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ABSTRACT 

Recovering spectral sensitivities of imaging devices with 
indirect methods, as well as spectral stimuli estimation from 
device responses are ill-posed problems. All known meth- 
ods have to rely on a priori information to constrain the 
solution space, which. in most situations, is difficult or 
even impossible to obtain. In this paper we introduce a 
simple and fully data-driven approach for indirect spectral 
sensitivity estimation, which does not rely on explicit a 
priuri information, The method is built upon an extension 
of our previous work on Generalized Cross-Validation for 
constraint Tikhonov problems and utilizes a linear combi- 
nation o f  band-limited basis functions. 

1. INTRODUCTION 

Characterization o i  the spectral behavior c i f  an imaging 
device o r  pathway is important or even imperative in many 
image processing, analysis and computer vision problems. 
Several low level image processing operations, such as de- 
mosaicing [ I ]  and color constancy [21 algorithms, require 
the spectral sensitivities of the imaging devices. Other com- 
mon image operations, such as mapping between device 
dependent and independent color spaces [3][4], can largely 
benefit from this knowledge. High-dimensional spectral 
signal estimation from low dimensional device responses 
is another situation, with a wide range of applications in 
multimedia [5], industry [61[3] and medicine 171, where 
device spectral sensitivities have to be known. 

Image scnsor sensitivity characterization methods can be 
broadly classified into two distinct categories: (i) direct 
characterization methods and (ii) indirect characterization 
methods. In the former methods, monochromators and 
spectroradiometen are applied to sample the sensor's sensi- 
livities [I]. In the latter methods, low cost color calibration 
charts with well known Lambertian refiectances are utilized 
to estimate the spectral sensitivity distribution of the sensor. 

Indirect spectral charactcriration of an image sensor is 
a mathematical ill-posed problem since (i) solid state light 
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sensors perform an input space reduction through integra- 
t ion Over wavelengths and (ii) natural colors can be accu- 
rately approximated with just a few (typically between 3 
and 9) basis functions [SI. Therefore, (i) the same device 
output can be produced by an infinite number of stimuli 
and (ii) only a limited set of linear independent data may 
be collected for the estimation task. To work around these 
problems the solution space has to be constrained. Fortu- 
nately, there are some assumptions that can be made to con- 
strain the problem. The most commonly applied constraints 
are the positivity of the sensor's spectral sensitivities and 
thhe smoothnessof the sensitivity function [81[9l[10][51[1l1. 
Although other types of constraints can be found in litera- 
ture, positivity and smoothness are intrinsic physical prop- 
erties of solid state devices. There are several alternative 
strategies to account for smoothness: (i) Sharma er al. [I21 
impose an upper bound on the second derivative of the so- 
lution, while (ii) other authors [l0][8]191 apply a Tikhonov 
formulation where a regularization term is added lo the oh- 
ject function. (iii) Hardeberg [31 utilizes a truncated pseudo- 
inverse to constrain smoothness. (iv) Finlayson et al. [51 
apply a finite linear combination of band-limited basis func- 
tions to account for smoothncss. All these methods require 
one or  more user-defined parameters, being very sensible 
to their actual values. In [81[91 we introduced some algo- 
rithms to estimate the necessaly tuning parameters from the 
calibration data set. Thcse methods rely on Tikhonov for- 
mulations and extended Generalized Cross-Validation and 
Bayes Information Criteria to perform model identification. 
The dwised solutions for the non-linear oplimkation are 
based on a computationally demanding genetic algorithm. 

In this paper we propose a simple and eflicient method for 
fully data-driven and indirect spectral sensitivity estimation 
of solid state imaging sensors, using an extension of the 
algorithm described in [51. The method is built upon the 
identification of a set of band-limited functions and the 
modality, i.e., the number and wavelength location of peaks, 
of the device's sensitivity function S (A). Furthermore, all 
necessary knowledge, i.e., the number of basis functions 
and the location of sensitivity peaks, are inferred from 
calibration data. Although efficiency of the algorithm is 
not a major concern for sensor characterization, which may 

241 1 



he performed off-line, i t  i s  critical for high-dimensional 
spectral signals estimation from low dimensional device 
responses. In the later case, for each cluster of similar pixels 
in the image a mathematically equivalent problem to sensor 
characterization has to be solved. Let I (A) he the SPD o f  
the sensor's excitation signal and 6 c( j" I (A)  S (A) d A  be 
the imaging device response (i t  is assumed the image has 
been corrected for radiometric distortions and static non- 
linearities). For spectral sensitivity estimation, given a set o f  
device responses and known SPDs o f  excitation signals. one 
wants to estimate S (A), while for high-dimensional spectral 
signals estimation the goal i s  to estimate I (A) given the 
device's responses and sensitivities S (A). 

The paper i s  organized as follows: in section 2, the algo- 
rithm i s  outlined. Some results obtained with this method 
are described in section 3. Finally, some main conclusions 
are presented. 

2. THE DATA-DRIVEN ALGORITHM 

In our method a similar formulation as in [5] i s  applied. 
Namely. using the first k standard Fourier basis. S (A) is 
described as in ( I )  for a sensitivity in the range Xu 5 A < 
A,(m=22a(A-Ao)/(A,,-1 -Ao),zi>yi ER). 

k 

s (A) = 2 0  + 1 z,, cos (wm) + yw sin (wm) (1) 
W = l  

Let st = S(Ai). A, = A0 + iAA, i = 0...u - 1, where AA 
i s  the sampling interval, then s can he computed from (Z), 
where Ag = b ( A  E R"'X", n = 21; + 1, b E a"') are the 
7n equations, one per calibration patch, that can he obtained 
from thr sensor's outputs using the image formation model 
introduced in  section 1. 

Besides positivity constraints, i.e., S(A) 2 0, to avoid 
rapid oscillations in thc estimation result (see fig. I (left)), 
Finlayson et al. apply modality constraints. For example, 
a uni-modal sensitivity function with a peak at wavelength 
A = A, can be expressed as a set o f  linear constraints as in  
(3). Hence, the problem can he solved using a least square 
formulation suhject to a set of linear inequalities Cs  5 h, 
C E Wxn, h E Bq which account for positivity and 
modality of S (A). 

S(A,+l) 2 S(AJ , i  = 0, . . . , p -  1 
S(Ai+,) 5 S(A , ) , i  = p .  ..., w -  2 

(3) 

To select the number and location o f  peaks in the sensor 
curve, Finlayson er al. use the regression error. This se- 
lection criterion i s  a special case o f  the unbiased risk selec- 
tion criterion 1131, assuming calibration data without noise. 
Therefore, this criterion can not be applied to estimate the 

U,,-, U l l l  

Fig. 1. (Left): Sensitivity estimation results using Fin- 
layson's method with and without modality constraints (I: = 
11). (Right): Estimation results using Finlayson's method 
for different modcl orders. 

best order 1; of the model in (2). Finlayson et  al. suggest 
that most solid state sensors sensitivities can he adequately 
modcllcd using a number o f  basis functions between 9 
(I: = 4) and 15 (k = 7). However, as can be observed in 
fig. I (right), results can differ significantly for this range o f  
model orders. To select the adcquatc model order, the func- 
tion peak number and their wavelength locations, we apply 
an extension to the Generalized Cross-Validation criterion 
for inequality constraint problems (GCV-IC) [9], which 
estimates the generalization error of  a particular solution 
obtained under a least squares framework subject to linear 
constraints. Le t  C's = h' be the set of active constraints 
o f  the solution obhined with (2) suhject to Cs 5 h. Th is  
solution can equivalently be obtained from (2) suhject to 
c's = h'. Using the results presented in [Y], i t  can he 
shown that, if C' E RPX" ( p  < n) i s  linear independent, 
then the GCV-IC can be computed as in  theorem I. I t  should 
be observed that i f  matrix C' i s  not linearly independent, 
i.e., i f  rank (C') = T < p.  then the singular value decom- 
position (SVD) of c' may he applied to transform C' and 
h' appropriately. 

Using theorem I, the optimal model order, number of  
peaks and their wavelength locations can be selected as the 
set o f  values which minimize the GCV-IC criterion. 

Theorem 1 The GCV,c function f o r  the pmblern 

niin { llAs - bll'} subject to CIS = h*, such that 
c' is full cohrinn o r  line rank, is given by (4), where 

0 = A8. 8 = ZzW-z, A = WA ( LIZ 0 )'Z and 
c' = Wc ( Dc 0 ) Z are the generalized singular 
value decornposirions (GSVD) <$A and C'. and 

P n - ~  v -  
WA'= { ' 7 - p  ,z-'= ( z, z, ) 

{ 7 7 - 7 L  

Proof. 
provided in our lormer paper 191. 

Proof i s  straightforward by taking the results 
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2.1. Constraining the search space 

In practicc, if no a priori information exists on thc spectral 
distribution of sensitivities o f  the imaging device, it i s  ob- 
served that a large se1 of plausihle combinations k - peak 
nimi,ber - peak locntiuri have to be searched. To avoid 
this, in this section an empirical method to reduce the search 
space i s  introduced. The method is based on theorem 2. 

Theorem 2 Let A E Wxr‘, D E R7’x1’, Ds br the 
discrere YLd order derimtive af s and E I@+. The 
soluriim s ( ) of the likhonov regulnrizaiion problem 

iiiin { 1lA.s - b1I2 + 110.~11~). subject io positivity 

constraints. i.e.. sc 2 0,  i = 0, ...>’ ii ~ 1. cun be 
equivalently computed for p active constraints from 

inin { 118- b/ la  + /lfi?l12}. where E RnLX(”-P), 

L? E R(7L-”-L)Y(”-P). $ T I L  5 n and p < n. Further: 
Ti ( ) is obtained bv (5), where c = UTh, 2 = U C Z  
und 6 = V n Z  are GSVD decomposition of matrixes 
2 and 0. Final/v C = ( 0 Dnr ) E Rmx(”-p), 
(2 = ( Do (1 ) E R(ra-PCl)x( ’L-P)  . Dnr = 
diag( I ,  ..., nL) and D B  = ding (O1, ..., L?,,-,) , 1 2 

T 

a ... aL?,,-, 2 0. 

Proof. The first part immediately follows using pcrmuta- 
lions o f  columns in A, D and C’. The second part o f  this 
rcsult can be obtained with simple algebraic manipulations 
of the reduced problem. 

From ( 5 )  i t  is seen that for large values o f  regularization 
gain , the solution Fi ( ) wi l l  he dominated by the linear 
combination o f  a small set of terms, those where B; 1. 
The influence of these terms wil l  be persistent and, there- 
fore, ?* ( ) wi l l  tend to decrcasehcrease monotonically as 

increases. Under these circumstances, i t  i s  observed that 
i f ?” ( ) is a local maxima. then F (  + A  ), A > 0, will 
also tend to be a local maxima. From this observation, the 
strategy for constraining the search space i s  straightforward 
to define: compute .E ( ) using a set o f  regularization gains 

I < < t ,  such that ?( I )  i s  a smooth solution 
(typically a set o f  4 to I O  distinct ). From thesc solutions 
persistent and pronounced peaks can he easily identified to 
formulate the modality constraints. For a fully automatic al- 
gorithm a clustering technique based on an oscillation mea- 
sure 0 ( ) (e.g. the sccond derivative) of thc solution may 
be applied to compute the range o f  necessaly regularization 
gains (in this case the smallest applied should lead to a 
highly oscillating solution, to enable the identilication o f  at 
lcast 2 clusters). In our implementation o f  the algorithm, 

Table 1. ResulL~ 

for each identified peak at wavelength A,,, the search space 
i s  limited to A, & gAA, g = 0, 1 ,2 .  As fur the search space 
of the model order, we apply I; = 2, ..., 10, which includcs 
the search interval defincd hy Finlayson ei al. 

3. RESULTS AND CONCLUSIONS 

In  this section some rcsults oblained with the proposed 
method are introduced and discussed. These results (see 
fig. 2) are for the spectral sensitivity curves from a Kodak 
DCS200 camera. This camera exhibits very dissimilar sen- 
sitivity functions and, therefore, enables the evaluation of 
the method’s performance for curves with different smooth- 
ness and modality. In these tests 24 (nr = 24) patches of the 
MacBeth-Color Checker map were applied, the sampling 
step was fixed to AA = 2nm, A. = 400rvni. A, = 7007rrn 
( U  = 150) and the SSE (Sum Squared Error) values were 
computed by SSE = /Isret’’ ~ sllz (s’“”’ represents the 
real function obtained with the dircct calibration procedure 
described in [I I). The obtained rcsults are summarized in 
table 1. In this table the real peak location i s  represented by 
Ay’ and the estimated location by &. Column with legend 
!i represents the ideal model order, i.e., the model order that 
minimizes the SSE, and stands [or the estimated model 
order using the algorithm. 

As can be observed the GCV - IC technique enables 
the estimation o f  suboptimal solutions in the vicinity o f  the 
global optimums. T h i s  is in accordance with Craven and 
Wahba’s theorem 4.2 [ 131, since the global optimum i s  not 
achievable, given that the ”expectation efficiency” i s  usually 
less than 1. From table I ,  for the green channel a large 
difference between the ideal and thc estimated model order 
i s  observed. This is due to the fact that, for this channel, 
the sensitivities may be appropriately captured with a large 
range o f  model orders, as can be inferred from the SSE 
values presented in fig. 3. I n  fact, for 1: E (4; 5: G, 7). very 
similar SSE values are achieved, and thcrcfore the GCV 
criterion favors the model with less complexity (fig. 3 right), 
since i t  approximates thc expected risk which i s  a function 
of the SSE and the model’s complexity [ 131, i.e., its order 
for linear models. 

In this paper a data-driven spectral sensitivity recovery 
technique for solid state imaging sensors i s  introduced. 
The method i s  based on an extended generalized crnss- 
validalion for constraint problems measure. No specific 
knowledge on the sensor characteristics i s  required, since 
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Fig. 2. Recovered RGB scnsitivitics of a Kodak DCS200 
camera. (Continuous curves): real functions. (Dashed 
curves): estimated values. 

1 k 

Fig. 3. SSE and GCV-IC evolution with k for the three 
channels of the DCS200 camera. Values are for the best 
selection of peaks. 

the method is able Lo extrxt  the needed informalion forcon- 
straints parametrization from the input data. This is a rele- 
vant result because, in practice, exact a priori knowledge is 
often difficult or even impossible to obtain with the required 
accuracy. Despite of the method’s simplicity, the obtained 
results show that it enables the identification of suboptimal 
solutions in the vicinity of the global optimum, which ought 
to he sufficient for the most demanding color image process- 
ing and analysis applications. The main advantage of this 
method with respect to the algorithms described in [XI191 
is its lower computational complexity. In [8][9] due to  the 
applied Tikhnov formulation matrix A t R(mf”-2)xv and 
C E R‘J’”, whereas in this formulation A E R’nx(2k+1) 
and C E R‘Jx(2k+’) (v >> 2k + 1). Funher, a much 
more confined search space exists in the proposed method 
and, therefore, fewer iterations are necesswy to compute the 
solution. Although efficiency of the algorithm is not a major 
concem for sensor sensitivity characterization, it is critical 
for high-dimensional spectral signals estimation from low 
dimensional device responses. Its extension for this propose 
may be the next step in this research. 
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