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Abstract

Evolutionary Machine Learning (EML) combines Evolutionary Compu-
tation (EC) with Machine Learning (ML) to automatically search for the
best structure and/or parameterisation of ML models for solving specific
tasks. However the results reported by the authors in their articles detail
their work, replicating the results and comparing them to other approaches
are tasks that tend to be difficult. This happens mainly because of the high
number of numeric parameters, and specific technical details. Another is-
sue that prevents the approaches from being replicated is the fact that the
code developed is rarely made publicly available. In this essay we discuss
and provide some guidelines to address these problems. Our goal is not
to provide a unique, right answer, for these issues. Rather, we aim to pro-
mote a healthy discussion that can lead to new and innovative ideas and
practices.

1 Introduction

When developing Machine Learning (ML) models for performing spe-
cific tasks (e.g., an Artificial Neural Network (ANN) for classification) the
practitioner often undergoes a long and weary process of trial-and-error,
where the structure and/or parameters of the model are continuously tuned
in the search for the best performance. To avoid this, practitioners can re-
sort to Evolutionary Machine Learning (EML), which uses Evolutionary
Computation (EC) to optimise the ML models. Therefore, a population of
individuals (each encoding a solution for the ML model) is continuously
evolved, guided by a quality function that defines how well each model
performs on solving the task.

However, according to Eiben and Jelasity [2] “verifying results found
in the literature is in practice almost impossible”. This happens for a
number of reasons: the proposed approaches have specific and complex
implementation details, parameters are not always clearly explained and
detailed, and the code developed is not made publicly available. In ad-
dition, the evaluation of the methodologies is not performed in the same
way, which makes the comparison between approaches even harder.

The critique by Eiben and Jelasity focuses on EC. But, similarly to
what happens in EC, in ML models also have lots of parameters that need
to be defined. Thus, the combination of both fields results in a bigger
problem, since the number of parameters that must be clearly defined in-
creases, making the reproduction of the results more challenging.

The main goal of this essay is not to propose one unique and right
way of specifying the experimental setup. Instead, we want to promote
discussion so that better practices can emerge and be used by authors
in the area. In the upcoming sections we start by tackling reproducibil-
ity, and the comparison of approaches, respectively on Sections 2 and 3.
Then, in Section 4, we focus on statistical analysis. To end, in Section 5,
we discuss open questions and future directions.

2 Reproducibility

Reproducing the results obtained by EML methods is a difficult task.
Since we are are combining two fields, namely EC and ML, there will
be more parameters and technicalities than if considering only one in iso-
lation. Therefore, if all the parameters that are used in the algorithms
are not clearly pointed out, the reproduction of results and comparison of
approaches is very hard.

One of the most common problems in EML is trying to understand
how the benchmark dataset was partitioned. We advocate the use of three
partitions: (i) train; (ii) validation; and (iii) test. The first two are used
during the evolutionary process, and the last (test) must be kept out of it,
and is used for measuring how well the evolved models perform beyond
the data used for generating them, i.e., their generalisation ability. During
the evolutionary process, the training set is used if the evolved ML model

has a training phase (usual in supervised learning) for optimising numeric
values (e.g., weights of ANNs), and the validation set is used for measur-
ing the fitness value of the model, after training. However, if there is no
need for a training phase, the train and validation sets can be merged, and
consequently we only need two dataset partitions: validation and test.

We understand that different authors may use different names to men-
tion the same sets that we defined above. The important message is that,
the explanation of the dataset partitions, and what they are used for needs
to be clear. More importantly, a percentage of the data must be kept out-
side the evolutionary process; otherwise the results are biased. Moreover,
the way the partitions were created should be clear and reproducible.

Still focusing on the benchmark issues, whenever data augmenta-
tion, dimensionality reduction, or sampling techniques are used, both the
method and its parameterisation must be provided. This applies for all
other EC and ML parameters. Therefore we recommend that the experi-
mental setup is reported on a table, in a clear and summarised way, avoid-
ing the need for the reader to scan the entire article to search them. We
divide the table into three distinct sections:

EC – specifies all the parameters directly concerned with the used evo-
lutionary engine, such as, number of runs, number of generations,
population size, crossover and mutation rates and parent selection
mechanism;

ML – details the parameters of the evolved models, and the allowed
ranges. Other information, such as the metric used for assessing
the quality of the models, or the use of cross-validation can be also
included here;

Benchmark – contains all the information regarding the benchmark par-
tition, and when applicable, dataset sampling, augmentation and
other parameters regarding any form of pre-processing.

More table sections may be required depending on the problem that is be-
ing solved. The same applies to the parameters contained in each section.

Despite a clear specification of the used parameters, the replication
of results may still be difficult due to implementation and algorithmic
details. Eiben and Jelasity [2] suggest that to avoid the previous a frame-
work could be implemented, and used by all researchers, where only new
features would need to be implemented. Although this standardisation
of code is likely the ideal approach, it may not be feasible. Researchers
use different programming languages, and there are many approaches to
encode the same solutions. So, unless all variants are implemented and
made available, researchers will tend to avoid standardisation. We de-
fend that the easiest and most simple form of reproducibility would be to
open up and share the code developed, by uploading it to repositories and
include it within the paper.

3 Comparing Approaches

After specifying the experimental setup and conducting experiments there
is the need to compare the approach with similar ones to acknowledge
how it performs in the broader scope.

The first decision that needs to be made is concerned with the num-
ber of evolutionary runs that will be executed. Evolutionary Algorithmss
(EAs) are stochastic search heuristics, and thus different runs can lead to
very different solutions. Further discussion on the definition of the num-
ber of evolutionary runs is carried out in the next section.

ML results are typically presented in the form of tables, which report
various performance metrics on the used models. In addition, in specific
domains, e.g. ANNs, specific criteria concerning the structure of the mod-
els also tend to be presented: number of neurons, layers and connections.
Whatever the chosen metrics are, what is important is to clearly define



them, because those are the properties that are going to be used to com-
pare one methodology with others. Further, we defend that a plot depict-
ing the fitness evolution across generations should be presented, because a
table does not allow one to check evolution and convergence speed, which
may be important in problems where time is crucial.

Some authors just report the results attained by the best model found
throughout evolution. However, as above stated, EML approaches have
a stochastic behaviour. Therefore, showing just the best result does not
capture the overall picture of the tested methodologies, and in some cir-
cumstances the best solutions can be deceiving outliers. By presenting
the average of the best individuals found in each evolutionary run, along
with its standard deviation it becomes possible to verify if the methodol-
ogy consistently finds suitable solutions or not. The best result can also
be presented separately, but never at the cost of discarding average ones.

Even though results can be shown in terms of averages, they provide
little information. It is possible to have an approach A that, on average,
is slightly superior to an approach B, but nonetheless the difference is
insignificant, and thus the approaches can be considered equal in terms of
performance. To effectively acknowledge the superiority of one method
over another, based on empirical data, we must use statistical tests.

4 Statistical Analysis

When using EAs it is unlikely that two consecutive runs lead to the same
results. Randomness is an important part of the evolutionary process, and
thus the stochastic essence of the methods requires multiple repetitions
of the experiments in order to gather enough experimental data to ap-
ply a sound statistical analysis. Next, we discuss how we think that the
experimental analysis should be conducted, considering aspects like the
number of runs, initialisation of the populations, and the statistical tests
that should be used.

Before starting any experimental study one should define the number
of runs, N, the hypothesis, H, that is to be tested, and the significance
level, α . The number of runs identifies the amount of executions of the
algorithm. Different runs can generate distinct results; if for different runs
the algorithm consistently gives similar results it is possible to state that
it is robust. Thus, the larger the value of N the better we can assess the
robustness of the approach. Additionally, it also defines the size of the
sample that will be used by the statistical methods. Therefore, we need
a large value of N, which as a rule of thumb should not be lower than
30. Next, the hypothesis H, which is a statement that we want to assert
as true, must be defined. The last step consists on the definition of the
significance level α . The significance level is used in the statistical tests
as the cutoff value to reject the null hypothesis. Commonly used values
for α are either the 0.05 or the 0.01. The lower the significance level, the
more the data must diverge from the null hypothesis to be significant.

Once we have executed the methods, and gathered all the samples,
we need to ascertain what distribution our data follows in order to decide
which type of statistical test to use. Some are based on the assumption
that the data follows a certain distribution. When this happens it is possi-
ble to use a set of statistical procedures called parametric tests. The most
common assumption is that the distribution of the samples follows a nor-
mal distribution. To check if the samples follow a normal distribution it
is possible to use two tests: Kolmogorov-Smirnov and Shapiro-Wilk. If
the test is non-significant, it tells us that the distribution of the samples is
not different from a normal, and thus the we can assume that probably the
data is normal. After this, and before selecting any parametric test, we
need to check if the variance is homogeneous.

The last part of the statistical analysis is concerned with the hypothe-
sis testing and the reporting of the results. To test the hypothesis we can
use two types of statistical procedures: (i) parametric, which assumes that
the sample data comes from a population that follows a probability dis-
tribution based on a fixed set of parameters, e.g., a normal distribution;
(ii) non-parametric, that makes no assumptions about the data distribu-
tion. There are several tests available in each category. We need to check
which is the one that suits our assumptions the best. For example, if we
are to compare two approaches A and B, with different initial conditions
and with no assumptions about the distribution of the samples, we have to
select a non-parametric test (most common situation in EML). Based on
these assumptions the test that is most appropriated is the Mann-Whitney
U test. For other scenarios and statistical procedures, please refer to [3].

Care must be taken with the interpretation of the word “significant”,
because even if the probability of the effect in our results occurs by chance
is small (less than α), it does not imply that the effect is of great impor-
tance. Insignificant and unimportant effects can be significant due to the
large number of experiments conducted. So the question now is knowing
how important an effect is. The solution to this problem is to measure and

Table 1: Graphical overview of the statistical results with effect sizes.
Dataset-A Dataset-B Dataset-C Dataset-D

RMSE Test ++ ∼ +++ ++
Validation ∼ ∼ +++ ∼

Accuracy Test ++ ∼ +++ ++
Validation ++ ∼ ++ ∼

AUROC Test ++ ∼ +++ ++
Validation ++ ∼ +++ ∼

F-measure Test +++ ∼ +++ ∼
Validation ++ ∼ +++ ∼

report the size of the effect that we are testing, known as effect size.
The effect size is a simple and standardised measure of the magni-

tude of the observed effect. Since it is a standardised measure it means
that we can compare effects sizes across different studies that have differ-
ent metrics. In the literature there are many methods to compute the effect
size; the Pearson’s r correlation coefficient is one of the most widely used
ones. One of the advantages is that it is constrained between 0 (no effect)
and 1 (a perfect effect). Cohen [1] has made the following suggestions
for a scale of the effects: small (0.1 ≤ r < 0.3), medium (0.3 ≤ r < 0.5),
and large (r ≥ 0.5). We recommend reporting the effect size in the form
of a table, where the approaches are compared according to the follow-
ing graphical overview: ∼ indicates no statistical difference between the
compared approaches, and + signals that approach A is statistically better
than approach B. The effect size is denoted by the number of + signals,
where +, ++ and +++ correspond respectively to small, medium and
large effect sizes. A − signals scenarios where approach A is worse than
approach B. Table 1 shows an example following these guidelines.

5 Road Ahead

In this paper we have discussed multiple issues in experimental design,
and how they affect EML. In particular:

• The reproduction of experimental results is nearly impossible. As
EML merges the EC and ML fields, the number of parameters that
needs to be set up is extremely high. The same happens to imple-
mentation details, which if not clearly specified, and if the code is
not shared, make it almost impossible for other authors to repli-
cate the obtained results. In that sense we propose the creation of
a platform for sharing the benchmarks and obtained results, where
the code may be made available;

• The reporting of results cannot be based only on the presentation
of the best models. At least average values should be provided,
along with the standard deviation, so that it is possible to analyse
the consistency of the evolved models over the different runs;

• The comparison of different approaches using statistical proce-
dures is essential. Most of the current published works do not rely
on any statistical inference tools, or, when they do, the report of the
analysis is not adequate, and very difficult to follow. In this work,
we propose a recipe to fill this void by defining a set of guidelines
that aim at improving and easing the comparisons between differ-
ent works.

The current essay is by no means an extensive review of the literature.
There are much more open questions that need to be answered. One of
the most prominent ones concerns the increasingly necessity to find ob-
jective measures that are able to define what makes a good model. It is
true that there are many performance metrics (e.g., accuracy or RMSE);
however, when the results of two different methods are very close, should
one choose a model that is more complex, despite the small increase in
performance?
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