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Abstract This study is aimed at exploring the ability of

complexity-based metrics to distinguish between paintings

and photographs. The proposed features resort to edge

detection, compression and entropy estimate methods that

are highly correlated with artwork complexity. Artificial

neural networks based on these features were trained for

this task. The relevance of various combinations of these

complexity metrics is also analyzed. The results of the

current study indicate that different estimates related to

image complexity achieve better results than state-of-the-

art feature sets based on color, texture and perceptual

edges. The classification success rate achieved is 94.82%

on a dataset of 5235 images.

Keywords Artificial neural networks � Complexity

estimates � Edge detection � Feature extraction � Image

retrieval

1 Introduction

The problem of distinguishing between paintings and

photographs, a non-trivial task even for human observers,

is addressed in this study. Some works [8, 9] suggest the

use of metrics related to color, perceptual edges and tex-

ture. They argue that photographs and paintings differ

substantially in their edge properties; thus, edge properties

could be used to automatically differentiate between them.

Furthermore, it is shown that the variation of image

intensity is substantial and systematic in photographs.

Cutzu et al. [8] pointed out that paintings seemed to use

color rather than systematic changes of image intensity to

represent different objects and object regions.

On a similar subject as the current work, Athitsos et al.

[4] tried to distinguish between photographs and computer-

generated graphics, with performance levels of over 90% in

JPEG and GIF images. Measures related to color and far-

thest neighbor histograms were used. The authors noted

that there was more variability in the color transitions from

pixel to pixel in photographs than in graphics, and that

graphics contained more distinct colors than photographs.

The current work proposes generic image complexity

estimates for image classification related to style and tex-

ture [3]. In a simplified way, the complexity of an image is

related to entropy and is the opposite of order. It is related

to the minimal information, or the minimal program,

required to ‘‘construct’’ the image. It can be observed that it

depends on the degree of predictability of each pixel of the

image [27]. Therefore, a plane image with all the pixels of

the same color shows a perfect order, and hence, it is less

complex. A pure random image can be seen as extremely

complex, and the value of each pixel is impossible to

predict even when taking into account the values of

neighbor pixels.
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It is considered that the visual complexity associated

with a painting and a picture may allow distinguishing

between them. Taking this supposition as a reference, it is

suggested using a series of complexity estimates which

have been previously studied to address this problem [3].

Inspired by previous works [18, 29, 39], this paper is aimed

at addressing this matter by using a feature extractor to

obtain features from images and an artificial neural net-

work (ANN from now on) to classify a set of images and

make the automatic discrimination between photographs

and paintings.

The remainder of the paper is organized as follows:

Sect. 2 presents different state-of-the-art works; Sect. 3

describes the different features which will be used to dif-

ferentiate between paintings and photographs; the method

used for carrying out the classification is shown in Sect. 4;

Sect. 5 shows the experimental results; and the conclusions

and future work are drawn in Sect. 6.

2 State of the art

The most similar to our work is the study carried out by

Cutzu et al. [8], which proposed several features derived

from the color, edge and gray-scale texture information

of the image to differentiate between real-scene pho-

tographs and paintings. The authors used a dataset of

12,000 images (6000 paintings and 6000 photographs)

gathered from different Web sites. The images had the

following restrictions: ‘‘(1) no monochromatic images

were used; all the images had a color resolution of 8-bits

per color channel, (2) frames and borders were removed,

(3) no photographs altered by filters or special effects

were included, (4) no computer-generated images were

used, (5) no images with large areas overlaid with text

were used’’ which can affect the application of their

system in some domains. They proposed three different

classifiers: classifier operating in the space of scalar-

valued features; classifier for RGBXY space; and clas-

sifier for Gabor space. The results of the classifiers were

72, 81 and 79%, respectively. Using the three classifiers

at the same time (and select the option voted by the

majority of the classifiers), Cutzu obtained a result of

93%.

Athitsos et al. [4] proposed a system that discriminated

between photographs and computer-generated graphics

(desktop icons and web pages), with a success rate of over

90%. They used two color histogram-based features: the

prevalent color metric and the color histogram metric. The

implemented system used decision trees to classify the

images. To create the decision trees, they used 1025 GIF

graphics, 362 GIF photographs, 270 JPEG graphics and

643 JPEG photographs as a training set.

While the aforementioned works lie in the use of ad hoc

high-level features, it is suggested that different complexity

estimates can be used to differentiate between paintings

and photographs.

There are some psychological works that establish

relationships between image complexity, visual perception

and esthetics [5, 11, 12, 26]. A deeper analysis on this topic

can be found in the study performed by Nadal [28]. Dif-

ferent measures of image complexity have been employed

previously [5, 14, 18, 27, 28], but some of them are not

computable or are very difficult to compute. Others were

defined for a particular type of image or type of content of

the image, e.g., as simple geometric elements.

The proposed metrics can be classified in four different

types: (i) based on estimates of the ‘‘complexity’’ of the

image, which measure the error of the JPEG and Fractal

compression method [18, 21, 30]; (ii) gathered from the

application of the Zipf’s Law [43], (iii) calculated

according to the Fractal Dimension of the image [41]; and

(iv) using the previous methods to the image after applying

edge detection filters.

The relevance of the perceived image complexity is a

recurring topic in the field of esthetics [2, 5, 27]. Inspired

by these theoretical works on esthetics, Machado et al. [18]

proposed complexity estimates and achieved human com-

petitive results in the psychological test: ‘‘Design Judgment

Test’’ (DJT from now on). Machado et al. [18] used an

ANN along with a subset of the features proposed in this

paper and obtained an average success rate of 74.49% in

DJT. In Machado et al. [20], authors used a similar subset

of the features proposed and an ANN classifier for the

painter identification task, obtaining identification rates

higher than 90% across experiments. Machado et al. [21]

explored their use to assign fitness to the images evolved

by an evolutionary art tool. Studies such as those conducted

by Saunders [36] or Svangård and Nordin [40], among

others, follow a similar line of work.

The perceptual relevance of Fractal Dimension is

explored in the works of Aks and Sprott [1] to quantify

esthetic preferences and in several papers by Taylor et al.

(e.g., Spehar et al. [39] and Taylor et al. [41]) to analyze

the evolution of Pollock’s dripping technique and the

esthetic qualities of landscape silhouettes.

The relevance of Zipf’s Law-based features in the

musical field was established in a series of studies (e.g.,

Voss et al. [42] and Manaris et al. [23–25]), which devel-

oped musical classifiers based on Zipf’s metrics and ANNs.

These systems were thoroughly tested in author identifi-

cation tasks, in pleasantness prediction and in predicting

the number of downloads of MIDI pieces from Classi-

calMidiArchive.com within a month by using two classes,

musical pieces with high and low number of downloads in

a similar way to Datta et al. [10]. All these experiments
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obtained success rates above 87% (e.g., Manaris et al.

[24, 25]). Other works that used Zipf’s Law-based features

in the visual field have been reviewed by Machado et al.

[20, 24].

3 Feature set

This section describes the proposed features related to

complexity. The feature extraction process can be sum-

marized to the following steps:

– Preprocessing, including all the transformation and

normalization operations applied to a given input

image.

– Filter application, in particular edge detection, to

identify points in images at which the image brightness

has discontinuities.

– Metrics application, application of certain operations

based on image complexity estimates, and statistical

measurements such as average and standard deviation.

3.1 Image transformation

Every image is individually submitted to a series of

transformations before they are analyzed. A given input

image is loaded and resized to a standard width and height

of 256 � 256 pixels, transformed into a three-channel

image in the RGB (red, green and blue) color space, with a

depth of 8-bit per channel, and all pixel values scaled to the

[0; 255] interval. This step ensures that all input images

share the same format and dimensions.

Afterward, the image is converted into the HSV (Hue,

Saturation and Value) color. Each color channel is stored

as a 1-channel gray-scale image. These images will be

referred to as H, S and V.

A new gray-scale image is also created by performing a

pixel-by-pixel multiplication of S and V channels (referred

to as CS for Colorfulness) and scaling the result to [0; 255].

From here on, this new method of calculation of H will be

referred to as HCS. This picture is obtained by using jointly

the information of the H channel angle with that of CS,

obtaining a new value associated with the H channel. This

is a possible solution for the existing problem as regards

the HSV color model for extreme values of the S and H

channels.

Some steps of this transformation, such as the change of

the aspect ratio to 1:1 or the resize, involve a loss of

information and a distortion of the picture, but in previous

experiments in other fields it has been proved that such a

transformation did not affect the ability of the system to

carry out the classification [31, 33].

Even Cutzu et al. [9] argued that such transformations

had to be taken into account, since they should have

reduced the real ability of the resulting system: ‘‘It is easy

to convince oneself that reducing image size (by smoothing

and subsampling) renders the perceptual painting/pho-

tograph discrimination more difficult if the paintings have

‘‘realistic’’ content. Thus, it is reasonable to expect that the

discrimination performance of our classifier will also

improve with increasing image resolution hypothesis that

we are planning to verify in future work.’’ Even though it is

not proved, we are fully aware that by scaling the image

information may be lost and it could hinder the perfor-

mance of the classifiers.

3.2 Edge detection filters

The resulting images are subject of new transformation

operations related to the application of classic filters of

edge detection. Edges in an image usually indicate changes

in depth, orientation, illumination, material, object

boundaries, and so on. In this case, Sobel [38] and Canny

[7] filters have been used, since they are filters with a wide

scientific spreading.

The Canny edge detection algorithm [7] includes four

stages, and these are: image smoothing, gradient calcula-

tion, non-maximum suppression and thresholding to detect

‘‘true’’ edges, while suppressing ‘‘false’’ non-edge filter

responses.

The Sobel edge detection method [38] consists of a

discrete differentiation operator, which computes an

approximation of the gradient of the image intensity

function. At each point in the image, the result of the Sobel

operator is either the corresponding gradient vector or the

norm of this vector. The Sobel operator is based on con-

volving the image with a small, separable and integer-

valued filter in horizontal and vertical directions.

These edge detection operators return a value for the

first derivative in the horizontal direction (Gx) and vertical

direction (Gy). The edge gradient (Eq. (1)) and the direc-

tion (Eq. (2)) can be determined from this value.

G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2
x þ G2

y

q

ð1Þ

H ¼ arctan
Gy

Gx

� �

ð2Þ

The feature extractor uses both filters. Both in the case

of Canny and Sobel, three transformations are carried out,

the first of them applying the filter in its horizontal direc-

tion, the second one in the vertical direction and the third

one applying both of them. Figure 1 shows an example of

this type of transformation. From the given picture ‘‘Len-

na.gif’’ (the color picture placed on the left), seven
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different pictures will be obtained. The first one is the same

picture without applying any filters. The other six are the

aforementioned pictures. The first column matches the

pictures of the Sobel and Canny filters applied horizontally,

the second column of the filters applied vertically and, the

last one, to the filters applied vertically and horizontally.

Each of these transformations is applied on any image

obtained from the picture preprocessing stage, i.e., on the

original picture and on every picture that has been obtained

by extracting the different color channels.

3.3 Average and standard deviation-based estimates

The average and the standard deviation are simply calcu-

lated using the pixel intensity value of each image, except

for the H (Hue) channel image. Since the Hue channel is

circular, the average and the standard deviation are calcu-

lated based on the norm and angle of Hue values (see

Fig. 2). In addition, a multiplication of the Hue angle value

by CS value is made, and consequentially, a norm is cal-

culated using Hue and CS values.

Thus, both Hue and CS pixel values are scaled to [0,1]

values and both average and standard deviation Hue are

calculated as follows:

hxi ¼ cosðH½xi; yi� � 2pÞ ð3Þ

hyi ¼ sinðH½xi; yi� � 2pÞ ð4Þ

The above equations represent the Hue components for the

ith pixel. Therefore, it is possible to compute:

avgangle ¼
arccos hx

� �

; arcsin hy
� �

;

2p� arccos hx
� �

; arcsin hy
� �

;

(

ð5Þ

avgnorm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hx
2 þ hy

2
q

ð6Þ

std ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PsðIÞ
i ððhxi � hxÞ2 þ ðhyi � hyÞ2Þ

q

sðIÞ
ð7Þ

where hx and hy stands for the average values of the

respective components, I the image and s is the file size

function.

Fig. 1 Examples of edge detection filters application. The first one is

the same picture without applying any filters. The other six are the

aforementioned pictures. The first column matches the pictures of the

Sobel and Canny filters applied horizontally, the second column of the

filters applied vertically and, the last one, to the filters applied

vertically and horizontally

Fig. 2 Demonstration of the circular channel Hue, and the relation

between V and S in the HSV cone
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The following modifications in Eqs. (8) and (9) allow

the computation of these metrics considering CS:

hxi ¼ cosðH½xi; yi� � 2pÞ � CS½xi; yi� ð8Þ

hyi ¼ sinðH½xi; yi� � 2pÞ � CS½xi; yi� ð9Þ

The average and standard deviation for each channel image

(H, S and V) consist of two values, with the exception of

the two representations for the Hue channel (H and HCS)

that holds four values for the average (norm and angle) and

two values for the standard deviation. A total of ten fea-

tures correspond to average and standard deviation.

3.4 Complexity estimates proposed

The features based on complexity estimates can be classi-

fied into three groups:

1. Based on Image Compression Error, similar to the ones

used in previous works [18, 19], these metrics estimate

image complexity by considering the compression rate

and error associated with the Fractal and JPEG

compression of the images.

2. Based on Zipf’s Law, inspired by previous work in the

musical field [23], these measurements consider the

slope of the trend line of the Zipf distribution of the

pixel intensities and the linear correlation with the

trend line [43].

3. Based on Fractal Dimension, inspired by the work

performed by Taylor et al. [41], the Fractal Dimension

of the image and of the image edges was calculated

through the box-counting method.

The selection of these metrics was inspired by several

studies which associate esthetics with complexity [3],

Zipf’s Law [23] and Fractal Dimension [41].

3.5 Features based on image compression

Some image compression schemes are lossy; therefore,

they yield a compression error, i.e., the compressed image

will not exactly match the original. All other factors being

equal, it is assumed that complex images will tend toward

higher compression errors and simple images will tend

toward lower compression errors. Additionally, complex

images will tend to generate larger files than simple ones.

Thus, the compression error and file size are positively

correlated with image complexity [15].

Three levels of detail are considered for the JPEG and

Fractal compression metrics: low, medium and high. For

each compression level, the process is the same, and the

image in analysis at a specific time is encoded in a JPEG or

Fractal format. It is estimated that image complexity of

image I uses the following equation:

ComplexityðIÞ ¼ RMSEðI;CTðIÞÞ � sðCTðiÞÞ
sðiÞ ð10Þ

where RMSE stand for the root mean square error, CT is

the JPEG or Fractal compression transformation and s is

the file size function.

A quad-tree fractal image compression scheme [13] is

used with the set of parameters given in Table 1. Note that

letting the minimum partition level be 3 implies that the

selected region is always first partitioned into 64 blocks.

Subsequently, at each step, for each block, if one finds a

transformation that gives a good enough pixel-by-pixel

match, then that transformation is stored and the image

block is not further partitioned. Herein, the pixel-by-pixel

match is performed with respect to the usual 0 to 255 gray-

scale interval encoding. If the pixel-by-pixel match error is

more than 8 for at least one of the pixels of the block in the

partition, that image block is further partitioned into 4

subblocks, the level increases, and the process is repeated.

When the maximum partition level is reached, the best

transformation found is stored, even if the pixel-by-pixel

match error for the block exceeds 8. The quality settings of

the JPEG encoding for low, medium and high level of

detail were 20, 40 and 60, respectively.

Romero et al. [31, 33] showed that such features had

been previously used to tackle an image classification

problem according to esthetic criteria. The only images

taken into account in that paper were those related to the V

color channel, while for the current study, all the available

channels have been used. Cutzu et al. and Athistos et al.

noted that color was useful for distinguishing photographs

from paintings and computer-generated graphics. For that

reason, it was decided to extract information from all color

channels.

Taking into account that there are 2 compression

methods and 3 levels of detail per method, a total of 6

features are related to each image channel. As for the

method based on JPEG, 3 features are also obtained using

the different levels of detail on the HSV image.

A total of 21 features correspond to JPEG and Fractal

compressions methods.

Table 1 Image compression parameters

Settings Low Medium High

Image size 256� 256 pixels

Minimum partition level 2 2 3

Maximum partition level 4 5 6

Maximum error per pixel 8 8 8
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3.6 Features based on Zipf’s Law

Zipf’s Law is the observation of phenomena generated by

self-adaptive organisms, such as humans, also known as the

principle of least effort. Once the phenomenon has been

selected for study, the contribution of each case to the

whole is examined and ranked according to its importance

or predominance [43].

Bill Manaris used the Zipf’s Law as a criterion of beauty

in music classification [23]. Since 2003, he has been col-

laborating with our research group in musical classifica-

tion, mainly using metrics based on Zipf’s Law [21, 24].

Taking into account the knowledge and experiences of the

group, several metrics based on this principle were added,

applying them to the pixel-to-pixel value in monochro-

matic channels.

In many cases, the statistical rank of an event is inver-

sely proportional to the event size. Informally, little events

tend to occur more frequently, while bigger events tend to

occur less frequently [23]. The use of size instead of rank

creates a size frequency distribution. It is an alternative

formulation of Zipf’s Law which applies to architecture

and city planning [35]. This formulation is also used in the

box-counting technique for calculating the Fractal

Dimension of phenomena [16].

3.6.1 Zipf rank frequency

The calculation of the Zipf rank frequency metric implies

the following: counting the number of occurrences of each

pixel intensity value in the image; ordering according to

the number of occurrences; tracing a rank vs. number of

occurrences plot using a logarithmic scale on both axes;

calculating the slope of the trend line and the linear cor-

relation with the trend line [29].

Figure 3 shows a graph including the frequency of

English vowels. Once the number of instances of every

vowel is counted, it is ordered by rank and the slope of the

line linking them is calculated, together with the error of

the same line with regard to the dots.

In a totally random figure, all the pixel intensities would

have approximately the same number of occurrences, and

therefore, the slope of the line is zero. In an image with a

great area of one single color, the slope will be much

greater than one.

For the H channel, this metric is calculated in two ways:

i) as described above; ii) instead of counting the number of

occurrences of each Hue value, the CS channel values of

the corresponding pixels are added (and divided by 255 for

normalization purposes). The rationale is the following, the

perceived H depends on the saturation and value of the

corresponding pixel.

3.6.2 Zipf size frequency

The Zipf size frequency metric is calculated exactly like the

Zipf rank frequency, but instead of using the pixel value, we

will use the difference between that value and its neighbors.

For each pixel, we calculate the difference between its value

and each of its neighbor pixels [22, 32].We count the number

of occurrences of differences in size 1, size 2 ...size 255. A

difference value versus number of occurrences plot is traced

using a logarithmic scale in both axes and calculate slope and

linear correlation of the trend line [29].

For the H channel, a circular distance is considered. The

H channel is scaled to [0; 1], and the following formulas

are used:

dxi ¼ cosðH½xi; yi� � 2pÞ ð11Þ

dyi ¼ sinðH½xi; yi� � 2pÞ ð12Þ

distx ¼ dxi � dxiþ1 ð13Þ

disty ¼ dxi � dyiþ1 ð14Þ

distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

distx2 þ disty2
p

ð15Þ

circulardistance ¼minðdistance; jdistance�
ffiffiffi

8
p

jÞ ð16Þ

Since the H values are between 0 and 1, the max distance is

reached when (distx ¼ 2Þ ^ ðdisty ¼ 2) that results from

distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 þ 22
p

¼
ffiffiffi

8
p

. Equation (16) ensures that the

minimum distance in angle (e.g., considering the clockwise

and counterclockwise distance) is considered.

The H size frequency is also calculated using the CS

channel, which is obtained by making the following vari-

ations in Eqs. (11) and (12), respectively:

dxi ¼ cosðH½xi; yi� � 2pÞ � CS½xi; yi� ð17Þ

dyi ¼ sinðH½xi; yi� � 2pÞ � CS½xi; yi� ð18Þ

After calculating the distance values, they are always

scaled back to [0; 255] before counting the number of

occurrences of each distance value. For this metric, a size

vs. number of occurrences plot is also traced, using a
Fig. 3 Zipf’s Law calculation with the distribution of the five English

vowels
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logarithmic scale on both axes, and the slope and linear

correlation of the trend line are calculated.

As for rank frequency and size frequency, the linear

trend line slope (M) and coefficient of correlation (R2) of

all histograms are extracted to form 2 features per each

channel image. For the H channel, there are 2 more values

that correspond to the HCS image. A total of 16 features

correspond to both Zipf’s Law methods.

3.7 Features based on Fractal Dimension

The last metric to be retrieved is the Fractal Dimension

based on the box-counting method, chosen for its concep-

tual simplicity and ease of implementation.

The method starts by binarizing one of the channels in the

image (each channelmay have a value of 1 or 0 depending on

the threshold). The number of black pixels in the image is

calculated (dimension 1). The number of squares of size 2

(2� 2) filled with black pixels is calculated in the image.

Later, the number of 4� 4, and thus, with every dimension

(8� 8, 16� 16) until we reach the image size. Zipf’s Law is

calculated with the number of occurrences of each cube size

and the quotients are generated.

Figure 4 shows the generation of squares of different

sizes in a basic map of the UK.

The features related to the Fractal Dimension are given

by the slope of the line obtained by linear regression of

points logð2nÞlogðNnðIÞÞ [16]. Thus, the linear trend line

slope (M) and coefficient of correlation (R2) create 2 fea-

tures per each channel image. A total of 6 features corre-

spond to the Fractal Dimension.

4 Artificial neural network

The classifiers were implemented as a feed forward back-

propagation fully connected ANN [34]. Sections 3.3–3.7

show the features related to the average and standard

deviation, together with the features obtained by applying

different complexity metrics. On the whole, a group made

up of 53 metrics was considered:

– 21 features determined from the compression error

using JPEG and Fractal methods;

– 16 features obtained applying the rank frequency and

size frequency methods related to the Zipf’s Law;

– 6 features related to the Fractal Dimension, calculated

through the box-counting method;

– 10 features related to average and standard deviation.

Table 2 shows the metrics used.

As seen in Sect. 3.2, from each image 6 new ones

were obtained (applying Canny and Sobel filters in a

horizontal and vertical way). For this reason, the

resulting group of features, which will be taken into

consideration, is made up of 371 metrics (53 complexity

features over 7 filters).

Using this set of metrics, 12 ANNs are trained. Each of

them will employ a different set of metrics. Table 3 shows

the ANN architectures considered. As it can be observed,

the main difference lies in the considered input metrics.

There are two groups, those considering different sets of

metrics but not using edge filters and, on the other hand,

those incorporating these filters.

In all cases, the metric values are normalized between 0

and 1 as input to the ANN processing elements. A single

hidden layer is used with a series of processing elements,

which is half of the total number of input plus output

processing elements. Blum [6] proposed a number of hid-

den units that should be ‘‘somewhere between the input

layer size ...and the output layer size’’.

Previous experiments have been carried out with a

bigger set of hidden neurons, achieving longer training

times and results with no significant differences.

In the output layer, two processing elements are

employed in all ANNs. The most active processing element

will determine the classification, photography or painting.

An identity output function with an output range [0,1] is

used.

Having two output neurons allows each neuron to

employ different strategies in order to generate each

output, since they have connections with different

weights to the hidden layer. Thus, two contrary strategies

in the same network (one searching for 0 while the other

searches for 1) allow a better differentiation between two

sets. If we use an output neuron (which, for instance,

indicates a painting with a \ 0.5 value, and a pho-

tograph with a [ 0.5 value), we can only use one

strategy.

The training files and scripts of the corresponding

ANNs, conducted in SNNS, can be downloaded at https://

figshare.com/s/75d8142b683f0482f7af.
Fig. 4 Box-counting measure of Great Britain’s coast by grids of

decreasing sizes (artwork by Prokofiev)
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4.1 Datasets, training and test

Attempts were made to access data sets used by previous

researchers, but these were not available. Consequently, it

was decided to create a new one. Two different types of

images were used in the present work:

– National Geographic photographs-2625 images with a

1024 � 768 resolution, which represent: nature,

animals, landscapes, some journalism and abstract

photographs. These images were gathered from the

National Geographic Web site. Frames were eliminated

manually.

Table 2 List of metrics

employed in the experiments
Number Metrics Channel Number Metrics Channel

1 Jpeg complexity Low All 28 Standard deviation Angle H

2 Jpeg complexity Medium All 29 Standard deviation Angle HCS

3 Jpeg complexity High All 30 Standard deviation Value S

4 Jpeg complexity Low H 31 Standard deviation Value V

5 Jpeg complexity Medium H 32 Zipf rank frequency M H

6 Jpeg complexity High H 33 Zipf rank frequency R2 H

7 Jpeg complexity Low S 34 Zipf rank frequency M HCS

8 Jpeg complexity Medium S 35 Zipf rank frequency R2 HCS

9 Jpeg complexity High S 36 Zipf rank frequency M S

10 Jpeg complexity Low V 37 Zipf rank frequency R2 S

11 Jpeg complexity Medium V 38 Zipf rank frequency M V

12 Jpeg complexity High V 39 Zipf rank frequency R2 V

13 Fractal complexity Low H 40 Zipf size frequency M H

14 Fractal complexity Medium H 41 Zipf size frequency R2 H

15 Fractal complexity High H 42 Zipf size frequency M HCS

16 Fractal complexity Low S 43 Zipf size frequency R2 HCS

17 Fractal complexity Medium S 44 Zipf size frequency M S

18 Fractal complexity High S 45 Zipf size frequency R2 S

19 Fractal complexity Low V 46 Zipf size frequency M V

20 Fractal complexity Medium V 47 Zipf size frequency R2 V

21 Fractal complexity High V 48 Box-counting M H

22 Average Angle H 49 Box-counting R2 H

23 Average Norm H 50 Box-counting M S

24 Average Angle HCS 51 Box-counting R2 S

25 Average Norm HCS 52 Box-counting M V

26 Average Value S 53 Box-counting R2 V

27 Average Value V

Table 3 Considered ANNs

architectures
ANN PE input PE hidden PE output

Base_image (Compr ? Zipf ? FDim?AVG?STD) 53 27 2

Base_image (Compr ? Zipf ? FDim) 43 22 2

Base_image (Compr) 21 11 2

Base_image (Zipf) 16 9 2

Base_image (FDim) 6 4 2

Base_image (AVG ? STD) 10 6 2

Image and edges (Compr ? Zipf ? FDim ? AVG ? STD) 371 186 2

Image and edges (Compr ? Zipf?FDim) 301 151 2

Image and edges (Compr) 147 74 2

Image and edges (Zipf) 112 57 2

Image and edges (FDim) 42 22 2

Image and edges (AVG ? STD) 70 36 2
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– Paintings—2610 images of several known authors,

including Caravaggio, Kandinsky, Picasso, Van Gogh

and Dali. All images were extracted from different

sources and with a great variation of style.

Figures 5 and 6 show some example images from both sets.

The dataset provides a very wide set of images of both

categories. In both cases, the sets have works of great

quality and diversity. The painting set comprises works by

well-known painters, such as Picasso, Kandinsky or Van

Gogh. The set of pictures from National Geographic has a

wide diversity (landscapes textures, animals, and abstract

photos), while having a very high quality level, including

several works which received awards. In order to create a

dataset similar to the one used by Cutzu, the frames of the

images and gray-scale images were excluded from the

dataset.

5 Results

As for the training and validation used in this experiment, a

method known as tenfold cross-validation [17] have been

used, consisting of dividing the pattern set into 10 subsets

of the same size. The ANN validation and training has been

performed 10 times. In each case, one of the 10 subsets has

been used as a validation set and the other 9 as training

patterns. Thus, all the patterns have been used once for

validation and 9 times for training. The results are the

average validation results obtained over the 10 times.

Table 4 shows the most important parameters used in all

trained ANNs.

The learning process is finished when a maximum of

1500 cycles or a root mean square error (RMSE) lower

than 0.07 is reached. All training patterns are presented

once during each cycle. The fact that an error tolerance

threshold (dmax) [37] of 0.3 has been determined means

that when an output of PE deviates less than 0.3 regarding

the desired output, no weight update occurs. In other

words, during the training process, the interval [0–0.3] is

equivalent to 0 and the interval [0.7–1] is equivalent to 1.

This has been done in order to avoid overfitting in a binary

problem where the ANN provides a real value. Without

error tolerance threshold, the ANN must provide a value of

exactly 1 or 0 in every painting or photograph, and it has no

flexibility to find solutions providing values with minor

differences between images of the same category.

Previous experiments have been made with different

values of error tolerance threshold (including 0), with

results that were worse than those corresponding to the

present experiment.

Using tenfold cross-validation, Tables 5 and 6 present

the results of the different ANNs. Both tables include the

global rate as well as the painting and photograph success

rates.

Table 5 presents all ANNs which do not employ any

edge detection filters. Table 6 shows the same combination

of metrics as shown in Table 5, but applying edge detection

filters. Both cases show the error in the test set.

If filters are not applied, as shown in Table 5, the metric

which individually provides the best results is the com-

pression one, with 83.25%. In cases where the metrics are

combined, the use of all of them provides the best result,

88.92%.

In each of the ANNs in Table 6, the number of PEs of

the input layer is seven times that of the corresponding

ANNs in Table 5. In these cases, both the original images

and the 6 images generated through the application of edge

detection filters (Sobel and Canny) are used as ANN input.

For example, on the first row in Table 6, for each image, 6

new images (corresponding to the image filtered by canny,

vertical canny, horizontal canny, sobel, horizontal sobel,

vertical sobel) are generated. Each of these seven images,

Fig. 5 Examples of photographs
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including the original one, is submitted to the metrics of

compression, Fractal Dimension, Zipf’s Law, average and

standard deviation. For row 1, there would be 53 metrics

(see Table 5), each of which would generate seven values,

resulting in 371 values corresponding to the PEs of the

input layer.

The ANN which provides the best results is the one that

uses filters and the full set of metrics, with an overall

outcome of 94.82%. It is important to highlight that such a

success rate is well balanced between both sets, meaning

that our ANN is able to equally differentiate between both

sets, 94.67% in the painting set and 94.97% in the pho-

tograph one. Thus, when eliminating 70 features corre-

sponding with average and standard deviation (row 2,

Table 6), the results are marginally lower, with 94.67% of

matches. Such results are also well balanced. The same as

the results in Table 6, when using metrics individually,

compression is again the one with the best result (92.72%).

In all cases, the results obtained by ANNs which employed

filters (Table 6) are higher than those which did not

(Table 5).

The computational cost of using base images plus edges

is bigger than using only the base image; therefore, based

on the applications to be employed, it may be worth it to

use only the base image, even though the results are worse.

Fig. 6 Examples of paintings

Table 4 Parameters relative to the ANNs

Parameter Setting

Epochs 20

Update function Topological_order

Input function Identity

Transfer function Sigmoid logistic

Output function Identity

Initial of weights Random, ½�0:1; 0:1�
Training algorithm Backpropagation

Learning rate 0.01

Max. tolerated error 0.3

Convergence criterium 0.07

Runs 10

Cycles 1500

Table 5 Classification rate achieved according to different features set and not applicating edge detection filters

Feature set Number of

features

Global rate

(%)

Paintings rate

(%)

Photographs rate

(%)

Time

ANN

Time

FE

Base_Image (Compr ? Zipf ? FDim ? AVG ?

STD)

53 88.92 91.03 86.82 0:18:11 1:14:25

Base_Image (Compr ? Zipf ? FDim) 43 87.26 86.90 87.26 0:15:51 0:45:50

Base_Image (Compr) 21 83.25 84.64 81.78 0:06:38 0:26:54

Base_Image (Zipf) 16 75.63 76.51 74.74 0:05:24 0:18:48

Base_Image (FDim) 6 69.05 64.71 73.37 0:03:36 0:26:39

Base_Image (AVG ? STD) 10 75.09 75.36 74.82 0:04:32 0:09:21

Time ANN and Time FE are the computational time of training the ANN and of extracting the features of all the images in the experiment in

HH:MM:SS format. The work environment was integrated by an Intel 4790K with 16Gb of RAM, SSD Kingston V300 and Nvidia GeForce

GT730
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The average time for extracting a complete set of one

images characteristics (a total of 371) is 00:05.2 seconds.

A priori it may seem that the task carried out is trivial in

many cases. In order to prove the reader the difficulty of

such a classification, Figs. 7 and 8 show some randomly

chosen examples of images that our best set was not able to

correctly classify.

As for Fig. 7c, d, it may be observed that some paintings

related to landscapes with such a reduced image detail (256

� 256 pixels) may lead to a misinterpretation by the

observer. In Fig. 8b, the error is perfectly understandable

since it is a photograph taken of a cave painting, and

therefore, this image could have perfectly belonged to the

set of paintings. On the other hand, the effect of movement

in Fig. 8c could be mistaken for the strokes of a painting.

In any case, it can be observed that it is not a trivial

classification task and that the errors made in the classifi-

cation could also have been made by a human observer.

6 Conclusions and future work

The complexity features and edge detection filter sets have

been successfully used in order to distinguish between

photographs and paintings. They have also been compared

with another feature set obtained by applying the same

statistical formulae both on the original image and on the

six auxiliary images obtained by applying the Canny and

Sobel edge detection filters. In both cases, the exclusive use

of features related to the compression error using the JPEG

and Fractal methods has turned out to be more suitable.

The experiments carried out have also shown how an

ANN with different complexity features with the Canny

and Sobel filters allows us to distinguish between both sets

with a match rate of 94.82%. It should be borne in mind

that the best result obtained so far in this kind of tasks is

93% using three classifiers in parallel, although with a

different set of images.

Some of the best feature set errors match pictures that

even the human eye has difficulty evaluating properly.

It is our plan to continue searching and studying new

features, as well as improving the current ones, for a better

solution to this problem. Other classifier architectures will

be studied, implemented and tested. Refinement of the

current dataset and building distinct ones will also be

explored in further research studies.

We will plan to explore other styles of photographs and

paintings, for instance to distinguish between human face

Table 6 Classification rate achieved according to different features set and applying edge detection filters

Feature Set Number of

features

Global rate

(%)

Paintings rate

(%)

Photographs rate

(%)

Time

ANN

Time

FE

Image and edges (Compr ? Zipf ? FDim ? AVG

? STD)

371 94.82 94.67 94.97 8:01:09 7:31:45

Image and edges (Compr ? Zipf ? FDim) 301 94.67 94.98 94.36 6:39:06 7:30:13

Image and edges (Compr) 147 92.72 91.80 93.64 2:39:04 4:41:43

Image and edges (Zipf) 112 88.98 89.95 88.11 1:38:18 1:32:35

Image and edges (FDim) 42 75.57 76.36 74.78 0:15:34 1:43:17

Image and edges (AVG ? STD) 70 85.96 86.74 85.18 0:34:55 0:40:14

Time ANN and Time FE are the computational time of training the ANN and of extracting the features of all the images in the experiment in

HH:MM:SS format. The work environment was integrated by an Intel 4790K with 16Gb of RAM, SSD Kingston V300 and Nvidia GeForce

GT730

Fig. 7 Example of paintings which have been wrongly classified by

filters (Compr?Zipf? FDim)
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photographs (e.g., from passports) and paintings of faces

(e.g., self-portraits).
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28. Nadal Roberts M (2007) Complexity and aesthetic preference for

diverse visual stimuli. Ph.D. thesis, Universitat de les Illes

Balears

Fig. 8 Example of photographs which have been wrongly classified

by filters (Compr?Zipf?FDim)

Neural Comput & Applic

123

http://dx.doi.org/10.1016/j.actpsy.2015.06.005
http://www.sciencedirect.com/science/article/pii/S0001691815300160
http://www.sciencedirect.com/science/article/pii/S0001691815300160


29. Powers DM (1998) Applications and explanations of Zipf’s law.

In: Proceedings of the Joint Conferences on New Methods in

Language Processing and Computational Natural Language

Learning, Association for Computational Linguistics, pp 151–160

30. Rigau J, Feixas M, Sbert M (2005) An information-theoretic

framework for image complexity. In: Proceedings of the First

Eurographics conference on Computational Aesthetics in

Graphics. Visualization and Imaging, Eurographics Association,

pp 177–184

31. Romero J, Machado P, Carballal A, Osorio O (2011) Aesthetic

classification and sorting based on image compression. In: Di

Chio C et al (eds) Applications of evolutionary computation.

EvoApplications 2011. Lecture notes in computer science, vol

6625. Springer, Berlin, Heidelberg, pp 394–403

32. Romero J, Machado P, Carballal A, Correia J (2012a) Computing

aesthetics with image judgement systems, Springer, Berlin,

pp 295–322. doi:10.1007/978-3-642-31727-9_11.

33. Romero J, Machado P, Carballal A, Santos A (2012b) Using

complexity estimates in aesthetic image classification. J Math

Arts 6(2–3):125–136

34. Rumelhart DE, Hinton GE, Williams RJ (1988) Neurocomputing:

foundations of research. MIT Press, Cambridge. chap Learning

representations by back-propagating errors, pp 696–699

35. Salingaros NA, West BJ (1999) A universal rule for the distri-

bution of sizes. Environ Plan B 26:909–924

36. Saunders R, Gero JS (2001) Artificial creativity: a synthetic

approach to the study of creative behaviour. Computational and

cognitive models of creative design V, Key Centre of Design

Computing and Cognition. University of Sydney, Sydney,

pp 113–139

37. Schiffmann W, Joost M, Werner R (1994) Optimization of the

backpropagation algorithm for training multilayer perceptrons.

Technical report, University of Koblenz, Institute of Physics,

Rheinau

38. Sobel I (1990) An isotropic 3 � 3 image gradient operator. Mach

Vision Three Dimens Sci 3:376–379

39. Spehar B, Clifford CW, Newell BR, Taylor RP (2003) Universal

aesthetic of fractals. Comput Gr 27(5):813–820
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