may require the use of different
shapes.
Therefore, the real question is why using a combination of

these measures to guide evolution seems to result in a higher
diversity. The explanation appears to be related with the
dynamics of the evolutionary process. As we have previously
mentioned, it is easier to improve fitCNN than fitRMSE, as
such in the early stages of the evolutionary process the fittest
glyphs tend to be the ones focusing on fitCNN. This may lead
to the inclusion of shapes in the genotype that are not ideal
for the purpose of maximising fitRMSE. These shapes would
not be included if fitRMSE was used to guide evolution. In a
later stage, since fitHybrid also takes fitRMSE into account the
shapes that fitRMSE tends to use will gradually make its way
into the genotype, gradually increasing the diversity of the
shapes used in the construction of the glyphs. Informally,
when using fitHybrid the fitCNN tends to provide the skeleton
for the glyph, while fitRMSE provides additional visual detail.
Next, we will focus on the analysis of the visual appear-

ance of the evolved glyphs. Figure 10 shows typical glyphs
generated using each fitness function. It is noticeable the dif-
ferences at the visual level. For instance, the evolved glyphs
with fitRMSE function reinforce the idea that the evolution-
ary process is trying to use and place as many shapes as
necessary to cover the target image, and thus maximise its
fitness. In contrast, the fitCNN based glyphs are more ab-
stract. They have a reduced number of shapes, which causes
the glyphs to have some missing parts. This fact is consis-
tent with the results attained in terms of fitness function,
genotype length and shapes diversity. The fitHybrid show-
cases a compromise between the abstraction of the fitCNN

and the complete glyph structure promoted by the fitRMSE.
The plasticity of the glyphs is illustrated in figure 11. As it

can be perceived, all the glyphs are different. In the fitRMSE,
although a target image is used, the different shapes that are
used to construct the glyphs provide them visual diversity.
In the same figure, we can see how each fitness function influ-
ences the diversity of the shapes that compose the glyphs.
The results obtained using the fitCNN do not differ much
from the ones generated using fitRMSE or fitHybrid, and tend
to repeat the same shapes as depicted in figures 8 and 9.
Figure 12 shows the evolution of the uppercase letter E

throughout the generations for each fitness function. It is
visible the different evolutionary process promoted by the
fitRMSE and the fitCNN, i.e. the first one promotes the use of
small shapes to fill the content of the target image, while the
second one promotes the accurate placement of shapes and
the use of less shapes. The fitHybrid stands out by attaining
legible glyphs at earlier generations using a more diverse set
of shapes.
The different alphabets presented in figure 13 highlight

the diversity of glyphs that can be evolved by the system.
By allowing the user to input his/her own shapes to build the
font, the system is able to provide identity to the evolved
glyphs and therefore keep the individual touch of the de-
signer. Furthermore, although the glyphs are evolved in

C
N
N

R
M
S
E

H
y
b
ri
d

Figure 10: Typical glyphs evolved using the three
different fitness functions.

C
N
N

R
M
S
E

H
y
b
ri
d

Figure 11: Typical glyphs for the letter E at the
generation 200 using the three different fitness func-
tions.

C
N
N

R
M
S
E

H
y
b
ri
d

1 5 10 15 20 25 50 100 200

Figure 12: Typical evolution of the fittest glyphs for
the letter E using the three fitness functions.

266

Figure 13: Examples of alphabets evolved in different runs. More evolutionary runs can be visualised at
cdv.dei.uc.pt/2016/evotype-runs.mov.

267

separated populations, we consider that the use of the same
set of shapes to construct all glyphs allows the emergence of
a common visual style.
The system is able to generate unusual glyphs that push

the boundaries between expressiveness and legibility, and
encourage graphic experimentation in type design. The gen-
erated glyphs may be suitable for projects that require fonts
that have the ability to communicate an identity or concept,
thus mediating something else than language. The system
has also potential for open-ended design projects, allowing
for instance the on-demand generation of unique fonts.
The user can export the evolved glyphs and use them

to create typographic compositions in most common design
software tools. Additionally, the modular architecture of
the system (evolutionary and evaluation modules) enables
its extension and adaptation to other graphic design prob-
lems.

6. CONCLUSIONS AND FUTURE WORK
We have described and tested an iteration of Evotype, a gen-
erative system for the automatic creation of glyphs. The
experimental results demonstrate the ability of the system
to generate a wide variety of alternative glyphs that push
the boundaries between legibility and expressiveness. The
results also show the impact of different fitness functions on
the resulting glyphs.
There are future enhancements from which the proposed

system can benefit, including: (i) experimenting different
weights in the hybrid fitness function; (ii) considering the
visual coherence, i.e. the common visual characteristics, be-
tween glyphs by exploring other approaches, e.g. Genetic
Programming; (iii) supporting a more active participation
of the user during the evolutionary process, e.g. allowing
the user to modify evolved glyphs and insert them back into
the population; and (iv) conducting user studies to validate
the utility of the tool, to evaluate the effectiveness of the
tool with which users can generate glyph designs, and to
verify their aesthetic and functional quality.

7. ACKNOWLEDGEMENTS
This research is partially funded by: Fundação para a Ciên-
cia e Tecnologia (FCT), Portugal, under the grants SFRH/
BD/90968/2012 and SFRH/BD/105506/2014; and project
ConCreTe. The project ConCreTe acknowledges the finan-
cial support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for
Research of the European Commission, under FET grant
number 611733.

8. REFERENCES

[1] I. Butterfield and M. Lewis. Evolving fonts, 2000.
Consulted in
http://accad.osu.edu/˜mlewis/AED/Fonts/ on
December 2015.

[2] A. E. Eiben and J. E. Smith. Introduction to

Evolutionary Computing. Natural computing series.
Springer, Berlin, Heidelberg, Paris, 2015.

[3] K. Fukushima. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position. Biological cybernetics,
36(4):193–202, 1980.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, editors, Advances in Neural

Information Processing Systems 25, pages 1097–1105.
Curran Associates, Inc., 2012.

[5] M. Kuzma. Interactive evolution of fonts. Master’s
thesis, Technical University of Košice, 2008.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[7] G. Levin, J. Feinberg, and C. Curtis. The alphabet
synthesis machine, 2001. Consulted in
http://www.alphabetsynthesis.com on December 2015.

[8] A. Lund. Evolving the shape of things to come: A
comparison of direct manipulation and interactive
evolutionary design. In International Conference on

Generative Art. Domus Argenia, Rome, Italy, 2000.

[9] E. Lupton and J. C. Phillips. Graphic design: the new

basics. Princeton Architectural Press, 2008.

[10] P. Machado, J. Romero, and B. Manaris. Experiments
in computational aesthetics: An iterative approach to
stylistic change in evolutionary art. In J. Romero and
P. Machado, editors, The Art of Artificial Evolution:

A Handbook on Evolutionary Art and Music, pages
381–415. Springer Berlin Heidelberg, 2007.

[11] T. Martins, J. Correia, E. Costa, and P. Machado.
Evotype: Evolutionary type design. In C. Johnson,
A. Carballal, and J. Correia, editors, Evolutionary and

Biologically Inspired Music, Sound, Art and Design,
volume 9027 of Lecture Notes in Computer Science,
pages 136–147. Springer International Publishing,
2015.

[12] M. Schmitz. genotyp, an experiment about genetic
typography. Presented at Generative Art Conference
2004, 2004.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1–9, 2015.

[14] T. Unemi and M. Soda. An iec-based support system
for font design. In Proceedings of the IEEE

International Conference on Systems, Man &

Cybernetics: Washington, D.C., USA, 5–8 October

2003, pages 968–973, 2003.

[15] K. Yoshida, Y. Nakagawa, and M. Köppen. Interactive
genetic algorithm for font generation system. In World

Automation Congress, 2010, pages 1–6. TSI Press.,
2010.

268

