
On the Role of Spl i t t ing and Merging Past Cases
for Generat ion of a N e w Solut ion

Carlos Bento Penousal Machado Ernesto Costa

Departamento de Engenharia Informgtica
Universidade de Coimbra

Vila Franca- Pinhal de Marrocos
3030 Coimbra- PORTUGAL

E-mail: bento~alma.uc.pt ernesto~moebius.uc.pt

A b s t r a c t . This paper introduces RECIDE, an implementation of our
approach to case-based reasoning. A qualitative and a quantitative met-
ric are used for case retrieval. RECIDE has a library of successful and
failure cases. Generation of new solutions is driven by splitting and merg-
ing operations on successful cases. Failure cases represent constraints on
the application of splitting and merging operators. RECIDEpsy, an ap-
plication of RECIDE in the domain of psychology, is introduced in this
paper. We present the results obtained with RECIDEpsy when split-
ting and merging operations are considered for generation of a new so-
lution and compare them with the ones produced when solutions are
constructed from a single case.

1 I n t r o d u c t i o n

A Case-Based Reasoning (CBR) System depends strongly on its methods for
retrieval and reuse of previous experiences. This distinguishes these systems from
those relying on the generalisation of solutions from first principles (abstract
knowledge).

The combinat ion of CBR and abstract knowledge-guided techniques led to
the development of knowledge-based retrieval systems [5]. These systems use
domain knowledge for construction of explanations of why a problem had a
specific solution in the past. Explanations are necessary to judge the relevance
of the facts describing a past problem [1, 7, 2]

In our work on CBR we are mainly concerned with two aspects. One has to
do with the fact tha t the CBR approach is mostly used when a strong theory is
not available and past experience is accessible. Lack of a strong theory means
that, in general, case explanations are imperfect. We consider three kinds of
imperfections and use them for retrieval [2]. A second aspect relates to the role
of failure cases in CBR. Some current CBR systems make use of failure cases to
represent and explain past unsuccessful experiences [3]. In our approach, failure
cases represent, intra and/or inter-case dependencies which were violated during
case r eu~ .

This pape r introduces results obtained with R E C I D E p s y (R_._EEasoning with
Cases Imper fec t ly Described and Explained in the domain of PSYchology), an

250

expert system developed from RECIDE which is a CBP~ shell t ha t implements
our CBR approach.

2 O v e r v i e w of R E C I D E

RECIDE functional structure comprises: a case retriever, and a case reuser (Fig-
ure 1). The case retriever accesses successful cases in the case library. For case
selection we use a qualitative and a quanti tat ive metric.

~ C.~e Retriever

QuaJi~live Quantitative
Metric Metric

Case Library

H C.a~ R ~

Indivisible lncompalible -~
Cases Cases)

Fig. 1. Functional Structure of RECIDE.

The quMitative metric clusters past cases by the way in which they are poten-
tially useful for creation of a new solution. The quanti tat ive metr ic ranks cases
in each cluster by its similarity with the new problem. The ca._ce reuser takes
case clusters ordered by decreasing similarity and generates new cases that po-
tentially have the same solution as the new problem. New cases are generated
by applying splitting and merging operators, constrained by indivisible and in-
compat ib le cases. The need for splitting and merging operations on past cases
follows f rom the fact that in general it does not exist a case in memory that com-
prises a complete solution for the new problem. In those situations catching the
case pieces tha t have part of the solution for the new problem and merging them
hopefully leads to a case comprising the new solution. This method of generating
a solution shows to be particularly suitable for design tasks. The drawback of it
is tha t , when a case is split, some intra-case constraints may be violated making
this operat ion illegal. Also, in the merging step may be inter-case dependencies
disable the synthesis of a new case from case pieces.

Within our approach inter and intra-case dependencies are represented in the
form of indivisible and incompatible cases which are two kinds of failure cases.
Thei r syntax is similar to the one for successful cases. Indivisible cases represent
case pieces tha t when occurring in a case cannot be split. Incompatible cases
represent case pieces that cannot occur in a new case by means of merging case
par ts from different cases. The semantic for failure cases is formally introduced
in this section.

2.1 C a s e L i b r a r y

The case l ibrary comprises: successful, indivisible, and incompatible cases. A
successful case is represented by a triple <P , S, R> (Figure 2) with P and

251

S, respectively, a set of facts representing past problem and solution, and R
a set of rules given by the expert, representing a set of causal explanations.
An explanation is a proof tree that links facts in the problem with a fact in the
solution. We consider three kinds of imperfections in explanations: (1) incomplete
set of explanations; (2) partial explanations; (3) broken explanations.

(i} (ii)

I"I fact node O rde. node

, ,) J , , , ,

Fig. 2. A case with (i) a complete set of explanations; (ii) an incomplete set of expla-
nations; (iii) a partial and broken explanation.

In a successful case with an incomplete set of explanations some solution
facts are not explained and hence are not conclusion for any proof tree (e.g.,
Cases ii and iii in Figure 2. Facts f and g in these case solutions are not leaves of
a proof tree). A partial explanation is one whose proof tree omits some branches.
This means that one or more steps in the proof tree apply a rule for which the
conditions are necessary but not sufficient. Rule nodes representing these rules
are labelled by '+ ' (e.g., In Figure 2, case iii, the proof tree at the left). A broken
explanation is one in which there is a gap between the proof tree and the case
solution (e.g., In Figure 2, case iii, the proof tree at the right).

Failure cases (indivisible and incompatible), are represented by a triple <Pf,
Sf, R f> with P f a n d Sf the sets of facts representing, respectively, the problem
and solution components, and Rfa set of rules. The semantic for these cases is
different from the one defined for successful cases and is related to the splitting
and merging operations performed during case reuse. The semantic for indivis-
ible cases is (P, S, and R represent, respectively, the components of the case
candidate for splitting):

i) If Pf ~ 0, Sf = 0, Rf = 0 and Pf C P then the subset P f in P cannot be
split.
ii) I f P f = 0, S f ~ 0, R f= 0 , and SfC Sthen the subset Sfin S cannot be split.
iii) If Pf = 0, Sf = 0, Rf ~ 0, and Rf C R then the subset Rf in R cannot be
split.
iv) If Pf ~ 0, Sf ~ 0, Rf ~ 0, and Pf C P A Sf C S A Rf C_ R then subsets Pf,
5:f, and Rfin P, S, and R have to remain in the same past case piece after the
splitting process.
v) If Pf r 0, Sf r 0, Rf = 0, and PfC_ P A Sf C Sthen the subsets P f a n d Sfin
P and S have to remain in the same past case piece after the splitting process.
vi) I f P f = 0, Sf ~ O, Rf ~ 0, and Sf C S A Rf C R then the subsets Sfand Rfin
S and R have to remain in the same past case piece after the splitting process.

252

vii) If Pf r 0, Sf = 0, Rf r 0, and Pf C P A Rf C_ R then the subsets Pf and Rf
in P and R have to remain in the same past case piece after the splitting process.

Indivisible cases of types i, ii, and iii constrain the splitting of facts in a
problem or solution, or in a set of rules. Indivisible cases of type iv through vii
constrain splitting between parts of the problem, solution, or set of rules.

Incompatible cases represent merging constraints on cases in memory. The
semantic for incompatible cases is (P, S, and R are the components of the new
case created by merging two or more cases or case pieces):

i) If Pf r 0, Sf = 0, and Rf = 0 then Pf cannot occur in P as a results of
merging.
ii) If Pf= 0, S f r 0, and R f = 0 then Sf cannot occur in S as a results of merg-
ing.
iii) If Pf = 0, Sf = 0, and Rf • 0 then Rf cannot occur in R as a results of
merging.
iv) If P f ~ 0, Sf ~ 0, Rf ~ 0
cannot occur all together in
v) If Pf r O, S f r Rf = 0
all together in the new case as a result of merging.
vi) If P f = 0, Sf r 0, Rf ~ 0 and Sf C_ S h Rf C R then Sf and Rf cannot occur
all together in the new case as a result of merging.
vii) If Pf # 0, Sf --: 0, Rf # 0 and Pf C_ P A Rf C_ R then Pf and Rfcanno t occur
all together in the new case as a result of merging.

and Pf C P A Sf C S A Rf C_ R then Pf, Sf, and Rf
the new case as a result of merging.
and Pf C P A Sf C S then Pf and Sf cannot occur

As with indivisible cases, incompatible ones of type i, ii, and iii relate to
merging constraints at the fact level. Remaining case types report to constraints
at the case component level.

2.2 Case R e t r i e v a l

Case retrieval is performed on a flat memory of successful cases. The retrieval
process involves two steps:

i) Clustering of potentially useful past cases (qualitative metric).
ii) Ranking of case clusters (quantitative metric).

In the first step five clusters of past cases are created. Let S be the set of
facts representing the solution for a case in memory and 5" the set of facts rep-
resenting the solution for a new problem. Each cluster comprises the following
cases (in the examples that follow it is assumed the case library is composed by
cases in Figure 2, and represented again in Figure 3):

C L U S T E R _ I - Cases with S = S'.
e.g. If the new problem is described by the set of facts {1, 2, 3}, CLUSTER=I

will be composed of case i (see Figure 2). Case i is completely explained, that is,

253

facts {!, 2, 3} describing case problem and the new problem are necessary and
sufficient for the solution S = {_a, b}, therefore the new problem solution is 5" =
s = b}.

C L U S T E R - 2 - Cases possibly with S = S'.
e.g. For a new problem described by the set {3, 4, 5}, CLUSTER_2 will be

composed of case ii. As the new problem is the same as the one described in case
ii it is possible that case and new problem solutions are also similar. The reason
why we are not certain about this is that case ii is not completely explained.
Therefore we do not know if fact 5 is causally linked with fact _f in the solution.
This means the problem that has the solution S = {c, f} may be different from
the one represented in case ii provided it contains facts 3- and 4.

C L U S T E R _ 3 - Cases possibly with S D S'.
e.g. Considering a new problem {1, 2}, case i is the one in CLUSTER_3. As

1 and 2_ are the causal premises for fact _a in this case solution, it is possible that
the new problem solution is {a} = 5" C S. The uncertainty about this is due to
unknown intra-case dependencies which may be violated by splitting case i.

C L U S T E R _ 4 - Cases possibly with S C S'.
e.g. With a new problem {!, 2, 3, 4, 5}, cases i and ii are the ones in CLUS-

TER_4. As case i has the solution S = {_a, b} for problem {1, 2, 3-} and case ii
solution {c, _f} is supposed to be the one for problem {3, 4, 5} then it is possible
that {_a, b} = Si C S' and {c, f} = S~i C S', with Si and Sii, respectively, the
solutions for cases i and ii. We are not certain about this as we do not know the
inter and intra-case dependencies between and within cases i and ii.

C L U S T E R _ 5 - Cases possibly with S Iq S ~ # $.
e.g. Assuming the new problem is {1, 3, 6, 9}, CLUSTER_5 is composed by

case i. As 1 and 3- are necessary and sufficient for b in the context of case i then
Si D 5" = {b}. The uncertainty on this is related to possibly unknown intra and
inter-case dependencies.

Clusters above are not mutually exclusive. Considering, for instance, a new
problem {3, 4, 5} case ii will belong to CLUSTER_2, as explained above, but
it will also belong to CLUSTER_5 as it is possible that fact 5 in case ii is not
the one responsible for fact f in the solution. If this happens then as 3 and 4 are
necessary and sufficient for c__ in the context of case ii then Si f] 5" = {c}, with
the constraint that no intra and inter-case dependencies are violated.

Cases within each cluster are ranked by an explanation-based similarity met-
ric [2]. It assigns a distinct relevance to each fact in a case problem that matches
a fact in the new problem, depending on the fact being premise of a complete,
partial, broken, or no explanation at all. Clusters are sorted by decreasing simi-
larity values.

Clustering of cases for retrieval embodies two main properties: (1) case clus-
tering organises memory cases accordingly to their kind of potential usefulness
for the new problem solution; and (2) it provides information on the most suit-
able me thod for creation of a new case. In the next subsection we describe how
the reuse unit deals with these clusters.

254

2.3 Case R e u s e

RECIDE reuse unit works with successful cases in terms of case pieces. Four
types of pieces are considered (Figure 3): strong, weak, undetermined, and un-
explained.

Fig. 3. Types of case pieces.

A strong piece comprises a complete explanation, the facts that are premises
of it, and the fact that is its conclusion (e.g. In Figure 3, the pieces in case
i). A partial explanation, its premises and its conclusion embody a weak piece
(e.g. In Figure 3, case iii, the case piece at its left). A broken explanation and
its premises or any single fact that is not premise of an explanation form an
undetermined piece (e.g. In Figure 3, case ii, the piece composed by the single
fact 5 and the piece in case iii at top right). Any fact in a case solution that is
not conclusion of an explanation determines an unexplained piece (e.g. In Figure
3. single facts f and e_ in cases ii and iii are unexplained pieces). Case splitting is
performed at the case piece level.

As described in section 2.2, after giving the system a new problem, successful
cases in memory are clustered accordingly to their usefulness for the generation
of a new solution. The reuse unit gets those clusters and performs the following
steps:

1) generation of new cases;
2) selection of the new case most promising for the solution of the new problem;
3) validation of the solution provided by the selected case.

Each new case is created by splitting and merging operations on cases from
a cluster. Two heuristics are applied for selection of the new case most likely to
have the same solution as the new problem:

Hl: Prefer new cases from clusters with lower index (e.g. CLUSTElZ_I over
CLUSTER_2).

H2: Prefer new cases with higher similarity values.

Heuristic 1, favours cases from those clusters with lower indexes. The reason
to choose CLUSTER_I is obvious. It is the only cluster that , if not empty, has a
case known to have the correct solution. For the other clusters, preferring those
with lower index means to choose new cases that required fewer splitting and

255

merging operations for its generation. The more splitting and merging opera-
tions are performed, the more likely it is that unknown intra and/or inter-case
dependencies are disregarded.

Heuristic 2 assumes cases with a problem description closer to the new prob-
lem description (matching more facts in the new problem, weighted the fact of
being premise of a complete, partial, or interrupted explanation) have a higher
chance of comprising the same solution as the new problem.

The next step comprises validation of the solution provided by the selected
new case. In the validation step, RECIDE searches for a new case for which the
splitting and merging operations involved in its construction do not violate the
constraints imposed by failure cases in memory. Then it outputs the new case
solution and the cases in the origin of it. If the user accepts the solution the
validation process is finished.

If the new solution is not accepted, the user is encouraged to give the intra
and inter-case dependencies in the origin of the wrong solution. Those descrip-
tions are recorded as indivisible and/or incompatible cases. With the memory of
indivisible and incompatible cases updated in this way the system starts another
validation cycle selecting a new case that does not conflict with the updated li-
brary of failure cases.

If the user cannot explain why the new solution is wrong in terms of indi-
visible and incompatible cases then she/he is asked to give the solution for the
new problem together with a causal justification. This input is recorded as a new
successful case and the process is completed.

3 A n A p p l i c a t i o n i n t h e D o m a i n o f P s y c h o l o g y

In this section we present an application of RECIDE in the domain of psychology.
Results obtained with this application are also described in this section.

3.1 T h e D o m a i n

REC I DEpsy is an advising system for scholar underachievers. It suggests a
new program for improvement of scholar performance supported on previous
successful experiences.

A past experience comprises a context (past problem) in which a set of inter-
vention strategies (past solution) was applied successfully. Figure 4 represents a
case in the domain as it is output by RECIDEpsy 1. A ' -> ' symbol in the ex-
planations represents a complete explanation and a ' ->+ ' a partial explanation.
This case describes a male client between twelve and fourteen years old, with
two siblings, both younger and with a conflicting relation with relatives. The
level of education achieved is six years of basic education and he is unfavourably

i The taxonomy introduced for context and intervention strategies is only relevant at
the user's level. For matching a case with a new problem, RECIDEpsy only considers
ground facts organised in a fiat structure.

256

P R O B L E M ;

<:Subject Data and Famil iar BackgrOund>
Sex: Male
Age: 12 - 14
Num. Of S ib l ings: 2
Siblings are: Younger
Familiar Relationship: Cor~/cting

<lEduclt lonl l l Background>
Degree achieved: 6
Educational Branch: Primary SchoOl
Siblings' Educational Achievements"

IndUCeS NegaUveCornparlslon

�9 ~Phyco fog ioa l S t f u c t l i n d D e v e l ~ " l r l l l k l >
I n t a l ~ O (I f l ~ l Relat ionship: Low

< l - e a r n i n g Charlcter lsUclt : -
Num of Areas with Underachlev.: more than 3
InfluencleJ DLo4~m;k>n Sources: Internal
Underac~lev. started: years Ago

S O L U T I O N :

< M a i n Stlracteglel~
Asserthteness Training
So lman 's Interpersonal

Negotiation Strategies
Erd~t lcement of L~ r r l l t ~ l Skills

<Complementa ry Strategies>
Self.knowledge Enhancement
Fanl l l le r Support Mobilization

<Behavioral and Cogni t ive Stratlk~
Ro le Playing
Thinking Cut-off
Reo0rdlng of ThOughts,

Behaviors and Emot io r~
Dis'functional Behaviors Evaluation

E X P L A N A T I O N S :

Sex : Male A N D A o e : 12 - 14 -> Ado lescence Crlels
Fami l iar Relationship: Conflicting A N D Sibl ings' Educational Achievements: Induces Negative

Compar ls ler A N D Adolescer~,e Cr l lds -> Conf lof Situations
SItuat iorm A N D Interpersonal Ftelet iom~ip: LOW -> Lack of Interpersonal Skills

N u m Of Areas with Underachlev.: more than 3 ANt:) Underachlev. Started: years Ago ->
Enhancement of Learning Skl lkl

Conf lof Sltuat iovm ->+ Sel f -knowledge E n h a ~ n t
Conf lc t SItuat lorm -> Familiar Support Mobi l iza t ion
Lack o f I r d ~ q x ~ m l Sk ~fs -> Asset tWertesll T ~ i t ~ ANOSoiman'slntarpersonalNeejotletion

Strategies AND Flecofdtng Of Thoughts, Behaviom and Emot ions A N D DIs/unctional
Behaviors Evaluat ion

InflLmnClel Dispersion Sources: In te rna l ->Th lnk l~ ; I Cut-o~f

Fig. 4. A successful case.

compared with his siblings due to their scholar achievements. Interpersonal re-
lationship is low. His grades comprise more than three unsuccessful disciplines,
shows internal sources of dispersion and has a long history of underachievement.

The main intervention strategies being applied are assertiveness training, Sel-
man's interpersonal negotiation strategies, and enhancement of learning skills.
The complementary strategies are self-knowledge enhancement and familiar sup-
port mobilisation. The behavioural and cognitive intervention strategies are role
playing, thinking cut-off, recording of thoughts, behaviours and emotions, and
dysfunctional behaviours evaluation.

The explanations provided by the experts for this intervention program are:
(1) being a mMe client aged between twelve and fourteen are causing an ado-
lescence crisis, (2) a conflicting familiar relationship marked by negative com-
parison, associated with the adolescence crisis characterise a conflict situation,
(3) the conflicting situation, under development and his low level of interper-
sonal relationship describe his lack of interpersonal skills, (4) the number of
underachievement areas being higher than three and the duration of this prob-
lem (starting years ago) cause the need for enhancement of learning skills, (5)
the conflicting situation is a partial cause (the only partial explanation step in
this case) for using self-knowledge enhancement, (6) the conflict situation is the
cause for mobilisation of familiar support, (7) the lack of interpersonal skills is
the motive for applying assertiveness training, Selmans interpersonal negotia-
tion strategies, recording of thoughts, behaviours and emotions, and evaluation
of dysfunctional behaviours, and (8) presence of internal sources of dispersion is
the cause for using thinking cut-off.

In this task indivisible cases are of types i and ii (see subsection 2.1.). In-

257

compatible cases are of types ii, iii, and v. The set of cases given by the experts
comprises 47 successful cases and 65 failure cases (43 indivisible and 22 incom-
patible).

3.2 E x p e r i m e n t a l R e s u l t s

Two kinds of tests (labelled TEST ~1 and ~:2) were performed. In TEST #1
each iteration comprises input of the problem component of a case not in mem-
ory, generation of new cases in the way described in section 2.3, selection of
the potentially best new case, output of its solution, and validation by the user.
TEST # 2 is like #1 with the difference that a new case is not created by splitting
and merging operations but by selecting from memory the case most similar to
the new situation. Then its solution is given as the solution for the new problem.

The parameters we consider in judging the quality of a proposed solution
are: (1) rate of facts belonging to the generated solution appearing in the correct
solution per total number of facts in the correct solution; (2) rate of facts in the
generated solution that not belong to the correct solution per total number of
facts in the correct solution; (3) difference between the first and second ratios.

The set of successful cases used in these tests was randomly ordered and this
ordering was maintained along all the experiments.

Results showing the evolution of these parameters along a working session
are presented in Figures 5 through 7.

60

~ so
_~ ~o
~ 3o
"6 zo

0

10 1S 20 ZS 30 35 40 45

Iteration Number

Test #1

Test #2

Fig. 5. Percentage of correct facts in the proposed solution relative to the total number
of facts in the problem solution.

The number of facts correctly included in the new solution is higher in TEST
#2 than in TEST #1 along the 47 iterations (see Figure 5), but it is also TEST
#2 that shows the highest rate of facts wrongly included in the new solution
(see Figure 6). In particular, till the 12th iteration, solutions produced by TEST
#2 involve a high number of facts wrongly included in the generated solution.
Figure 7 shows a measure of global quality of solutions as it takes into account
the facts correctly and wrongly included in it. It is evident from this figure that
till the 25th iteration, generation of a new solution by splitting and merging past

258

,3o]

IZO . ~

110 1 ~

=t\
70 "4

50 4

4o 1
30 -I

0 �9 , , �9 �9
5 10 15 20 25 30 35 40 45

Iteration Number

I T~t #1 I
Test #2

Fig. 6. Percentage of wrong facts in the proposed solution relative to the total number
of facts in the problem solution.

eases produces better results than when these operations are disabled. After the
25th iteration using the best case in memory as the solution of a new problem
or creating a new case by splitting and merging past cases does not make a
difference.

3.3 Ana ly s i s o f t h e E x p e r i m e n t a l R e s u l t s

Considerations on the experimental results relate, at first to the facts (interven-
t ion strategies) correctly proposed by the system for a solution (treatment).

In contrast with previous expectations, the system performs better in terms
of this parameter when only the best case in memory is retrieved then when a
new one is created from previous cases. Our explanation for this i~ that when a
single case is selected it tends to suggest a huge set of intervention strategies,
many of them being correct (see Figure 5), but also with many wrong ones (see
Figure 6). When a new case is generated by splitting and merging previous cases,
the system leans to be more conservative in the sense that it only chooses case
pieces comprising a causal relation between problem and solution pieces. In this
way, when splitting and merging takes place for generation of a new solution the
rate of facts wrongly included in the solution keeps low along the 47 iterations,
never being higher than 30 % of the number of facts in the correct solution. A
different result is obtained when a single case is retrieved for generation of a new
solution. In this mode the rate of facts wrongly considered is high till the 25th
i teration and very high till the 12th iteration.

When the number of correct and wrong facts is weighted for judgement of
the solution quality (see Figure 7), it is clear that till the 25th iteration it is

259

40 �9

30 �9

20 �9

10 ,

O~

-10 �9

' 20 �9

-30 ,

- 40 ,

-SO .

-60 ,

-70 ,

-80 ,

30 35 40 4S

Iteration Number

Ii T'" I
Test #2

Fig. 7. Difference between percentage of correct and wrong facts in the proposed so-
lution.

worth applying splitting a merging for generation of a new solution. After the
25th i terat ion no improvement is obtained with this method.

4 Final Remarks

Our last comments concern to the way RECIDE solves and learns and to the
role of spli t t ing and merging operations in the generation of new solution.

With respect to problem solving, the retrieval method used by RECIDE takes
into consideration two impor tant aspects - usefulness and similarity - assigning
a higher impor tance to usefulness. As pointed out by other authors [4, 6] we
believe search driven by usefulness plays a main role in case retrieval. Case
clustering, as performed within our approach, relates to the role cases can play
in the construction of a new one. Similarity is considered for case ranking within
clusters.

Failure cases as they are defined in our framework constrain the generation
of new c a ~ s by intra and inter-case dependencies. Many times, the reason why
cases created by splitting operations do not have the correct solution roots in
intra-case dependencies that were not perceived a priori. A similar problem takes
place when case pieces are merged due to inter-case dependencies. Indivisible and
incompatible c0~es are a powerful way to represent those dependencies.

An aspect tha t needs to be taken into consideration is that if the combination
strategies used for case generation are not maintained under control the process
leads to combinatory explosion. This is prevented by limiting combination of
case pieces to the most promising cases within each cluster.

In R E C I D E , the learning process comprises interactive acquisition of failure
and successful cases. In general the acquisition a pr ior i of intra and inter-case

260

dependencies is not feasible. The problem-solving process provides a context of
failure in which the analysis of the cases in the origin of a wrong solution is a
way to detect violated dependencies that were the cause for the wrong solution.
Incompatible cases also make possible to represent tha t a solution proposed by
the system is incompatible with the new problem given to the system.

Another remark relates to the role of splitting and merging operators. It is
clear that results are improved when this method is applied. Although in this
domain the improvements which are obtained are not as impor tant as we would
expect. We believe this is related to the way cases are selected for splitting
and merging. In this approach we select the most similar cases for splitting and
merging. Intuitively, it is better to select cases which are complementar in terms
of usefulness for spli t t ing and merging than those which are most similar to the
new situation. At the moment we are studding different strategies for selection
of cases for splitting and merging.

A last comment has to do with the fact that these results were obtained for
a specific domain. I t is expected that in different domains a slightly different
behaviour is detected.

5 Acknowledgements

We would like to thank Paula Vieira and Eduarda GSis who provided the
case library. F u n d a ~ o Luso-Americana para o Desenvolvimento and F u n d a ~ o
Calouste Gulbenkian financially supported our contacts with other groups work-
ing on CBR in the USA.

References

1. Barletta, R., and Mark, W., Explanation-Based Indexing of Cases, in Proceedings
of a Case-Based Reasoning Workshop, Morgan-Kaufmann, 1989.

2. Bento, C., and Costa, E., A Similarity Metric for Retrieval of Cases Imperfectly
Explained, in Wess, S.; Althoff, K.-D.; and Richter, M. M., eds., Topics in Case-
Based Reasoning - Selected Papers from the First European Workshop on Case-
Based Reasoning, Springer Verlag, Berlin: Germany, 1994a.

3. Hammond, K., CHEF: A Model of Case-Based Planning, in Proceedings of AAAI-
86, Cambridge, MA: AAAI Press / MIT Press, 1986.

4. Kolodner, J., Judging Which is the Best Case for a Case-Based Reasoner, in Pro-
ceedings of a Case-Based Reasoning Workshop, Morgan-Kaufmann, 1989.

5. Koton, P., Using Experience in Learning and Problem Solving, Massachusets Insti-
tute of Technology, Laboratory of Computer Science (Ph D diss., October 1988).
MIT/LCS/TR-441, 1989.

6. Smyth, B., and Keane, M., Retrieving Adaptable Cases: The Role of Adaptation
Knowledge in Case Retrieval, in Wess, S.; Althoff, K.-D.; and Richter, M. M.. eds.,
Topics in Case-Based Reasoning - Selected Papers from the First European \Vork-
shop on Ca~e-Based Reasoning. Springer Verlag, Berlin: Germany, 1994.

'7. Veloso, M., Learning by Analogical Reasoning in General Problem Solving. Ph D
Thesis. School of Computer Science, Carnegie Mellon University, Pittsburgh. PA.
1992.

