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Abstract Designing island models is a challenging task for researchers. A number of deci-
sions is required regarding the structure of the islands, how they are connected, how many
individuals are migrated, which ones and how often. The impact of these choices is yet to
be fully understood, specially since it may change between different problems and contexts.
Cluster geometry optimization is a widely known and complex problem that provides a set
of hard instances to assess and test optimization algorithms. The analysis presented in this
paper reveals how design options for island models impact search effectiveness and popu-
lation diversity, when seeking for the global optima of short-ranged Morse clusters. These
outcomes support the definition of a robust and scalable island-based framework for cluster
geometry optimization problems.

Keywords Cluster geometry optimization · Island models · Diversity

1 Introduction

Chemical clusters, which are aggregates of particles ranging from a few to thousands, have
been intensively studied in the past decades due to their importance across different fields
of study such as Physics, Chemistry, Biochemistry and Nanoscience [86]. Determining the
geometry of atomic or molecular clusters that minimize the potential energy held is impor-
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tant as it corresponds to the arrangements that maximize their stability. Such a problem is
equivalent to finding the global minimum on the potential energy surface (PES) [23].

PES are multidimensional functions that describe the interactions between the particles
that compose a cluster (3N dimensional when a cluster of N atoms is modeled on the three
dimensional space). PES are regarded as very complex functions that result in highly roughed
landscapes, rigged with a large number of local minima and a deep multiple-funnel character
[22,75,80]. In more detail, PES can be thought of as a collection of basins of attraction,
each corresponding to a local minimum. The multiple funnels correspond each to a cluster
motif (icosahedral, decahedral, close packed, etc.) and contain a large number of basins
under the same motif. Moreover, they may contain smaller funnels that share some of their
characteristics. The number of basins increases exponentially with the cluster size [13].

ClusterGeometry optimization (CGO)has become relevant as a test problem to benchmark
the effectiveness of global optimization algorithms. Finding the lowest potential energy of a
cluster and the corresponding geometry is a NP-hard task that provides difficult instances to
challenge new algorithms [13]. Lennard-Jones [42,47] clusters and Morse clusters [56] are
two of the most relevant models as their functions depend solely on the distance between
every pair of particles that compose the cluster. Between these pair-wise models, Morse
clusters are regarded as being particularly tough. While choosing Lennard-Jones clusters as
a test system offers a number of advantages, the fact that its instances are mostly structurally
uniform and have strong funneling properties makes Lennard-Jones clusters less challenging.
Morse clusters overcome these setbacks, being regarded as a challenging, more adequate test
system and have been adopted by many research groups. The Morse function can be used to
model both long range and short range interactions, the latter being considered particularly
tough [22].

Evolutionary algorithms were first applied to CGO problems in the early 1990s [34,84]
and are currently considered state-of-the-art approaches. The most successful approaches
use Cartesian coordinates to represent particles in space and problem specific operators.
Local-search methods that use first order derivative information to guide individuals into the
nearest local optimum have later been integrated and represent a major breakthrough. Such
hybrid approaches were first applied by Deaven and Ho [20] and have been widely used,
contributing to better results [31,34,62].

The first population-based approach to discover all putative optima for Morse clusters up
to 80 atoms was the population basin-hopping (PBH) proposed by Grosso et al. [31] which
relies on a two-phase local optimization method designed to enhance its search efficiency.
The approach shows however some weaknesses. The fact that it requires the specification of
problem dependent parameters may induce bias and makes it difficult to extend to instances
where the optimal geometry is unknown. In order to overcome this limitation, Cassioli et
al. [10] proposed an approach where each individual encodes different settings, achieving
enhanced performance on Lennard-Jones clusters without the need of preliminary parameter
definition. Pereira et al. [60] proposed a self-adaptive EA that evolves the needed parame-
ters along each run, thus removing the need to specify them, avoiding the incurring bias.
The approach was tested on Morse clusters ranging up to 80 atoms, successfully finding all
putative global optima. They also suggested that the enhanced results were in most part the
outcome of the increased diversity caused by the adaption of the settings. Later Pereira et
al. [61] introduced an unbiased hybrid steady-state EA combined with a single phase local
optimization method based on a general quasi-Newton method. This study includes mecha-
nisms designed to ensure the maintenance of diversity and demonstrates that its preservation
is a key point to efficiently tackle CGO problems.
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Island models (IM) are a possible extension to standard EAs that distribute individuals
and restrict interactions between them. Other methods for the distribution of individuals are
available [2]. Suchmodels are often referred to as non-panmicticmodels, as opposed to single-
population models, known as panmictic. Non-panmictic models result in behaviours that are
distinct from standard EAs [71]. IMs, in particular, divide the global population in smaller
sub-populations (islands) that undergo periods of isolated evolution punctuated by stages of
migration of individuals between islands. The creation of such borders causes individuals
to be at larger and unequal distances from each other thus causing the spread of genes in
the population to naturally slow down. While on the one hand this may prevent the mixing
of successful individuals, on the other hand it helps prevent individuals from prematurely
dominating the population. Such delay contributes to the maintenance of diversity of genetic
material which may help achieve enhanced results [71].

Since they depend mostly on local interactions and need little or no synchronization, IMs
are appealing distributed models that have established themselves among the EA commu-
nity. Considering the discussed characteristics of the PES, IMs seem an adequate paradigm to
tackle CGO problems. Designing an appropriate IM is however a difficult task as it requires
a wide number of decisions such as how many islands are used, how are they connected,
how many individuals are migrated, which ones and how often. These decisions are gener-
ally problem dependent as search spaces with distinct characteristics will allow algorithms
to benefit differently from the particularities of IMs. This study focuses on making appro-
priate IM design choices for tackling CGO problems and the corresponding PES functions
by including an extensive discussion on the impact of different parameters and operators
on the behaviour of the algorithm. Performance and behavioural differences between IMs
and a sequential model are also addressed. Overall, this study intends to provide extensive
knowledge on pertinent decisions regarding IMs on this particular context and hopefully in
others.

This paper is structured as follows: Sect. 2 introduces the problem of Morse clusters
optimization, related work and a hybrid steady-state approach to tackle the problem; Sect. 3
covers Island Models, their characteristics, related work, and a distributed approach to the
optimization ofMorse clusters; Sect. 4 describes the experimental setup, includes a discussion
on the effect of different design choices on the behaviour of IMs and finally compares the
obtained results with those of a panmictic approach; Sect. 5 draws conclusions on the study
findings and addresses future work.

2 Morse clusters optimization

The following subsections cover optimization of Morse clusters. The problem is introduced
in Sect. 2.1, followed by an overview of EA approaches and key achievements in Sect. 2.2.
Finally, Sect. 2.3 describes a state-of-the-art panmictic approach applied to the optimization
of Morse clusters.

2.1 Morse clusters

The Morse potential is the N-particle additive potential defined by Eq. 1 which depends on
the Cartesian distance between particles i and j, ri j , the bond dissociation energy, ε, the
equilibrium bond length, r0, and the range exponent of the potential, β [56]. As in various
previous studies [13,21,61,73], we have adopted a simplified scaled version of the Morse
potential by setting both r0 and ε to 1.
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VMorse = ε

N−1∑

i

N∑

j>i

{exp[−2β(ri j − r0)] − 2exp[−β(ri j − r0)]} (1)

Regarding the range exponent of the potential, β, it has a strong influence on the char-
acteristics of the function, thus allowing it to model aspects of particle interactions for a
wide range of materials. As the value of β is increased, the number of local minima in the
PES increases rapidly, changing the landscape from smooth to rough [21,22]. Also, as β

increases, the PES is more likely to assume a multiple-funnel character, therefore increasing
the challenge for global optimization algorithms.While for β = 6 the structural behaviour of
the Morse potential is very similar to that of Lennard-Jones clusters, the global optimization
of Morse clusters for β = 10 or β = 14, which correspond to short range interactions, is
regarded as a specially tough task, one that is orders of magnitude harder than Lennard-Jones
clusters [21,22]. In this study, following previous works [13,14,60–62], we have set β = 14
leaving ri j as the only variable in Eq. 1, resulting on a Morse potential model that depends
only on the interactions between particles. A database of putative Morse cluster minima up
to 80 atoms is available for different values of β [1].

2.2 Related work

A general overview of the most relevant EA approaches to CGO can be found in [36]. This
section covers important milestones, followed by a brief review of key achievements of the
application of EAs to Morse clusters in particular.

Early EA approaches relied on binary strings to represent atoms. Floating point repre-
sentation was first introduced in CGO by Zeiri [85] and soon became a widely preferred
alternative [17,20,33,40,58], mostly because it allows non-discrete continuous positioning
of particles. Advantages include increased precision and the ability to apply genetic operators
that take into account properties of cluster geometry in a more convenient way and without
the need of converting genes to atomic coordinates.

Various genetic operators that use context specific knowledge have been proposed to tackle
CGO problems. These operators have been designed to be sensitive to the semantic properties
of clusters. Regarding mutation, the most relevant operators include particle permutation,
where the position of two or more particles are switched, particle displacement, where one
or several particles are slightly displaced in a random fashion, piece rotation, where part of
the cluster is rotated around a chosen axis, and, finally, piece reflection, where part of the
cluster is replaced by its own reflection or the reflection of a different part [41,64,66].

Concerning crossover, the Cut and Splice (C&S) operator has been most widely used. It
works by defining a random cutting plane in one parent and merging one of the resulting
sub-clusters with a complementary sub-cluster from the second parent also obtained through
a cutting plane [20]. It therefore ensures that each parent contributes with particles that are
close together, meaning that they will likely have a low potential energy level. This feature
increases the likelihood of mixing useful blocks of genes and is regarded as beneficial to
the evolutionary process [36,67]. The efficiency of this operator may be increased by using
knowledge of the geometry of each individual to determine the position of the cutting planes
[35].

Apart from specific operators, Lamarckian local optimization of individuals has also
played an important role. Gregurick et al. [30] have proposed the use of conjugate gradi-
ent type local relaxation which has also been applied by Deaven and Ho [20] and Rata et al.
[66]. Alternative methods such as the Nelder–Mead simplex local search has been applied by
Iwamatso [40] and also by Sastry and Xiao [68] while a limited memory Broyden–Fletcher–
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Goldfarb–Shanno (L-BFGS) [49] has been applied by Hobday and Smith [37], Zhao and
Xie [86] and Pereira et al. [61]. The combination of local optimization and EAs into hybrid
approaches is nowadays regarded as having striking effects on search efficacy.

Optimization of Morse clusters is considered nowadays a very relevant benchmark prob-
lem which has established itself in the scientific community. Doyes and Wales [21] were the
first to tackle it by applying a basin-hopping algorithm, similar in many ways to a Monte
Carlo method aided by local optimization. They report finding all but 12 putative optima in
clusters ranging up to 80 atoms. Roberts et al. [67] were the first to suggest using an EA
on this problem. Their approach combined a real-valued representation [85] with a Cut and
Splice crossover operator [20] and Lamarckian local optimization [20]. In their study they
focused on medium and short-range Morse clusters with 19 to 50 atoms achieving nearly
all putative optima. A revised version of their algorithm, which successfully found all the
presumed solutions in the same range, was published in 2003 by the same research group
[41].

A two-phase local search algorithm was designed by Locatelli and Schoen [50] with the
specific purpose of tackling multi-funneled PESs. The idea behind the algorithm is to use a
modified potential function which combines knowledge from the true PES as well as from the
structure of the putative solution. By performing local optimization, the algorithm biases the
search toward local optima with specific properties that aid the search for a global minimum
when searching on the true PES during the second step. This method was combined with
a basin-hopping approach and applied first to Lennard-Jones clusters [50,51] and latter to
Morse clusters [22]. In the later, it was able to find almost all putative global optima for
instances between 41 and 80 atoms. The two-phase local optimization has also been coupled
with a population-based algorithm in a posterior study showing a high rate of success in
finding the assumed global minima on Morse clusters ranging from 41 to 80 atoms [31].

While these approaches have been applied successfully to Morse clusters, the proposed
two-phase local optimization method has an important weakness. In order for the first phase
to work properly, a number of parameters need to be specified a priori. These parameters
depend on the geometric structure of the optimal solution corresponding to each cluster size.
This property raises questions regarding bias, since the parameters will guide the search to
solutions with a given geometric structure, as well as regarding what happens in instances
where we lack that knowledge.

Two self-adaptive approaches have been proposed to overcome this weakness. Cassioli
et al. [10] have presented a PBH algorithm where the required parameters are encoded in
each individual as weight factors that are inherited from parents to children. Evolutionary
pressure ensures that only the most adequate spread throughout the population. On Lennard-
Jones clusters, this approach has confirmed that the existence of different weights is helpful.
Pereira and Marques [60] proposed an extension to the two-phase local optimization where
each individual encodes the parameters to be applied on its own local relaxation method. In
their study, each individual starts with a random set of parameters that undergo evolution
by online adjustment, thus searching for the most suitable configuration for each instance.
Results on the optimization of Morse clusters show that although the number of successful
runs decreases when compared to Locatelli’s two-phase approach, the algorithm is able to
find the putative global optima of Morse clusters up to 80 atoms without the need of setting
instance-specific parameters beforehand.

Pereira andMarques [60] argue that the success of their approach was largely the result of
an increase in diversity induced by the adaption of parameters. A later study from the same
research group confirmed the hypothesis [61]. The study relied on a hybrid steady-state EA
coupled with an unbiased single-phase local optimization procedure. Their analysis shows
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that maintenance of diversity is a key factor when tackling CGO problems. They report
finding all putative global optima on Morse clusters ranging from 41 to 80 atoms, showing
how an unbiased hybrid EA can be used to tackle such problems efficiently. Many other
studies support that diversity is a key factor for the success of the optimization algorithm
[10,11,31].

Although not directly related to EAs, it is worth mentioning dynamic lattice searching
(DLS) [70]. This method was applied to the optimization of short-ranged Morse clusters
and obtained good quality results, as it established several new upper bounds on the potential
energy for instances until 240 atoms [13,14,25]. DLS creates a dynamic lattice that is formed
by all possible locations (in general, sites on the surface of the cluster) for atoms around an
initial random minimum structure. Then it relies on a greedy strategy to iteratively optimize
the cluster surface by moving atoms between positions in the lattice. The method is restarted
several times fromdifferent randomstarting geometries to improve the likelihood of obtaining
the local minimum. Notwithstanding its effectiveness, DLS construction strategy slightly
biases the search towards specific cluster structures, thus compromising its robustness (e.g.,
the dynamic lattice construction strategy adopted by Shao et al. [70] favors the appearance
of close-packed motifs).

2.3 A hybrid steady-state EA for Morse clusters optimization

This section describes the main components that compose the algorithm used in this study.
They have been previously used in different approaches and have been extensively discussed
in Pereira’s work on diversity in CGO problems [61]. The work compared different operators
and parameters and discusses the observed behaviours. It focuses onmechanisms responsible
for the maintenance of diversity. These are linked to the success of the approaches which
was taken into account on our choices for the present study.

2.3.1 Local optimization

In this study, local optimization relies on the L-BFGS method. This technique attempts to
combine both the reduced storage needs of conjugate gradient methods and the superlinear
convergence that characterizes full memory quasi-Newton methods. It needs to be supplied
with the function to be minimized as well as first order derivative information. The generic
element n of the Morse cluster potential gradient is obtained through Eq. 2 where xni rep-
resents the difference between the Cartesian coordinates of particles n and i, xni = xn − xi
Similar equations apply for the y and z axis.

gn = −2βε

N∑

i �=n

(
xni
rni

)
{exp[−2β(rni − r0)] − exp[−β(rni − r0)]} (2)

L-BFGS is applied to every individual generated prior evaluation, guiding the solution to
the nearest local optimum. The accuracy of the local optimization method is set to 1.0e−8.

2.3.2 Representation and genetic operators

Individuals represent clusters of N atoms on the 3D space as a 3 × N real-valued array
that represents the Cartesian coordinates of each particle. The coordinates range between 0
and N 1/3 which, despite the lack of formal proof, is widely accepted to allow the correct
scaling of the cluster volume with N [41,61,85]. Restrictions on the distance between each
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pair of atoms are enforced since two atoms coming too close to each other will result on an
excessively repulsive potential. During initialization and when genetic operators are applied,
inter-atomic distances are verified and only solutions where they are larger than the pre-
specified parameter δ are allowed. In this study δ = 0.5.

A generalization of the C&S operator is used for crossover. This operator (GenC&S)
has been proposed by Pereira et al. [63] and operates in a very similar way to the original
C&S but differs in the way the exchanged sub-clusters are determined. Their study shows
that the GenC&S exhibits a more appropriate behaviour than the original C&S on cluster
geometry optimization. Instead of using cutting planes and exchanging the resulting sub-
clusters, GenC&S tries to ensure that each parent contributes with atoms that are close
together by Euclidean distance. In detail, GenC&S builds D1 from parents P1 and P2 by
applying Algorithm 1 where N is the number of atoms that compose the clusters. D2 is
obtained by swapping the roles of the parents. A different variation of the original C&S is
given by Pullan [65].

Algorithm 1 Generalized Cut and Splice operator
1: Select a random atom CP from P1
2: Select a random number X ∈ [1, N − 2]
3: Copy CP and the X closest atoms from P1 to D1
4: Select the N − (X + 1) atoms from P2 that are closest to CP
5: for each atom selected from P2 do
6: if distance constraints between the atom and those in D1 are met then
7: Include it in D1
8: else
9: Skip it
10: end if
11: end for
12: if atoms in D1 ≤ N then
13: Complete D1 with randomly placed atoms
14: end if

Sigma mutation [63] is applied to every individual after crossover. This particle displace-
ment operator acts on one atom at each time by slightly moving it on the 3D space. The
new location is obtained by perturbing each coordinate with a random value sampled from a
Normal distribution with mean 0 and standard deviation σ . Local optimization is then applied
before evaluation takes place.

2.3.3 Population model

Steady State EAs are behaviourally different from generational EAs. In these models only
one or two offspring are generated at each step and they have to compete with their parents
and remaining individuals for a place in the population. Also, if they are allowed in the
population, slots need to be vacant, meaning that individuals need to be selected to forcibly
perish. This procedure is repeated until a stop criterion is met.

The replacement strategy that controls this process is arguably themost important operator
on steady state EAs with a major impact on its performance and behaviour [19,52,74]. In
general, replacement strategies can be divided into fitness-based, where the quality of the
individuals weights on the decision, or age-based, where the oldest individuals are removed
from the population. These criteria can however be combinedwithmore complexmechanisms
that aim to maintain diversity.
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A widely-known straightforward fitness-based approach is the GENITOR replacement
strategy [83] that works by replacing the worst individuals in the population with emerging
offspring, given that the later are better, otherwise they are discarded. Various stud-
ies show however that such a strategy induces a high selective pressure that is bound
to guide the population to premature convergence even when parents are selected ran-
domly [28,74]. GENITOR is no more than a simple strategy in a wide set that includes
plenty of strategies that work in more appropriate ways regarding selection pressure and
diversity.

When considering a problem such as CGO, where the search landscape is rigged with
local minima which increases exponentially with cluster size, it is imperative to provide the
EA with mechanisms that prevent or at least slow down takeover time. Many replacement
strategies that try to enforce population diversity derive from crowding methods [18,53].
They work by having new offspring replace individuals that are most similar to themselves
based on genotype similarity. This way, the population is less likely to be flooded by similar
solutions. Such crowding methods result on the formation of niches.

A different approach to promote diversity has been proposed by Krasnogor [43]. His study
presents an adaptive memetic algorithm where the local search component plays a double
role. When there is high diversity, it acts as a regular local search algorithm, however, when
diversity starts to fall, it changes behaviour and accepts individuals that deteriorate fitness
in order to avoid premature convergence. The study also considers different local search
methods that are able to complement each other aswell as a self-adaptive approachwhere each
individual encodes its own local search strategy that evolves along the run. Such approaches
that learn along the run which strategy to apply are known as multimeme algorithms (MMA)
[43,44,59].

The replacement strategy used in this study was proposed by Lee et al. [45] and was
later incorporated in the PBH algorithm [31]. It is a fitness-based strategy that includes
mechanisms that aim at maintaining diversity. Algorithm 2 shows the steps that determine
if a new offspring D is allowed into the population Pop and what individual is replaced.
Briefly, in each iteration, two parents are selected and two offspring built. Considering an
individualD, already locally optimized and evaluated, if Pop contains a solution that is close
to D, then only the best of the two is kept. Otherwise, D is different from all the solutions
in the population and will replace the worst one, given that D is better. In order to perceive
if individuals are close, a distance measure d(X, Y ) that captures the similarity between
individuals X and Y is required. Moreover, a minimum allowed distance between individuals
in the population dmin needs to be specified.

Algorithm 2 Replacement strategy adopted by the EA
1: Find X ∈ Pop such that d(X, D) is minimum
2: if [d(X, D) ≤ dmin and VMorse(D) < VMorse(X)] then
3: D replaces X in Pop
4: else if [d(X, D) > dmin ] then
5: Select Y ∈ Pop, such that VMorse(Y ) is maximum
6: if [VMorse(D) < VMorse(Y )] then
7: D replaces Y in Pop
8: end if
9: else
10: D is discarded
11: end if
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2.3.4 Diversity measures

A large number of measures have been designed for the comparison of individuals in CGO
problems and extensively discussed in the literature. Broad reviews and classifications of
different metrics can be found in various publications [11,54,61]. The proposed metrics can
be as simple as the fitness distance between individuals [20] or much more complex and
aware of properties of cluster geometry and the semantics of individuals [12,31,35,45,62].

This study relies on a metric based on the distances of atoms to the clusters center of mass,
first proposed by Grosso et al. [31]. This choice was made based on the results and analysis
presented by Pereira et al. in a study where the metric is compared with several others [61].
Briefly, this measure works as follows: First, for each cluster, the distances of the atoms to
the center of mass are organized in a vector in non-decreasing order. Then, given two vectors
and the respective ordered sets OrdA and OrdB , the dissimilarity between the clusters is
given by Eq. 3, where K represents de size of the sets.

d3ord(A, B) =
K∑

i=1

|(OrdA(i) − OrdB(i))|3 (3)

To estimate dmin we rely on information provided by the initial randomly generated
population using Eq. 4 [31] where N represents the size of the population, d(A, B) the
distance between individuals A and B and ζ specifies the proportion among the average
distance calculated with a set of individuals randomly generated and the minimum allowed
distance allowed between every pair of solutions that belong to the population. Following
the discussion in the study by Pereira et al. [61], ζ has been set to 0.25.

dmin = ζ ×
∑N−1

A=1
∑N

B=A+1 d
3
ord(A, B)

1
2 (N

2 − N )
(4)

3 Island models for cluster geometry optimization

This section introduces IMs through a brief discussion of their characteristics in Sect. 3.1,
and relevant related work in Sect. 3.2. Finally, an IM approach to hybrid steady-state EAs is
described in Sect. 3.3

3.1 Island models

Parallel EAs can be subdivided into three main groups depending on their characteris-
tics: global single-population master-slave EAs, single-population fine-grained EAs and
multiple-population coarse-grained EAs [6].While a single population is used on the first two
approaches, the third one is particularly interesting due to the fact that it relies on multiple
sub-populations that undergo independent evolution processes with the occasional exchange
of individuals between populations. Such an approach has become quite popular in the last
couple of decades despite being the parallel EA model that is least understood, mostly due to
complex behaviour induced by the exchange of individuals and all the design choices implied.
Many different approaches and studies have been presented on different applications and the
model has been referred to by many names such as Multi-population EAS, Multiple-deme
EAs, Distributed EAs or Island models (IM). We chose to use the IM designation, a name
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that derives from its resemblance with a model used to describe natural populations that are
isolated by geographical barriers, such as in islands.

More importantly, apart from the advantages brought by the distribution of computational
effort, IMs show different behaviours from standard EAs (panmictic) [71] and therefore
may be able to perform better than panmictic approaches on certain problems [3]. The most
distinctive aspect of IMs is that individuals are restricted to interact with others from the same
island. In detail, during periods of isolation, selection operates on each island independently
and parents are able to mate only with others from the same island. Moreover, on steady-
state approaches, offspring compete only with individuals from the same island through
the replacement strategy. These restrictions can therefore be seen as borders that separate
individuals, promoting independent evolutionary processes and slowing down the flow of
genes in the global population. The existence of independent processes makes IMs very
different from standard EAs while using migration separates IMs from isolated runs of
panmictic EAs [71].

The effects of the mentioned features on the global population are striking. On the one
hand, such an approachmay prevent the successfulmixing of individuals but on the other hand
it prevents temporarily better individuals from dominating the whole population. Instead,
each island exploits its own genetic material, enabling the subpopulations to occupy different
regions of the search space. During these periods of exploitation, progress is slow and based
on small, almost insignificant changes in the genetic pool of the islands. This equilibrium is
however perturbed by migration from time to time which triggers rapid evolutionary changes
through the constant intra-island competition. This effect has been noticed to have strong
similarities with the theory of punctuated equilibria [24]. Cohen et al. [15] were the first to
notice the resemblance, showing in their experiments with parallel EAs that while relatively
little changes occurred during isolation periods, new solutions were often found soon after
migration.

The aforementioned characteristics are bound to promote diversity on the global popula-
tion as well as provide weaker individuals with ecological opportunities to contribute with
their genes and hopefully help to reach better solutions [55]. Regarding CGO problems, such
features may be helpful in covering a large part of the search space. Considering the PES,
while intra-island evolution pushes individuals towards different local optima, migration
introduces new genetic material into the islands, ultimately helping the population escape
and progress.

IMs require a number of design choices aswell as the specification of various operators and
parameters: the number and size of islands, a topology that defines how islands are connected,
operators for the selection of emigrants and the inclusion of immigrants (migration policies),
migration sizes and frequency. All these components are crucial to IMs and need to be
balanced in order to achieve the desired effect.

3.2 Related work

The idea of using parallel computation to simulate the evolution of natural populations goes
back to the 1950s, when Holland proposed a parallelization architecture aiming various
applications [38,39]. While the project was never built, some of the ideas remained. In the
1970s, Bethke conducted a study on the parallelization of two different GA implementations
[4] and analysed their efficiency.He showed that parallel approachesmay reach close to 100%
efficiency on single instruction, multiple data class computers. He also identified some of the
possible bottlenecks on parallel architectures. Early in the 1980s, Grefenstette proposed four
possible approaches to parallel GAs [29]. One of them was an IM where the best individual
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from each island is broadcast to all others every generation. Grefenstette also focused on the
effects of migration on the maintenance of diversity and raised important questions regarding
frequency and topology.

In the mid 1980s, Grosso performed what might have been the first systematic study on
IMs [32]. He divided a population in five islands and experimented with different migration
rates. He discusses that in isolated islands average fitness improvements occurred faster but
stopped at worst fitness values than in the panmictic population. With low migration rates
the results did not improve but with intermediate rates the results were as good as those
achieved by the panmictic population. These results suggest that there is a lower bound on
migration rates, below which the IM performs worse than the panmictic EAs. A few years
later Tanese conducted several studies regarding the effects of migration sizes and inter-
vals on IM efficiency as well as on maintenance of gene diversity [77–79]. It is shown that
the effect of the parameters are connected and that both need to be balanced in order to
achieve efficiency, suggesting that an upper bound on migration rate exists, above which
the IM performs worst than a panmictic approach. In a late 1990s survey of parallel dis-
tributed GAs by Alba and Troya it is proposed that migration rates should fall between 1
and 10% of the population size with the best value to be considered problem dependent
[3].

In one of Tanese’s studies [77], three different experiments are conducted on a 4D hyper-
cube topology. On the first one, migration occurred with intervals of 5 generations and two
different migration rates were experimented on a varying number of islands. The results
obtained were as good as those obtained by a panmictic approach. The second one used
different crossover and mutation rates in each island in an attempt to balance exploration and
exploitation. The last study experimented with varying frequencies of migration showing that
too short or too long intervals between migrations resulted on a decrease of performance of
the IM. Skolicki and De Jong have also conducted a study on migration sizes and intervals on
IMs using a GA [72]. They conclude that the performance is affected by three main factors.
Firstly, if migrations are frequent, then the interval length has a stronger effect than migration
size, meaning that if the interval is too small there is a drop in performance. Secondly, as
the migration size approaches the islands size, performance degrades. Lastly, performance
may also drop for large migration intervals, an effect that may be reduced if the algorithm
is ensured not to stop prematurely. Experiments on GP have been conducted by Fernández
et al. [26,27]. They report similar conclusions, obtaining best results on a number of problems
by migrating 10% of the subpopulation size every 5 or 10 generations. They also report that
if few individuals are migrated, the interval between migrations should be small whereas if
many aremigrated the interval should be large in order for each subpopulation to have enough
time to improve and exploit the new genetic material. Moreover, they discuss that if too many
individuals are exchanged, even with large intervals, the IM performance will drop due to the
risk of homogenization of the islands. Also on the subject of migration intervals, Grosso [32]
proposed that migration occurred only when the population was near convergence. Braun
applied the same principle in a study where migration occurred with completely converged
islands to restore diversity [5]. Munetomo et al. [57] have also applied the same idea and
Cantú-Paz and Goldberg [8] have presented theoretical models that predict the quality of
solutions using a fully connected topology.

Migration policies define what is being exchanged during migration. Cantú-Paz explored
two different emigrant selection strategies, best or random, and two immigrant replacement
strategies, worst and random in an IM where migration occurs at every generation and the
exchanged individuals are copied (not moved) from the original island to the target one [7].
His study shows that choosing either emigrants or individuals to be replaced by immigrants, or
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both, with a fitness based method highly increases the selection pressure, driving the islands
to premature convergence. On the other hand, using random selection on both operations
reportedly has no effect in takeover time. In [3], Alba and Troya study various selection
operators for selection emigrants, among which random selection is reported as able to
prevent the “conquest” effect on the target population.

Topologies determine how information flows from island to island. They play an important
role since they control how fast solutions spread. The denser the topology is, the faster
solutions reach all the islands in the model, which may lead to a few solutions taking over
the population. The sparser the topology is, the more isolated islands will be from each
other thus allowing the emergence of different solutions. The mixing of better solutions is
more likely to occur on the first scenario while the preservation of diversity is more likely
on the second. The work by Cohoon et al. [15] used a mesh topology as they defend that
using highly connected topologies with a small radius works best for an adequate mixing
of individuals through the evolution process. A later extension on their work using a 4-D
hypercube used similar ideas [16]. Cantú-Paz has later experimented with a set of commonly
used topologies such as fully connected, 4-D hypercubes, 4 × 4 torus, unidirectional and
bidirectional rings also suggests that high density allows IMs to reach global solutions within
fewer evaluations [9]. However, a more recent study [69] has concluded that highly dense
topologies are adequate for the optimization of smooth cost functions, while sparser islands
are more adequate for non-smooth cost functions as a mean to preserve a higher population
independence and diversity. Dynamic approaches have also been studied using different
strategies. In this case, an island is not enforced to communicate with a fixed set of neighbours
but instead chooses which neighbours will receive its emigrants at each migration step.
The choice may be made based on the effect the migration will bring to the target island
according to various criteria such as population diversity [57] or genotype distance between
the islands populations [48]. On a simpler approach, target islands may be chosen randomly
[71]. Skolicki [71] has discussed that dynamic topologies are an adequate way to maintain
the number of migrations fixed when experimenting with different topologies as well as to
further reduce the speed of information spread and the risk of over flooding islands with new
individuals.

Island size variation has been regarded by some researchers as a key factor in IM
performance despite the fact that extensive parametric studies are scarce. Nonetheless,
Whitley et al. have conducted such a study on both non-deceptive and deceptive func-
tions [81]. They tested with populations of 5000 individuals divided into 1, 5, 10, 50
and 100 islands and populations of 500 individuals split into 1, 5 and 10 islands. In very
large populations, it is shown that increasing the number of islands has a positive effect
on the models efficacy on the optimization of deceptive functions, which is explained by
the benefit of having multiple independent populations exploring potentially different areas
of the search space that may contain different subsolutions. On nonseparable functions,
the panmictic approach seems to gain advantage on most of the IM configurations, how-
ever certain configurations are able to perform as good as or even better than the single
population approach. On the tests with small populations, IMs perform similarly or bet-
ter than panmictic approaches on both deceptive or non-deceptive functions. Martin et al.
[55] argue that increasing the number of islands is beneficial as long as the island size
doesn’t fall under a given threshold, which depends on the characteristics of the func-
tion being optimized. Whitley et al. [81,82] have also applied a distributed version of
a GENITOR steady-state EA where immigrants replace the worst individuals in target
islands.
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3.3 An approach to hybrid steady-state EAs

IMs require a population ofP individuals to be divided intoN islands withM individuals each
so that P = N ×M . Also, since we are using a steady state approach, the stop criterion needs
to be adapted. In this case the evolutionary process stops at E evaluations in the panmictic
approach, while on the IM each island stops evolving the population when I evaluations have
been performed so that E = N × I . As an example, a panmictic model where 100 individuals
are evolved until 5,000,000 evaluations are reached may be divided into 5 islands consisting
of 20 individuals each, that undergo 1,000,000 evaluations.

Existing studies suggest that increasing the number of islands used, at least to a certain
point, is beneficial to IM performance, which may be specially relevant for CGO problems
given their multiple-funnel character and high number of local optima. In this study we
address the effects of IMs formed by 5, 10 or 20 islands and compare the resulting behav-
iours. Also, different topologies are regarded as playing a key role on the maintenance of
diversity and exploration of the search space. Considering the importance of diversity main-
tenance on CGO problems, its mandatory to understand the impact of both sparse and dense
topologies as well as their benefits and weaknesses. In order to do so, fully connected, ring,
and torus topologies are tested. In the later two, unidirectional and bidirectional approaches
are tested. Moreover, dynamic approaches are regarded as a mean to further reduce the speed
of information spreading through the islands. An approach where each island chooses the
target of each migration from its neighbourhood in a random fashion is also tested for the
each topology.

Regarding migration, the widely popular best-worst and random-random policies are
tested. The second one reportedly causes the less impact on the algorithms convergence.
A third policy which we have named random-rest is also tested where, similarly to the
random-random approach, individuals are selected randomly from their source island and
will replace a random individual at the target island. However, restrictions were imposed
so that individuals arriving at a given island are discarded if an equal individual is already
part of the population as shown by Algorithm 3. Comparisons between individuals rely
both on their fitness values and on the distance between them as described by Eq. 3. This
metric has been designed to better fit the steady state approach as well as help maintain
diversity by keeping migration from causing duplication of individuals on the same island.
The best individual from each island is protected from being replaced. Different migration
sizes and intervals are tested as they need to be balanced in order to obtain a better perfor-
mance from the IM. Migration sizes should be large enough to promote innovation and a
good mixing of individuals but also small enough to prevent flooding and fast duplication
and deletion of genes on the global population. Rates of 1, 2 and 4 individuals were tested.
Migrations intervals of 5 and 10 generations were also tested. The interval should be long
enough to allow the exploitation of new genetic material in each island and the exchange
of suboptimized individuals. However, too large intervals will result on the islands remain-
ing on stasis for longer periods of time, wasting resources and reducing productivity. For
migration and analysis purposes, a generation counter is incremented when P individuals
are generated in the panmictic model or M in in each subpopulation of the IM. A study
covering parts of the proposed approach and preliminary results has been published in 2012
[46].
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Algorithm 3 Replacement strategy used by the migration policy
1: Consider a candidate immigrant (I) to a subpopulation (Pop)
2: for each individual (P) in Pop do
3: if d(I, P) == 0 and VMorse(I ) == VMorse(P) then
4: Discard I
5: Return
6: end if
7: end for
8: sort Pop according to quality
9: Replace a random individual except Pop[0]

4 Experimental results

This section describes the experiments conducted on both the panmictic and the IM
approaches. A study on the influence of various experimental setups on the IM follows
and finally the results of the best setup are compared to those of the panmictic approach and
discussed.

4.1 Experimental settings

The experimental settings are separately described on the following subsections.

4.1.1 Panmictic approach

Each experiment consists on the evolution of a population of 100 individuals until a limit
of 5,000,000 evaluations is reached. Each iteration of the L-BFGS algorithm counts as 1
evaluation and a maximum of 1000 iterations per individual are allowed. Selection relies on
tournament of 5 individuals and is followed by crossover at the rate of 0.7 and mutation at the
rate of 0.05.σ has been set to 0.05 × N 1/3. Experiments were repeated 30 times for Morse
clusters ranging from 41 to 80 atoms.

4.1.2 IM approach

Design choices have been thoroughly discussed in Sect. 3.3. In summary, approaches com-
bining the following parameters were tested: 5, 10 or 20 islands; fully connected, ring and
torus topologies; unidirectional, bidirectional and dynamic connections; best-worst, random-
random and random-rest policies; migration rates of 1, 2 or 4 individuals; migration intervals
of 5 and 10 generations. Both the size of the islands and the stop criterion were enforced so
that the rules set in Sect. 3.3 are complied with.

Other parameter and design choices were kept the same as in the panmictic approach,
except for selection which was downsized to a tournament of two individuals. While a
tournament of 5 individuals may be well suited for a population of 100 individuals, in our IM
experiments we deal with much smaller sub-populations. The operator ultimately prevents
the 4 worst individuals from contributing with their genes on their present island which on
a global level represents a great percentage of the gene pool (20, 40 and 80% of the global
population in IMs with 5, 10 and 20 islands respectively). Even if migration grants these
individuals the chance to contribute in other islands, there is a high probability that they are
replaced before being able to do so. Downsizing the size of the tournament helps relieve this
effect and represents a better suited choice.
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For each setup, experiments were repeated 30 times for a sub-set of instances. The dis-
cussion in Sect. 4.3 suggests that the best approach consists of a dynamic ring of 10 islands
each migrating one individual every five generations using the random-rest policy. For this
setup, experiments were repeated 30 times for Morse clusters sizing from 41 to 80 atoms.

4.2 Performance metrics

The performance of the IM on tackling the target problem is evaluated based on its ability
to reach the putative optima. We have therefore registered the number of runs where the
model was able to find the putative optima on the experimented range of clusters. This
measure is widely accepted when assessing and comparing state-of-the-art approaches for
CGO [14,22,31,61].

Other metrics were also registered along the run to aid in comparing and discussing the
impact of different settings on the behaviour of the model. For each generation, the following
elements were tracked in each island: fitness of best individual, average fitness of individuals,
number of substitutions, average dissimilarity between individuals and fitness of incoming
immigrants. On a global level, the following metrics were calculated for each generation:
global best fitness, global average fitness, total number of substitutions and average inner
diversity (AID) of the islands. Some of these metrics have been previously used on the
analysis of island models [71] whereas others have been used for studying the behaviour of
steady-state approaches to CGO [61]

4.3 The influence of IM parameters

This section details behavioural differences between varying design choices. The analysis
focuses on the optimization of Morse clusters composed by 61 atoms as it would be impossi-
ble to cover the full range of clusters. All tested setups found the putative optima at most once
on Morse clusters of 61 atoms as this instance is considered a particularly tough one. Inter-
estingly, despite achieving very similar hit rates, the resulting behaviours are quite different
as discussed on the following subsections. Each aspect of the design process is addressed
individually. While comparing different choices for a given parameter all others keep the
value of the best setup.

4.3.1 Number of islands

When designing an IM, one of the first questions that comes to mind is that of how many
islands are going to be used. While the question seems trivial, the number of islands that is
chosen will have a deep impact on the workings of the model. We want to take as much profit
from parallelization as possible, however, splitting the population into very small islands
may compromise their inner processes. If they are larger, we may get a better mixing of
individuals in each island, but that will result on a model with only a few islands. Such a
model will therefore share more resemblances with a panmictic approach, putting possible
benefits from IMs at risk. Three configurations are tested, using either 5, 10 or 20 islands
with the corresponding subpopulations sizing 20, 10 and 5 individuals.

Figure 1 shows the evolution of the model’s AID averaged over 30 runs, using the afore-
mentioned configurations. Differences between them are easily noticeable and reflect how
they can produce different behaviours. When dividing the population of 100 individuals into
20 subpopulations of five individuals, one should consider that the selection method applied
may harshly constrain individuals from sharing and contributing with their genes. In this
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Fig. 1 Average inner island diversity obtained by different island sizes on the optimization of Morse clusters
consisting of 61 atoms

case, even using a tournament of two individuals will keep the worst individual from each
island from being selected, which results on an overall exclusion of 20% of the genetic pool.
Unless these individuals are selected for migration and have a better luck on their target
islands, they will end up being substituted by offspring or by incoming migrants and that will
impact diversity. Moreover, unless alternative methods are used, migration has a fixed rate
per island, meaning that a higher number of individuals will be exchanged and duplicated on
each migration step. In addition to the small size of the islands, this behaviour will keep the
AID down and gradually diminishing toward the end of the run, eventually reaching a level
lower than initial values. This is kept under control by the migration policy and the higher
number of islands resulting on a larger distance between subpopulations, which help slow
down the spreading of genes in the model and the AID from dropping fast. As seen in Fig. 1,
the average AID continuously decreases, showing that a model with a high number of islands
is unable to maintain an adequate AID level on this particular context.

The opposite configuration, where individuals are divided into five islands addresses the
problems affecting the inner workings of each island. By including 20 individuals each,
they are able to maintain a higher AID. This is more noticeable in the beginning of the run,
but prevails throughout the entire runs. The AID is, in this case, more dependent on the
steady-state model and its replacement strategy as the model has more resemblances to a
panmictic approach. The impact of migration in this configuration is quite different from
that discussed on the model with 20 islands. Due to the size of the islands, migration is less
likely to highly disrupt the islands but migrating individuals are also less likely to contribute
with their genes on their target island’s evolution process. Moreover, while the number of
simultaneous migrations drops, so does the distance between islands. Along the runs this
will contribute to a higher homogenisation as less barriers separate the islands, making it
easier for the genetic material from one island to reach all the others. Figure 1 backs up this
analysis, showing that while islands profit from migration in the beginning, migration will
push the average AID down due to its replicative and deleterious nature.

The third approach tested divides the population into 10 islands of 10 individuals each.
While this may not necessarily be the optimal setting, it is a convenient and straightforward
one. Its behaviour shows a balance between number of islands and their size which allowed it

123



J Glob Optim (2015) 63:677–707 693

to reach better results than its peers. Although the average AID shown in Fig. 1 is not as high
in the beginning as in the setting with 5 islands, it remains above initial values for the whole
run and evolves in a more stable manner. This effect is likely to be the result of an increased
distance between islands, which while being smaller than on the 20 island configuration,
seems large enough to slow down the spreading of genes. When comparing island sizes,
subpopulations of 10 individuals seem large enough to allow the islands to nicely integrate
new individuals and give them a chance to contribute with their genes without being badly
disrupted. This contributes to a broader exploration of the search space by the IM.

Overall, this discussion shows the delicate balance between the number of islands and their
size, suggesting that increasing the number of islands and therefore the barriers between indi-
viduals is beneficial both regarding behaviour and parallelization, but only to a given threshold
from which the inner workings of the islands are rendered unproductive and unstable.

4.3.2 Topology

Two unidirectional topologies are initially addressed: ring and torus (fully connected is bidi-
rectional by definition). Bidirectional approaches to the ring and torus as well as the fully
connected topologies are then discussed and finally dynamic versions of these three topolo-
gies are considered.

Figure 2 shows the average AID of the IM observed along 30 runs, using unidirectional
topologies. Despite the sudden peaks which are the result of migrations, the AID remains
above initial values on both approaches. However, it also shows a decline toward the end of
the run, an effect that is more intense on the torus topology in comparison to the ring.

Migration plays a delicate double role, on the one hand injecting new genetic material
into the islands thus helping progress, and on the other hand causing the duplication of some
genes and the deletion of others on a global level. Aside from the obvious differences in
sparsity, the topologies also differ in the global number of exchanges at each migration step.
Therefore it is unclear if the differences in AID are the result of divergent topologies or
simply due to a higher number of migrated individuals in the torus topology.

Fig. 2 Average inner island diversity obtained by unidirectional topologies on the optimization of Morse
clusters consisting of 61 atoms
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A closer look into the workings of unidirectional topologies uncovers nonetheless some
particularities worth addressing. Figure 3 shows the fitness evolution of one island along one
run as well as the immigrants accepted by its random-rest migration policy. As the run is
closing to the end, we can see that less immigrants are allowed into the island’s population and
even those who are accepted have fitness values very close to the island’s mean fitness value.
This behaviour suggests that incoming immigrants are increasingly similar to those of their
target island. While we only present one island, this effect expands to the other islands in the
model and to other runs as well. We would hope for a bigger discrepancy between neighbour
islands so that migrating individuals could impact and allow target islands to progress.

A likely reason for this effect is the unidirectional character of the model causing each
island to gradually adapt to their sources, towards uniformity, and in turn causing their targets
to adapt. Such an affinity between islands is likely to occur in a chain reaction that cycles
through the topology. An illustration of such a reaction can be found in Fig. 4 which shows a

Fig. 3 Fitness evolution and included immigrants on an island using a unidirectional ring topology on the
optimization of Morse clusters composed of 61 atoms

Fig. 4 Fitness evolution of the best individual on a subset of the unidirectional ring topology on the optimiza-
tion of Morse clusters including 61 atoms
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Fig. 5 Average inner island diversity obtained by bidirectional topologies on the optimization of Morse
clusters consisting of 61 atoms

subset of islands from an unidirectional ring topology that consecutively progress towards a
new best individual in an ordered fashion and as a result of unidirectional migrations. While
these examples refer to the ring topology, as the effects are more evident, they can also be
found on the torus topology.

Experiments with bidirectional approaches have shown to help mitigate the chain reaction
effect found on unidirectional topologies. By giving islands the ability to move individuals
to neighbours standing in either direction of the topology, a less predictable and less uniform
mixing of individuals is promoted. As a result, migrations are more likely to impact the AID
of target islands.

Figure 5 suggests that the ring topology has been able to maintain a slightly higher average
AID than with unidirectional connections during most of the run, probably on account of
avoiding chain reactions. Nonetheless, the number of exchanges increases as a result of an
higher number of connections, which ultimately takes its toll towards the end of the run,
causing the average AID to gradually decrease and eventually reach levels just below those
achieved by the unidirectional approaches. On the grounds of being a denser topology, the
differences between the torus approaches are less evident. Overall, bidirectional connections
seem to produce a better mixing of genes and to prevent uniformity during the length of the
runs and, even towards the end, to balance the increase in number of exchanges, maintaining
a competitive average AID when compared to the unidirectional models. Finally, the fully
connected topology obtains a lower AID than the other topologies along most of the run,
eventually reaching values lower than initial ones. This extremely dense topology results on
many more exchanges than any other, resulting in the fast deletion and duplication of genes
that eventually leads to a decreasing AID.

While the previous experiments were useful for understanding certain characteristics of
different topology choices, further investigation was needed in order to assess the influence
of topologies without the inherent differences in number of migrations. Dynamic topologies
are helpful in doing so since they keep the number of exchanges on a fixed value. Figure 6
shows howAID evolves, averaged over 30 runs, for dynamic versions of the three considered
topologies. When compared with their static counterparts in Fig. 5, each dynamic approach
registered a higher AID for most of the run. Such an observation suggests that the model
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Fig. 6 Average inner island diversity obtained by dynamic topologies on the optimization of Morse clusters
consisting of 61 atoms

benefits the most by taking advantage of moving individuals to multiple islands as in bidi-
rectional topologies while preventing the resulting increase in simultaneous migrations. The
random selection of target islands also introduces stochasticity which contributes to a more
dynamic model, thus reducing uniformity and potentially increasing the impact of immigrant
individuals.

Despite the general increase in average AID values, there are still differences in diversity
handling between the three topologies. The density of the topologies seems to have a clear
relation with how IMs handle diversity among its islands. Figure 6 shows a clear advantage
on sparser topologies, with the ring topology being able to maintain AID values higher than
the other two. Considering the multi-funneled character of the PES and its high number of
local minima, maintaining a sparser topologymay be beneficial since it presents the strongest
barriers between islands, successfully slowing down the spreading of genes, their duplication
as well as deletion, specially when combined with an appropriate migration policy. A balance
between local and global approaches is achieved. While the replacement strategy applied by
the steady-state model ensures that diversity is maintained inside the islands, the sparsity
of the topology as well as the migration policy ensures that genetic material spreads slowly
through the model helping maintain diversity on a global level.

4.3.3 Policy

Which individuals are selected for migration is an important decision. We need to make sure
that migrants are able to impact target islands in meaningful ways. Also, it’s important that
the individuals that are replaced are chosen in a way that harms islands as little as possible.
Three migration policies are addresses: best-worst, random-random and random-rest.

Figure 7 shows howAID evolves for each of the tested policies, averaged over 30 runs.We
can see that the best-worst approach has a very different impact on diversity when compared
to the other two. This behaviour was expected, as propagating only the best individuals is
known to result on a conquering effect. Still, the idea behind this approach isworth addressing.
It is expected that by migrating the best individuals of each island while replacing the worst
will allow each island to benefit from new high performing genes to further evolve into better
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Fig. 7 Average inner island diversity obtained by different migration policies on the optimization of Morse
clusters of 61 atoms

Fig. 8 Fitness evolution and included immigrants on an island using a best-worstmigration policy on the opti-
mization of Morse clusters composed of 61 atoms. Each island migrates one individual every five generations

candidate solutions. However, probably due the characteristics of the PES and the reduced
size of the island, the migration of best individuals is likely to push them into local optima
and undermine the exploration of the search space, which is vital when tackling CGO. The
replacement strategy applied by the steady-state model will keep islands from converging,
therefore, the behaviour observed in both Figs. 7 and 8 is the direct result of new immigrants
conquering their target islands and eventually propagating one or a small set of individuals
through the entire model.

The random-random approach has a much more desirable behaviour as seen in Fig. 7.
By selecting individuals for migration in a random fashion we reduce the conquering effect
since any individual can be picked. While the genetic quality of these individuals is not
necessarily high, they will still be able to provide islands with fresh genes that will help them
produce innovative solutions, escaping from local optima or stagnation. On a global level this
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Fig. 9 Fitness evolution and included immigrants on an island using a random-random migration policy on
the optimization of Morse clusters composed of 61 atoms. Each island migrates one individual every five
generations

will allow the model to better explore the PES and search for a global optima. At the same
time, incoming immigrants will replace random individuals, therefore worst individuals are
not forcefully removed from the evolution process and may still be able to contribute, if
not on their current islands, then in others through migration. There are nonetheless a few
points at issue that may be specific of the steady state model applied. Firstly, the approach is
able to migrate individuals that will bring no genetic diversity to target islands when they are
structurally similar to one of those already in the subpopulation. Secondly, the best individual
in each island is unprotected from being replaced which can cause drops in some island’s
best fitness values as well as keep those individuals from further contributing in the search
process. Figure 7 shows how allowing the replicating individuals into the islands causes a
gradual drop on the average AID. Also, Fig. 9 illustrates how new immigrants can cause
fitness drops on target islands by replacing the best individual present.

The proposed random-rest approach is in its essence a random-random approach where
the replacement of individuals in target islands by incoming migrants is restricted to address
the previouslymentioned issues. Figure 7 shows that this policy has an impact on the observed
average AID, allowing it to keep at higher values than on both of the other tested approaches.
Also when comparing Figs. 9 and 10, we can see that situations where the best individual in
target islandswas being replaced by immigrants no longer occur. The price paid to accomplish
this is however that some migrations may be rendered useless as the migrated individuals are
discarded which produces nevertheless a more beneficial behaviour and performance. This
approach was designed for CGO alone and relies on the previously discussed dissimilarity
measure. As long as dissimilaritymeasures are available to compare between two individuals,
then this policy could be adapted and applied to other contexts as well.

4.3.4 Number of migrants

Three setups were tested, either migrating 1, 2 or 4 individuals simultaneously at each migra-
tion step. Figure 10 suggests that migrating 1 individual at each step is enough to help the
islands progress both by the inclusion of new best individuals but also, and more interest-
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Fig. 10 Fitness evolution and included immigrants on an island using a random-rest migration policy on
the optimization of Morse clusters composed of 61 atoms. Each island migrates one individual every five
generations

Fig. 11 Fitness evolution and included immigrants on an island, migrating 2 individuals every 5th generation
on the optimization of Morse clusters composed of 61 atoms

ingly, the inclusion of genes that allow the reproduction of new best individuals. Considering
the migration policy applied, one may think that by increasing the number of individuals
migrated simultaneously, their impact will result on performance gains. The reasoning is that
islands may have a better chance of having valuable genetic material injected at each migra-
tion step while the migration policy rejects duplicative individuals and therefore helps islands
maintain their inner diversity. However, Fig. 11, which refers to the simultaneous migration
of 2 individuals, shows no evidence of behavioural benefits, much less Fig. 12, referent to
the concurrent migration of four individuals. In both cases, the islands seem to achieve better
fitness values earlier in the runs but also seem to stagnate earlier. Furthermore, they seem
to benefit less from new genetic material, even though more migrants are exchanged, which
renders migration as a deleterious and duplicative operation rather than a useful tool.
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Fig. 12 Fitness evolution and included immigrants on an island, migrating four individuals every 5th gener-
ation on the optimization of Morse clusters composed of 61 atoms

Fig. 13 Average inner island diversity obtained by simultaneouslymigrating a different number of individuals
at each step on the optimization of Morse clusters of 61 atoms

Figure 13 shows that increasing the number of migrants causes the average AID to slowly
degrade. The higher the number of individuals migrating at the same time gets, the lower the
AID gets, specially toward the end. This is, once again, due to the nature of the migration
operations. When migrating 1 individual at each step, the system seems able to incorporate
new genes while maintaining a balanced AID for most of the run and, at the same time, to
progress and gradually find better solutions as shown by Fig. 10. However, when that number
increases, not only do the islands seem to make a poorer use of new immigrants, the possible
benefits that higher migration rates may bring don’t seem to counterbalance the inherent loss
of AID.
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Fig. 14 Fitness evolution and included immigrants on an island, migrating 1 individual every 10th generation
on the optimization of Morse clusters composed of 61 atoms

4.3.5 Migration intervals

Two intervals are addressed, either migrating individuals every 5th or 10th generation.
Figure 13 suggests that in either case, the model is able to maintain average AID values
above initial levels, despite the scenario with longer intervals showing a lower average AID .
Furthermore, both Figs. 10 and 14 show that in both scenarios, migration is able to promote
progress in target islands. However, Fig. 14 also shows that intervals of 10 generations causes
islands to undergo long period of stasis where diversity is maintained in each island by the
steady-state model but productive reproduction is very unlikely to occur.

While longer intervals could be appropriate for systems with larger islands, intervals of
five generations seem appropriate to the size of the islands used. In this case, such periods of
isolation seem long enough for each island to exploit incoming genetic material and reach
new solutions. Arguably, if longer experimentswere to be runwith longermigration intervals,
competitive results could be achieved. However, given the stop criterion applied, periods of
stasis are no more than a waste of resources and evaluations.

4.4 Experimental results

Table 1 presents an overview of the results obtained by our final setup: 10 islands with
10 individuals each, connected through a dynamic bidirectional ring topology, where each
islandmigrates 1 individual every 5 generations, abiding to a random-restmigration policy. It
includes, for each instanceN of the problem, the number of runs where the putative optimum
was found. Lines labeled Panmictic present the results reported by Pereira et al. [61] using
the same hybrid steady-state EA as applied here but on a panmictic system. Lines labeled
IM correspond to the results obtained by our system, using the best set of parameters found.
The symbol “-” was used to mark instances where no runs successfully reached the putative
optima.

A first analysis of the results shows that our approach was able to find all the putative
optima on clusters ranging from 41 to 80 atoms. Moreover, the IM seems to perform slightly
better on a global level than the panmictic approach. It was able to yield a higher success rate

123



702 J Glob Optim (2015) 63:677–707

Table 1 Hit rate obtained by the panmictic and IM approaches on clusters ranging from 41 to 80 particles

N 41 42 43 44 45 46 47 48 49 50

IM 18 19 10 5 6 3 6 20 24 7

Panmictic 15 12 14 7 5 9 2 14 18 5

N 51 52 53 54 55 56 57 58 59 60

IM 4 11 9 10 4 9 8 15 5 7

Panmictic 7 6 5 12 6 11 8 4 2 –

N 61 62 63 64 65 66 67 68 69 70

IM 1 8 14 11 15 10 5 3 9 4

Panmictic 1 12 6 11 8 8 5 4 6 8

N 71 72 73 74 75 76 77 78 79 80

IM 7 10 6 7 3 5 3 5 2 1

Panmictic 6 7 6 1 2 4 7 3 6 5

on 22 instances, whereas the panmictic approach has a higher rate on 13 instances and ties
were found on 5 other. A pairwise proportions test [76] was performed with a significance
level of 0.01 and instances where significant differences were found were highlighted with
bold in Table 1. No significant differences were found except on four instances where the IM
performed significantly better, ergo backing up our assumption.

A more in-depth analysis of the results exposes behavioural differences between the pan-
mictic and the IM approaches.While the IMperformedwell on some instances of the problem
where the panmictic model performed poorly, the opposite happened as well. The explana-
tion may lie on the putative solutions of the tested instances corresponding to both different
geometric motifs and PES with different properties, which suggests that the two approaches
may be better suited for instances with different characteristics. A reflection on the workings
of both approaches further highlights behavioural differences between them. In IMs, both
the selection and replacement strategies act differently from the original model. Having the
population divided into subpopulations and reducing the size of the tournament will give
individuals a higher chance of being selected for reproduction and the replacement strategy
will give their offspring a higher chance of being accepted as they will only be measured
against the individuals on their current island, facing therefore less competition. Further-
more, the migration policy will contribute as well by giving weak individuals the chance to
migrate to islands where they will be more valuable. Finally, dmin is set independently on
each island which means that their replacement strategies will ultimately behave differently
along the runs. These characteristics help promote inter-island diversity but the lack of a
global replacement strategy will have an impact as well and, considering the duplicative and
deleterious nature of migration, is bound to cause some loss of diversity even if the migration
policy helps lessen the consequences.

This discussion exposes how important it is to correctly design an IM in order to make it a
valuable model. The final settings chosen for the IM were the result of the study in Sect. 4.3.
The analysis shows that the average AID is maintained above initial values and more or less
stable along the runs despite the effects of migration and the breeding of dissimilar offspring.
The discussion also supports that this is the result of a careful balance between all aspects
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Fig. 15 Acceptance rate of the replacement strategy adopted by the EA on the optimization of Morse clusters
composed of 61 atoms

of IMs and how volatile they are to changes in their design. In this particular context and for
the reasons mentioned above, it seems important to keep migration and connections between
islands to a minimum in order to keep AID high and duplication of genes low. Figure 10
shows that even though migration is kept to a minimum, the system is able to take advantage
of such a setup and promote progress. Figure 15, which corresponds to one run, backs up this
assumption on a global level, showing that newly bred individuals are able to integrate their
subpopulations consistently, suggesting that both diversity and migration are maintained at
suitable rates along the run.

When designing an IM there are plenty of design choices that should be taken into con-
sideration and whose behaviour may well be problem dependent. The parametric study in
Sect. 4.3 gives us insight of good design choices for the particular context of CGO and its
characteristic PES. Firstly, it’s on our best interest to split the population into as many islands
as possible to take profit from parallelization. However, the size of the islands should be kept
in mind so that their inner workings is not disrupted due to them being too small. Secondly,
islands should be kept as sparse as possible and communication routes should be kept to a
minimum, so that stronger barriers are maintained between individuals and the spreading of
genes is kept under control in order to maintain a higher diversity. Still, stochasticity plays
an important role and unidirectional topologies should be avoided since they can produced
chained reactions. Thirdly, applying an appropriate migration policy that gives any individ-
ual an equal chance to participate in other islands while keeping duplicative individuals out
is crucial to avoid conquering effects. Fourthly, a small migration rate on short intervals is
enough to promote progress in target islands and allows them to exploit new genes while
avoiding moments of stasis which are a waste of resources and evaluations.

5 Conclusions

IMs are distributed EAs that divide the population into islands that undergo isolated evolution
punctuatedby themigrationof individuals between them.Apart fromallowing the distribution
of computational effort, IMs result on a distinct behaviour from panmictic models. While
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isolation makes them different from standard EAs, migration makes them different from
separate runs of Standard EAs.

The characteristics of IMs support that they can help maintain diversity on a global pop-
ulation and at the same time provide ecological opportunities for weaker individuals to
share their genetic material. Given our current knowledge on CGO and the characteristics of
the PES, IMs may be an appropriate approach to tackle such problems, hopefully bringing
parallelization as well as behavioural and performance benefits. Designing an IM requires
however a number of choices regarding the number of islands, topology, migration policies,
rates and intervals. Those decisions are not straightforward and may have different outcomes
in different contexts.

This study presents an extensive discussion on the impact of different design choices on the
behaviour of IMs when tackling CGO problems. It shows how volatile IMs are to changes in
their design and how important it is to balance these choices in order to achieve the expected
behaviour and performance. In this particular context, it suggests a setup that helps make the
model an asset and keep migration a valuable operation. By using this setup, the model was
able to find all putative optima on Morse clusters ranging from 41 to 80 atoms. The overall
results are promising and back up that IMs achieve a slightly more robust behaviour than a
panmictic approach, being therefore a competitive parallel alternative to standard sequential
EAs.

There are several possible avenues for future research. On the one hand, it would be impor-
tant to apply IMs to other cluster geometry optimization variants, e.g., molecular clusters,
in order to confirm if the general guidelines suggested in this study generalize well. On the
other hand, it would also be relevant to investigate the possibility of granting the IMs the
ability to self-adapt to different optimization scenarios. This would not only alleviate the
burden of carefully making the necessary design choices but would also allow the islands
to diverge from each other and adopt different behaviours, possibly enhancing their global
performance.
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