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Abstract

The search for adequate structures and parameters for Machine Learning
(ML) models is problem specific and time consuming. Often, researchers
follow an iterative trial-and-error process, where suitable values for multi-
ple parameters are tested. One way to address this issue is the application
of Evolutionary Computation (EC) to search, optimise and tune the ML
models. Selecting appropriate benchmarks for comparing different ap-
proaches is not always trivial and is a common problem of both EC and
ML. However, when combining both fields it is possible to use the evo-
lutionary process to our advantage, speeding up the evaluation stage. In
this paper we discuss what can be done to mitigate some of the issues of
benchmarking in Evolutionary Machine Learning (EML). The positions
herein presented denote the point of view of the authors and should not be
seen as a strict methodology, but rather as a set of guidelines.

1 Introduction

Evolutionary Machine Learning (EML) is a sub-field of Artificial In-
telligence that applies Evolutionary Computation (EC) to automatically
search for the structure and/or parameterisation of Machine Learning (ML)
models. Examples of EML works are the evolution of the topology and
weights of Artificial Neural Networks (ANNs) [3], or the evolution of
multiple Support Vector Machine (SVM) parameters [4]. By adopting
the principles behind EC, a population of solutions scattered in the do-
main space of the ML model is evolved, making it less likely to become
trapped in a local optima, which would likely happen if the model was
tuned by manually trying different parameter configurations in an attempt
to reach near-optimal performances.

When working with EML one of the main challenges concerns bench-
marking. In brief words, benchmarking can be defined as the act of per-
forming experiments with datasets to compare the performance of dif-
ferent approaches. From this definition it is clear that the selection of
datasets, experimental design and analysis are principles that are linked.
In the current essay we will focus primarily on tackling the issues re-
lated with benchmarking from the perspective of the datasets, i.e., we
will discuss the questions that must be faced when planning the experi-
ments to test new / existing approaches regarding the choice that has to
be made regarding the appropriate benchmarks for assessing the quality
of the methods, and how many datasets should be used.

If we decide on simple benchmarks, with a low number of features
and instances, the methodology will likely find solutions that perform
well. But, these results have questionable importance, since solutions
for such problems might be easily hand-crafted. On the other hand, when
dealing with real world complex problems, mapping the candidate solu-
tions to a comprehensible model, and assessing their quality on such huge
datasets can be time consuming, making it impossible to timely measure
the quality of the models. In addition, to tackle such problems, we of-
ten require large amounts of computational power, making the use of the
benchmark unfeasible. Discussion around the problematic of benchmark-
ing is not new. McDermott et al. [7] have already pointed the selection of
benchmarks for evaluating Genetic Programming (GP) methods to be one
of the open issues in the field.

In this position paper, more than proposing a methodology that should
be strictly followed, we aim at discussing good practises. In Section 2 we
focus on dataset selection. Next, in Section 3, we investigate methods that
try to cope with the challenges posed by big data. To end, in Section 4,
open questions and future discussion are raised.

2 Datasets

In EML the datasets are commonly grouped according to the ML task that
the models being evolved aim to solve: (i) clustering; (ii) regression; or
(iii) classification. In addition, and following the structure proposed by
Prechelt [9] these benchmarks belong to one of the following categories:

Artificial – data is artificially generated following a given equation (logic
or arithmetic);

Realistic – although the data is also artificially generated (as in the above
category) it simulates the rules and specifications of real world sys-
tems (e.g., physical models);

Real problems – data gathered directly from observing the real world.

More and more contributions to the field have focused on the use of
real world problems, which is motivated by the desire to search for true
Artificial Intelligence, i.e., systems capable of outperforming the human
performance and automate common everyday tasks.

With the increase of computational power and performance of the
evolved models, popularised by Graphics Processing Units (GPUs) and
consequent emergence of deep learning techniques, the problems that
practitioners try to solve are becoming increasingly more challenging.
However, there are no well-established methodologies specifying how to
select which problems to test on. Although there are works in the liter-
ature describing how to measure the complexity of datasets (e.g. [11]),
they tend to be difficult, and time consuming to use. It is impractical to
apply such methods to a wide range of benchmarks, and thus, authors of-
ten base their decision on the complexity in terms of number of instances
and dimensionality of the input space / number of features, and on the
benchmarks used by the methodologies to which comparisons are going
to be established. Another criteria that is often analysed is the available
progression margin, which defines the problem complexity based on the
difficulty that previous approaches had to solve it.

There are several platforms that work as repositories for benchmarks.
The most popular is the UCI ML repository [6], which at the time of writ-
ing is composed by 394 datasets. The UCI platform stores information
on each dataset, which includes the number of instances, features, types
of the data and the task to be performed. In addition, a brief descrip-
tion of each benchmark and corresponding reference papers are provided.
Although it provides a good platform in the sense that it allows users to
scan a large list of benchmarks, showing their main characteristics, it does
not provide a list of the results obtained by previous methodologies in a
clean and accessible way. Furthermore, despite the large number of avail-
able benchmarks, a large percentage (approximately 40%) has less than
1000 instances, and about 23% have no more than 10 features. A plat-
form that solves one of the issues found in the UCI repository is Kaggle
(check http://www.kaggle.com): a web-platform for the organi-
sation of contests often tackling real world problems. By using leader-
boards the performance of different approaches in each benchmark be-
comes clear. The benefits of the the two previous platforms are combined
in OpenAI [2]; the main disadvantage of OpenAI is that it is focused on
reinforcement learning problems, more particularly, game environments.

From the above discussion on the available platforms we suggest that
the ideal platform should at least follow the following principles:

• Provide a detailed description of each dataset, including properties
such as the number of features and instances, task to be performed,
and type of the dataset. Complexity of the dataset according to
established metrics should also be provided;



• The performances obtained on each benchmark by different ap-
proaches should be shown and detailed in the form of a list. Each
result entry should be accompanied by the article describing the
method and whenever possible the implementation. Authors should
be allowed to submit this information so that the platform is self-
maintaining;

• Ideally, the platform should provide means to confirm the accuracy
of the results by automatically running new experiments with the
provided code on different partitions of the benchmark;

• It should be possible to order and filter the benchmarks available in
the platform according to any of its properties and results, so that
one can easily explore them and choose the ones to tackle.

So far we have discussed the main challenges in the analysis and de-
cision of which benchmarks to use for testing purposes. But, the question
of how many benchmarks should be used has not yet been addressed.
An obvious answer would be that the more datasets are used the better,
so that it is easier to characterise the behaviour of the tested method on
benchmarks with different properties. However, this might not be feasi-
ble: papers have limited sizes, and the time needed for conducting such an
amount of experiments makes authors inclined to select a small amount of
benchmarks. Specially if we are dealing with real world problems, where
the available amounts of information often comprise Big Data (further
discussed in the next section). We recommend that experiments should
be conducted in at least four benchmarks (the more the better). Testing
on fewer than that does not allow for any strong conclusions about the
quality of the approach rather than the one that it performs better or worse
in a couple datasets, but an extrapolation and generalisation assumption
to other benchmarks can hardly be made. Moreover, it is our opinion that
the benchmarks should be selected with an increasing complexity degree,
so that it is possible to test if the approach despite performing good in dif-
ficult problems also leads to good results in simple and easier tasks, and
vice-versa.

3 Dealing with Big Data

By combining the principles of EC with ML, a population of candidate
solutions encoding the model’s structure and/or parameters is evolved
through time. Although evolution is paralallelisable, assessing the quality
of each candidate solution in real world problems can be time consuming.

Several tools that take the advantages provided by GPU computing
have been proposed recently (e.g., Caffe [5] or Tensorflow [1]). Using
these frameworks has two main advantages: in the one hand, they pro-
vide stable implementations for evaluating the performance of the evolved
models; on the other hand, by providing GPU interfaces they speed up the
evaluation time.

Nevertheless, in some circumstances the speed up introduced by the
use of GPU processing is not enough. Imagine evaluating a deep neural
network that takes about 1 hour to train; if a population of 100 candi-
date solutions is evolved then each generation would take about 4 days,
which makes evolution unfeasible. Thus, when this happens authors nor-
mally resort to sampling techniques, and smaller training sessions that
give some insight on the expected performance of the model on the long
term. We believe that random sampling approaches are not the most ap-
propriate form to reduce the dimension of datasets, as they may fail to
retain some of the properties of the benchmark, possibly leading to de-
ceiving results. We defend that we should use the evolutionary process
in our favour, and sample a percentage of the instances of the benchmark
every given number of generations, taking the results on the samples into
account when generating new ones. Examples of these type of approaches
have been proposed by Stanovov et al. [10] and Morse and Stanley [8].

4 Road Ahead

In this short essay we have pointed out various aspects of current bench-
marking practices in EML. We have discussed the following issues:

• Limitations imposed by the difficulty of selecting a set of bench-
marks for testing a developed (or existing) methodology. It is not
clear what makes a dataset complex; most practitioners make such

decisions based on benchmark properties, such as number of in-
stances and dimensionality of the input space, or based on the per-
formance of other approaches;

• Similar to the selection of benchmarks, the same rationale can be
applied to deciding how many datasets should be used for conduct-
ing experiments. We defend that at least four different datasets,
with different complexities should be used.

• Dealing with Big Data is challenging, specially when multiple can-
didate solutions are being evolved in simultaneous, and need to be
evaluated for assessing their performance. To deal with this limi-
tation the dataset can be sampled, but taking advantage of the iter-
ative nature of EC.

Nonetheless, there are many more questions that have to be addressed
by further research in the area, which directly impact how the evolved
models are selected and compared. One of the most important ones com-
prises the definition of metrics that can objectively measure the difficulty
of benchmarks. We are well aware that this is not an extensive review, and
that there are several works that already follow some of the guidelines dis-
cussed here. Our main goal with this essay is to set off a discussion about
good practices that can improve the field, leading to better and sound re-
search.
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