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ABSTRACT

Spectral data estimation from image data is an ill-posed prob-
lem since (i) due to the integral nature of imaging sensors,
the same output can be obtained from an infinity of input sig-
nals and (ii) color signals are spectrally smooth in nature and,
therefore, limit the number of linear independent data than
can be collected. To enable the solution of these problems the
solution's search space has to be constrained. The question
that arises is how to select/parameterize these constraints? In
this paper several model selection criteria are extended for
spectral data estimation and evaluated in the context of spec-
tral sensitivity function estimation of CCD sensors.

Index Terms- Imaging, Color, Machine Learning

1. INTRODUCTION

Ill-posed modeling problems are frequently found in sev-
eral image processing and computer vision domains. Multi-
spectral data estimation from low dimensional imaging device
responses are typical ill-posed modeling problems whose so-
lution is important or even fundamental in several computer
vision and image processing operations, such as demosaick-
ing [1], color constancy [2] and color space mapping [3].
Usually, it involves the estimation, for each wavelength A,
of some data distribution X (A). Namely, let I (A) be the
spectral power distribution (SPD) of the sensor's excitation
signal, S (A) the sensor's spectral sensitivity and b oc f I (A)
S (A) dA be the imaging device response (it is assumed the
image has been corrected for radiometric distortions and static
non-linearities). For spectral sensitivity estimation, given a
set of device responses and known SPDs of excitation sig-
nals, one wants to estimate S (A), while for high-dimensional
spectral signals estimation the goal is to estimate I (A) given
the device's responses and sensitivities S (A). From the im-
age formation equation it is observed that this is an ill-posed
problem, since the imaging sensor performs space reduction
through integration over wavelengths. Furthermore, natural
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colors can be accurately approximated with just a few (typ-
ically between 3 and 9) basis functions [4]. Therefore, (i)
the same device output can be produced by an infinite num-
ber of stimuli and (ii) only a limited set of linear independent
data may be collected for the estimation task. Fortunately,
there are some assumptions that can be made to constrain the
problem. For image sensor sensitivity estimation, the most
commonly applied constraints are the positivity of the sen-
sor's spectral sensitivities and the smoothness of the sensitiv-
ity function [5] [2] [4]. There are several alternative strategies
to account for smoothness: (i) Sharma et al. [6] impose an
upper bound on the second derivative of the solution, while
(ii) other authors [2] [5] apply a Tikhonov formulation where
a regularization term is added to the object function, i.e. let
x C R' be a discrete version ofX (A) such that xi _ X (Ai),
Ai = Ao + (i -1) AA, i = I...n, and AA is the sampling
interval, then x can be computed from

min
I

Ax- bl 2 + _a4 IIDxl2} (1)

subject to Cx < h (2)
where Ax = b (A C Rmxn, b C Rm,D C Rnxn, C C
Rqxn , H C IRq) are the m equations (usually m < n) that
can be obtained from the sensor's outputs, and a e R+ is
a regularization gain that controls the trade-off between the
roughness of the solution as measured by Dxl 2 (,AA 2Dx
approximates the second derivative of x) and the infidelity to
the data as measured by Ax -b 2.

The solution to (1) is equivalent to a Butterworth low-pass
filter where a controls the cutoff frequency. This means that
the attainable solution is band-limited and therefore can be
modeled using the d dimensional set of functions f (z, ae) =

1ak()d (z), where {,Ok} form a orthonormal basis. For
instance, taking a Fourier basis, it is seen that X (A) = x0 +
Y:kl xw cos (wu) + Yw sin (wu) for a domain A0 < A <

A, and 27w (A -Ao) / (A- Ao). In this formulation x
can be computed from (3) subject to (2), such that A C mxdR
d= 2k+ 1.

min
I

IAx bl2} (3)
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This idea has been explored by several authors. Hardeberg
[7] utilizes a truncated pseudo-inverse to constrain smooth-
ness, whereas Finlayson et al. [4] suggested using (3) di-
rectly. Solving (3) provides a more compact representation
ofX (A) and lowers significantly the complexity of the algo-
rithm. This is significant for SPD estimation problems using
low dimensional imaging device outputs where, for each clus-
ter of similar pixels, one has to solve (3) or (1).

In the aforementioned spectral estimation algorithms the
constraints are defined based on exact a priori knowledge
on x, being the solution very dependant on these values.
To adaptively identify the optimal set of constraints, the ex-
pected empirical risk or equivalently the bias-variance trade-
off should be minimized. Unfortunately, the empirical risk is
only defined assuming a parametric formulation for the prob-
lem, which in practical applications is usually not possible,
since the exact noise variance is unknown. In order to solve
this, several indirect selection criteria may be applied, such
as the Generalized Cross-Validation (GCV), the Bayes Infor-
mation Criterion (BIC) or the Akaike Information Criterion
(AIC). These are known to asymptotically approach the ex-
pected empirical risk. In [5] we have developed a data driven
algorithm to identify the best set of constraints using the for-
mulation in (1) and a modified GCV criterion. More recently
we introduced a less complex solution to the problem using
an adapted GCV criterion and the formulation in (3) [8]. It
is well known that the expectation efficiency (ratio between
the global optimum and the achieved solution) of these crite-
ria approach 1 when the number of observation is very large
(theoretically oc). For limited number of observations, these
criteria tend to exhibit different degrees of bias. In this pa-
per, some of the most significant selection criteria presented
in literature are adapted to the problem defined in (3) subject
to (2). Their efficiency is tested using sensitivity estimation
of CCD sensors in RGB cameras.
The paper is organized as follows: in section 2 our data-

driven sensitivity estimation algorithm reported in [8] is
briefly outlined. In section 3 the model selection criteria are
adapted. Experimental results using these criteria are dis-
cussed in section 4. Finally, in section 5 some main conclu-
sions are presented.

2. THE DATA-DRIVEN ALGORITHM

In our method a similar formulation as in [4] is applied.
Namely, using a Fourier basis, (3) is minimized subject to
positivity constraints, i.e., X (A) > 0. Modality constraints
have to be applied in order to avoid rapid oscillations between
peaks of the sensitivity function. For example, an uni-modal
sensitivity function with a peak at wavelength A = AP can be
expressed as a set of linear constraints as in (4).

X(Ai+,) > X(Ai),i = O,...,p- 1 (4)
X(Ai+,) < X(Ai),i =p, ...,v- 2

In order to constrain the search space for the number of peaks
in X (A) and their location, we observed that formulating the
estimation problem as in (1) subject to positivity constraints,
can be equivalently computed for p active constraints from

min{ As-b Ds } (5)

where A e RmX(n-P),D C R(n-p-1)X(n-p),ifm < n and
p < n. Further, sj (-y) is obtained by (6), where c = UTb,
A = UEZ and D = VQZ are the GSVD decomposi-
tion of matrixes A and D. Finally E = ( 0 DM ) C

Rmx(n ), Q = ( D 0 ) C R (n -p+1) x(n p) DM
diag (/1..* C>m) and DB = ditag (/31t so. ui3n-p t )I/31s
... _> /3n-p _> 0. It can be shown that the solution to (5) is

Si (a)
n-

jn-p +m Iclvajn-p+mZj Cj i

j=n-p-m+l n p±m+ Y/32

1, ..., n- p

(6)
From (6) it is seen that for large values of the regularization
gain -y, the solution si (-y) will be dominated by the linear
combination of a small set of terms, those where /3j - 1.
The influence of these terms will be persistent and, there-
fore, si ('y) will tend to decrease/increase monotonically as
-y increases. Therefore, it is observed that if si ('y) is a lo-
cal maximum, then s (y + A-y), A-) > 0, will also tend
to be a local maximum. From this observation, the strat-
egy for constraining the search space is straightforward to
define: compute s ('y) using a set of regularization gains
-y, < <y < -yt, such that s(tyi) is a smooth solution (typi-
cally a set of 4 to 10 distinct -y). From these solutions per-
sistent and pronounced peaks can be easily identified to for-
mulate the modality constraints. For a fully automatic algo-
rithm a clustering technique based on an oscillation measure
O (-y) (e.g. the second derivative) of the solution may be ap-
plied to compute the range of necessary regularization gains
(in this case the smallest applied -y should lead to a highly
oscillating solution, to enable the identification of at least 2
clusters). In our implementation of the algorithm, for each
identified peak at wavelength AP, the search space is limited
to AP ± gAA,g = 0,1. As for the search space of the
model order, we apply k = 2,..., Lm2 . Finally, for each
pair (k, AP) the solution to (3) subject to the linear constraints
is computed. The optimal pair (k* A*) is identified by the
solution that minimizes the selection criterion.

3. SELECTION CRITERIA

In estimation it is observed that data as well as model con-
straints are information sources for the modelling problem.
Data represent the underlying process without bias. How-
ever, it is contaminated with noise, hence exhibiting uncer-
tainty. On the other hand, the model enables to reduce the
uncertainty of the phenomena, but it tends to induce bias if
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wrongly chosen. Therefore, in these type of problems one
has to minimize the bias-variance trade-off, which, unfortu-
nately, can not be directly computed from the empirical risk
defined as the optimization criterion, but rather from the ex-
pected risk. In practical applications, this optimization has to
be performed using indirect selection criteria, since the ex-
act degree of uncertainty is unknown. These selection criteria
are usually formulated for estimation problems of the form
defined in (1) or (3) without additional constraints. Using
the active set theory, it is observed that these criteria may be
adapted using the following result:

Theorem 1 Let x- be the vector that minimizes IAx b 2
subject to Cx < h, where A C Rmxn, C e Rsxn . Let
C*c = h* be the active set of constraints, such that C* C
RPXn and rank (C*) p < n. The same solution may be
obtained using

min Hw2 b
W2

where Z= 1 (ST IT)TII)= D0lVTh* C RP
H = U( 0 D2 0 )T and A U ( DT ° )T ZMT2
C* = V ( DT 0 ) Z are the Generalized Singular Value
Decompositions ofmatrixes A and C*. Finally,

DM -(Dv DM2 )DM1 C R

and y DM,DC1 VTh*.

Proof 1 Proof is a consequence of the GSVD of matrixes A
and C* and by noting that the empirical risk is not altered by
changing to an alternative orthonormal basis.

It should be noted that if C* is not full line rank, then the
singular value decomposition of C* may be applied to trans-
form C* and h* appropriately. Using theorem 1, the opti-
mal constraints (model order, peak number and their wave-
length location, for the problem defined in section 2) may be
identified using the most commonly applied selection crite-
ria. In this section, the following selection criteria will be
extended: GCV, BIC and Akaike's FPE. An extension to
Akaike's FPE for small sample regression is also considered
[9]. Finally, AIC will not be considered, since it asymptoti-
cally approaches GCV.
GCV utilizes the leave-one-out principle. The idea is

to minimize m lc= (AX[k]- bk)2, where X[k] is the
achieved solution using all but the kth data point (hence
AkX[k]- bk represents the prediction error of the kth data
point using solution X [k]). It can be shown using theorem 1,
that this average prediction error may be computed in close
form using (7) (see [8]).

I1~b -Ax2
GCV ( m A U b-)2(7)

(m trace (I-AZ2U2))2

l

p n p

uT= U2 n p ,Z 1= ( Z1 Z2
U3 {m-n

BIC may be interpreted using the a posteriori likelihood
maximization, i.e. max {P (d, Api, , Apr Y)}. Assuming
b = Ax + c, c N (0, or21), it can be shown using the-
orem 1 and Schwartz's work that (let - 2the estimate of the

2
variance in the likelihood sense, i.e. (c2 _ Hw2 b
and P (d, Apl, ..., Apr) be the prior distribution on the model's
order and the sensitivity peak locations)

BIC = mlnu(2+(n-p)lnml-2InP(d,Apj,...,Apr) (8)

Regarding the Akaike's Future Prediction Error, it is ob-
served that under the conditions assumed in this section it may
be formulated as in (9).

FPE = Hw2_ (pl)(I
m)p 1

mJ (9)

In [9], Chapelle and co-works have introduced a redefini-
tion of the penalization therm of the FPE in order to adapt
it for situations when a small set of data samples is avail-
able. In this situation the problem's dimension is directly es-
timated from the eigenvalues of the covariance matrix, i.e.
q = E =n- I- where ( are the eigenvalues of the co-
variance matrix. Using this modification and (9), (10) fol-
lows.

(10)FPEVap = Hw2 b 2 I r-m)

1 +(i= Ti-)
V m J

4. RESULTS

In this section some results for spectral sensitivity estima-
tion in common CCD sensors applied in RGB cameras are
presented. In order to measure the performance of the de-
scribed model selection measures in spectral estimation prob-
lems a simulation program was developed. The shown test
results are (i) for an asymmetrical Gaussian model for the
spectral sensitivities (these are typical sensitivity curves for
some cameras such as the Sony DXC-930 color video camera
[2] - see fig. 1 right) and (ii) for the spectral sensitivity curves
from a Kodak DCS200 camera as described in [1] - see fig.
1 left. These two types of sensitivity functions were chosen
to evaluate the method's performance for curves with distinct
smoothness and modality. In these tests 24 (m = 24) patches
of the MacBeth-Color Checker map were applied and g was
limited to g = 0,1, ..., 10. The sampling step was fixed to
AA = 2nm, Ao = 400nm, A, = 700nm. Table 1 summa-
rizes the achieved results. In this table r represents the esti-

mation efficiency, i.e. eXlj 2 where xreal represents
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cations. The obtained results suggest that the BIC criterion is
the one that induces less estimation bias, although it is closely
followed by Akaike's FPE. This is an interesting result, since
BIC exhibits a natural way for integrating prior knowledge
by modelling the prior distribution of constraints. This could
have an important role for SPD estimation of neighboring pix-
els.

6. REFERENCES

Fig. 1. Real (solid line) vs. estimated (dashed line) spectral
sensitivities for RGB sensors using BIC. (left) Sony DXC-
930. (right) Kodak DCS 200.

Average Criterion Tr k -k*k A- A*
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FPEVap 3.79 2 10

Table 1. Results: maximum and average values.
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and the error in peak estimation (Ap-A*). Finally, since
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5. CONCLUSIONS

This paper discusses model selection criteria in the context
of spectral estimation problems. Several selection criteria are

extended for this purpose and applied to CCD spectral sensi-
tivity estimation with unknown smoothness and maxima lo-
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