
1

Graph-Based Evolutionary Art

Penousal Machado, João Correia, and Filipe Assunção

CISUC, Department of Informatics Engineering, University of Coimbra,
3030 Coimbra, Portugal
{machado,jncor}@dei.uc.pt, fga@student.dei.uc.pt

Summary. A graph-based approach for the evolution of Context Free Design
Grammars is presented. Each genotype is a directed hierarchical graph and, as such,
the evolutionary engine employs graph-based crossover and mutation. We introduce
six di↵erent fitness functions based on evolutionary art literature and conduct a wide
set of experiments. We begin by assessing the adequacy of the system and establish-
ing the experimental parameters. Afterwards, we conduct evolutionary runs using
each fitness function individually. Finally, experiments where a combination of these
functions is used to assign fitness are performed. Overall, the experimental results
show the ability of the system to optimize the considered functions, individually and
combined, and to evolve images that have the desired visual characteristics.
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1.1 Introduction

The development of an evolutionary art system implies two main considera-
tions: (i) the design of a generative system that creates individuals; (ii) the
evaluation of the fitness of such individuals [17]. In the scope of this Chapter
we address both of these considerations.

Influenced by the seminal work of Karl Sims [25], the vast majority of
evolutionary art systems follows an expression-based approach: the genotypes
are trees encoding symbolic expressions and the phenotypes – i.e., images –
are produced by executing the genotypes over a set of x, y values. While this
approach has been proven fruitful, it has several shortcomings, most notably:
(i) Although it is theoretically possible to evolve any image [12], in practice,
expression-based evolutionary art tends to produce abstract, mathematical
images; (ii) Due to the representation, the images lack graphic elements that
are typically present in most forms of art, such as lines, strokes, clearly defined
shapes and objects; (iii) Creating an appealing image by designing a symbolic
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expression by hand, or even understanding an evolved expression, is a hard
endeavour.

Extending previous work [14, 13], we describe an approach that overcomes
these limitations and introduces new possibilities. Inspired on the work of
Stiny and Gips [27], who introduced the concept of shape grammars, we ex-
plore the evolution of Context Free Design Grammars (CFDGs) [9], which
allow the definition of complex families of shapes through a compact set of
production rules. As such, in our approach, each genotype is a well-constructed
CFDG. Internally, and for the purposes of recombination and mutation, each
genotype is represented as a hierarchical directed graph. Therefore, the evolu-
tionary engine deviates from traditional tree-based Genetic Programing (GP)
and adopts graph-based crossover and mutation operators. The details of the
representation are presented in Section 1.3, while Section 1.4 describes the
genetic operators.

In Section 1.5 we introduce several fitness assignment schemes based on
evolutionary art literature. Then, in the same Section, we describe how we
combine several of these measures in a single fitness function.

We conduct several tests to assess the adequacy of the system and deter-
mine reasonable experimental settings. In particular, we focus on the impact
of unexpressed code in the evolutionary process, presenting and analyzing
di↵erent options for handling these portions of code. Furthermore, we study
how non-deterministic mapping between genotypes and phenotypes influences
the robustness of the evolved individuals. These experiments are reported in
Section 1.6. Based on the results of these tests, we conduct experiments using
each of the previously defined fitness functions individually. The description
and analysis of the experimental results is presented in Section 1.7. The analy-
sis of the results highlights the type of images favored by each fitness function
and the relations among them. We then proceed by presenting results ob-
tained when using a combination of functions to guide fitness (Section 1.7.2).
The analysis of these results is focused on the ability of the system to create
imagery that simultaneously addresses the di↵erent components of the fitness
functions. We finalize by drawing overall conclusions and identifying future
work.

1.2 State of the Art

Although there are noteworthy expression-based evolutionary art systems (e.g.
[25, 29, 28, 12, 8]), systems that allow the evolution of images that are com-
posed of a set of distinct graphic elements such as lines, shapes, colors and
textures are extremely scarce.

Among the exceptions to the norm, we can cite the work of: Baker [1],
who uses a Genetic Algorithm (GA) operating on strings of variable size to
evolve line drawings; Heijer and Eiben [6] who evolve Scalable Vector Graphics
(SVG), manipulating directly SVG files through a set of specifically designed
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startshape Edera 

 

rule Edera {

     CIRCLE    {s 5}

     Ciglio    {}

     Edera     {x -5 y -1 s 0.90} }

 

rule Ciglio {

     SQUARE    {hue 200 sat 0.5}

     Pelo      {r 5 hue 200 sat 0.5}

     Ciglio    {y -1 r 0.5 s 0.998 b 0.005} }

 

rule Ciglio {

     SQUARE    {hue 200 sat 0.5}

     Pelo      {r 5 hue 200 sat 0.5}

     Ciglio    {y -1 r 0.5 s 0.998 b 0.005 flip 90} }

 

rule Ciglio .008 {

     SQUARE    {hue 200 sat 0.5}

     Pelo      {r 5 hue 200 sat 0.5}

     Ricciolo  {y -1 s 0.998 b 0.005} }

 

rule Ricciolo {

     SQUARE    {hue 200 sat 0.5}

     Pelo      {r 5 hue 200 sat 0.5}

     Ricciolo  {y -1 r 3 s 0.998 b 0.005} }

 

rule Ricciolo .005 {

     SQUARE    {hue 200 sat 0.5}

     Pelo      {r 5 hue 200 sat 0.5}

     Ricciolo  {y -1 r 3 s 0.998 b 0.005 flip 90} }

 

rule Pelo {

     CIRCLE    {s 5 0.1} }

Ciglio

Ciglio

Ciglio

Ciglio

Ricciolo

Ricciolo

Ricciolo

Edera

Pelo

Fig. 1.1: On the left, a CFDG adapted from www.contextfreeart.org/

gallery/view.php?id=165; On the right, the same CFDG represented as
a graph (the labels of the edges were omitted for the sake of clarity).

Fig. 1.2: Examples of images produced by the CFDG depicted in Figure 1.1.

mutation and recombination operators. Unlike GP approaches, where the rep-
resentation is procedural, the representations adopted in these works are, es-
sentially, descriptive – in the sense that the genotypes describe the elements
of the images in a relatively directed way instead of describing a procedure,
i.e. program, that once executed or interpreted produces the image as output.

In addition to our early work on this topic [14, 13], there are two examples
of the use of CFDG for evolutionary art purposes. Saunders and Grace [24]
use a GA to evolve parameters of specific CFDG hand-built grammars. As the
name indicates, CFDG Mutate [4] allows the application of mutation operators
to CFDGs. Unfortunately the system only handles deterministic grammars
(see Section 1.3) and does not provide recombination operators.

O’Neil et al. [21] explore the evolution of shape grammars [27] using Gram-
matical Evolution [20] for design purposes, generating 2D shapes [21] and 3D
structures [19]. Although they do not use CFDGs, their work is, arguably,
the one that is most similar in spirit to the described in this Chapter, due
to the adoption of a procedural representation based on grammars and a GP
approach.
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1.3 Representation

Context Free [9] is a popular open-source application that renders images
which are specified using a simple language entitled CFDG (for a full descrip-
tion of CFDG see [5]). Although the notation is di↵erent from the one used in
formal language theory, in essence, a CFDG program is an augmented context
free grammar, i.e., a 4-tuple: (V,⌃, R, S) where:

1. V is a set of non-terminal symbols;
2. ⌃ is a set of terminal symbols;
3. R is a set of production rules that map from V to (V [⌃)⇤;
4. S is the initial symbol.

Figure 1.1 depicts the CFDG used to illustrate our description. Programs
are interpreted by starting with the S symbol (in this case S = Edera) and
proceeding by the expansion of the production rules in breath-first fashion.
Predefined ⌃ symbols call drawing primitives (e.g., SQUARE). CFDG is an
augmented context free grammar: it takes parameters that produce semantic
operations (e.g., s produces a scale change). Program interpretation is ter-
minated when there are no V symbols left to expand, when a predetermined
number of steps is reached, or when the rendering engine detects that further
expansion does not induce changes to the image [14].

Like most CFDGs, the grammar depicted in Figure 1.1 is non-deterministic:
several production rules can be applied to expand the symbols Ciglio and
Ricciolo. When several production rules are applicable one of them is selected
randomly and the expansion proceeds. Furthermore, the probability of select-
ing a given production may be specified by indicating a weight (e.g., 0.08). If
no weight is specified a default value of 1 is assumed. The non-deterministic
nature of CFDGs has profound implications: each CFDG implicitly defines
a language of images produced using the same set of rules (see Figure 1.2).
Frequently, these images share structural and aesthetic properties. One can
specify the seed used by the random number generator of the grammar inter-
preter, which enables the replicability of the results.

In the context of our evolutionary approach each genotype is a well-
constructed CFDG grammar. Phenotypes are rendered using Context Free. To
deal with non-terminating programs a maximum number of expansion steps
is set. The genotypes are represented by directed graphs created as follows:

1. Create a node for each non-terminal symbol. The node may represent a
single production rule (e.g., symbol Edera of Figure 1.1) or encapsulate
the set of all production rules associated with the non-terminal symbol
(e.g., symbols Ciglio and Ricciolo of Figure 1.1);

2. Create edges between each node and the nodes corresponding to the non-
terminals appearing in its production rules (see Figure 1.1);

3. Annotate each edge with the corresponding parameters (e.g., in Figure
1.1 the edges to Pelo possess the label ‘{r 5 hue 200 sat 0.5}’).
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Algorithm 1 Random initialization of an individual.

procedure RandomInitialization

terminal set of terminal symbols
minv,maxv  minimum, maximum number of non-terminal symbols
minp,maxp  minimum, maximum number of production rules per non-

terminal
minc,maxc  minimum, maximum number of calls per production
nonterminal RandomlyCreateNonTerminalSet(minv,maxv)
for all V 2 nonterminal do

numberofproductions random(minp,maxp)
for i 1, numberofproductions do

productionrule NewProductionRule(V )
numberofcalls random(minc,maxc)
for j  1, numberofcalls do

if random(0, 1) < probt then

productionrule.InsertCallTo(RandomlySelect(terminal))
else

productionrule.InsertCallTo(RandomlySelect(nonterminal))
end if

productionrule.RandomlyInsertProductionRuleParameters()
end for

end for

end for

individual.setProductionRules(productionrules)
individual.RandomlySelectStartShape(nonterminal)
individual.RandomlyCreateBackgroundColor()

end procedure

Fig. 1.3: Examples of phenotypes from a randomly created initial population.
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1.4 Genetic Operators

In this Section we describe the genetic operators designed to manipulate the
graph-based representation of CFDGs, namely: initialization, mutation and
crossover.

1.4.1 Random Initialization

The creation of the initial population for the current evolutionary engine is of
huge importance, being responsible for generating the first genetic material
that will be evolved through time. In our previous works on the evolution of
CFDGs the initial population was supplied to the evolutionary engine: the
first population was either composed of human-created grammars [13] or of
a single minimal grammar [14]. Although both those options have merit, the
lack of an initialization procedure for the creation of a random population of
CFDGs was a limitation of the approach.

In simple terms, the procedure for creating a random CFDG can be de-
scribed as follows: we begin by randomly determining the number of non-
terminal symbols and the number of production rules for each of the symbols
(i.e. the number of di↵erent options for its expansion). Since this defines the
nodes of the graph, the next step is the random creation of connections among
nodes and calls to non-terminal symbols. The parameters associated with the
calls to terminal and non-terminal symbols are also established randomly. Fi-
nally, once all productions have been created, we randomly select a starting
node and background color. Algorithm 1 details this process, which is repeated
until the desired number of individuals is reached. Figure 1.3 depicts a sample
of a random initial population created using this method.

1.4.2 Crossover Operator

The crossover operator used for the experiments described in this Chapter
is similar to the one used in our previous work on the same topic [14, 13].
The rational was to develop a crossover operator that would promote the
meaningful exchange of genetic material between individuals. Given the nature
of the representation, this implied the development of a graph-based crossover
operator that is aware of the structure of the graphs being manipulated. The
proposed operator can be seen as an extension of the one presented by Pereira
et al. [22]. In simple terms, this operator allows the exchange of subgraphs
between individuals.

The crossover of the genetic code of two individuals, a and b, implies:
(i) Selecting one subgraph from each parent; (ii) Swapping the nodes and
internal edges of the subgraphs, i.e., edges that connect two subgraph nodes;
(iii) Establishing a correspondence between nodes; (iv) Restoring the outgoing
and incoming edges, i.e., respectively, edges from nodes of the subgraph to non-
subgraph nodes and edges from non-subgraph nodes to nodes of the subgraph.
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Algorithm 2 Transversing the minimum spanning trees of two subgraphs.

procedure transverse(a, b)
set correspondence(a, b)
mark(a)
mark(b)
repeat

if unmarked(a.descendants) 6= NULL then

nexta  RandomlySelect(unmarked(a.descendants))
else if a.descendants 6= NULL then

nexta  RandomlySelect(a.descendants)
else

nexta  a

end if

**** do the same for nextb ****
transverse(nexta, nextb)

until unmarked(a.descendants) = unmarked(b.descendants) = NULL

end procedure

Subgraph selection – Randomly selects for each parent, a and b, one
crossover node, va and vb, and a subgraph radius, ra and rb. Subgraph
sra is composed of all the nodes, and edges among them, that can be
reached in a maximum of ra steps starting from node va. Subgraph srb

is defined analogously. Two methods were tested for choosing va and vb,
one assuring that both va and vb are in the connected part of the graph
and one without restrictions. The radius ra and rb were randomly chose
being the maximum allowed value the maximum depth of the graph.

Swapping the subgraphs – Swapping sra and srb consists in replacing sra

by srb (and vice-versa). After this operation the outgoing and the incoming
edges are destroyed. Establishing a correspondence between nodes repairs
these connections.

Correspondence of Nodes – Let sra+1 and srb+1 be the subgraphs that
would be obtained by considering a subgraph radius of ra + 1 and rb +
1 while performing the subgraph selection. Let msta and mstb be the
minimum spanning trees (MSTs) with root nodes va and vb connecting
all sra+1 and srb+1 nodes, respectively. For determining the MSTs all
edges are considered to have unitary cost. When several MSTs exist, the
first one found is the one considered. The correspondence between the
nodes of sra+1 and srb+1 is established by transversing msta and mstb,
starting from their roots, as described in Algorithm 2.

Restoring outgoing and incoming edges – The edges from a /2 sra to
sra are replaced by edges from a /2 srb to srb using the correspondence
between the nodes established in the previous step (e.g. the incoming
edges to va are redirected to vb, and so on). Considering a radius of ra+1
and rb +1 instead of ra and rb in the previous step allows the restoration
of the outgoing edges. By definition, all outgoing edges from sa and sb link
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to nodes that are at a minimum distance of ra+1 and rb+1, respectively.
This allows us to redirect the edges from sb to b /2 sb to a /2 sa using the
correspondence list.

1.4.3 Mutation Operators

The mutation operators were designed to attend two basic goals: allowing the
introduction of new genetic material in the population and ensuring that the
search space is fully connected, i.e., that all of its points are reachable from any
starting point through the successive application of mutation operators. This
resulted in the use of a total of ten operators, which are succinctly described
on the following paragraphs.

Startshape mutate – randomly selects a non-terminal as starting symbol.
Replace, Remove or Add symbol – when applied to a given production

rule, these operators: replace one of the present symbols with a randomly
selected one; remove a symbol and associated parameters from the pro-
duction rule; add a randomly selected symbol in a valid random position.
Notice that these operators are applied to terminal and non-terminal sym-
bols.

Duplicate, Remove or Copy & Rename rule – these operators: dupli-
cate a production rule; remove a production rule, updating the remaining
rules when necessary; copy a production rule, assigning a new randomly
created name to the rule and thus introducing a new non-terminal.

Change, Remove or Add parameter – as the name indicates, these oper-
ators add, remove or change parameters and parameter values. The change
of parameter values is accomplished using a Gaussian perturbation.

1.5 Fitness Assignment

Fitness assignment implies interpreting and rendering the CFDG. This is ac-
complished by calling the Context Free [9] application. Grammars with infinite
recursive loops are quite common. As such, it was necessary to establish an
upper bound to the number of steps that a CFDG is allowed to make before
its expansion is considered complete. The original version of Context Free
only allows the definition of an upper bound for the number of drawn shapes.
This is insu�cient for our goals, because it allows endless loops, provided that
no shapes are drawn. As such, it was necessary to introduce several changes
to the source code of Context Free (which is open source) to accommodate
our needs. When calling Context Free we give as input (i) the CFDG to be
interpreted and rendered, (ii) the rendering size, (iii) the maximum number
of steps (iv) the rendering seed. We receive as output an image file. The max-
imum number of steps was set to 100000 for all the experiments described in
this Chapter. The “rendering seed” defines the seed of the random number
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generator used by Context Free during the expansion of the CFDGs. The
rendering of the same CFDG using di↵erent rendering seeds can, and often
does, result in di↵erent images (see Section 1.3). We performed tests using
fixed and randomly generated rendering seeds. The results of those tests will
be described in Section 1.6.

We use six di↵erent hardwired fitness functions based on evolutionary art
literature and conduct tests using each of these functions to guide evolution.
In a second stage, we perform runs using a combination of these measures to
assign fitness. In the reminder of this Section we describe each of the functions
and the procedure used to combine them.

JPEG Size

The image returned by Context Free is encoded in JPEG format using the
maximum quality settings. The size of the JPEG file becomes the fitness of
the individual. The rationale is that complex images, with abrupt transitions
of color are harder to compress and hence result in larger file sizes, whereas
simple images will result in small file sizes [12, 16]. Although this assignment
scheme is rather simplistic, it has the virtue of being straightforward to im-
plement and yield results that are easily interpretable. As such, it was used
to assess the ability of the evolutionary engine to complexify and to establish
adequate experimental settings.

Number of Contrasting Colors

As the name indicates, the fitness of an individual is equal to the number of
contrasting colors present in the image returned by Context Free. To calculate
the number of contrasting colors we: (i) reduce the number of colors using a
quantization algorithm; (ii) sort all colors present in the image by descending
order of occurrence; (iii) for all the colors, starting from the most frequent
ones, compute the Euclidean distance between the color and the next one in
the ordered list, if it is lower than a certain threshold remove it from the
group; (iv) return as fitness the number of colors present on the list when the
procedure is over. In these experiments, the Red, Green, Blue (RGB) color
space was adopted. We quantize the image to 256 colors using the quantiza-
tion algorithm from the Graphics Interchange Format (GIF) format [10]. The
threshold was set to 1% of the maximum Euclidean distance between colors
(2553 for the RGB color space).

Fractal Dimension, Lacunarity

The use of fractal dimension estimates in the context of computational aes-
thetic has a significant tradition [26, 18]. Although not as common, lacunar-
ity measures have also been used [2, 3]. For the experiments described in this
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Fig. 1.4: Example of the transformation from the input color image (left im-
age) to the background/foreground image (right image) used for the Fractal

Dimension and Lacunarity estimates.

Chapter the fractal dimension is estimated using the box-counting method and
the � lacunarity value estimated by the Sliding Box method [11]. By definition,
the estimation of the fractal dimension and lacunarity requires identifying the
“object” that will be measured. Thus, the estimation methods take as input
a binary image (i.e. black and white), where the white pixels define the shape
that will be measured, while the black pixels represent the background. In our
case, the conversion to black and white is based on the CFDG background
primitive. All the pixels of the same color as the one specified by the CFDG
background primitive are considered black, and hence part of the background,
the ones that are of a di↵erent color are considered part of the foreground (see
Figure 1.4). Once the estimates are computed we assign fitness according to
the proximity of the measure to a desired value, as follows:

fitness =
1

1 + |targetvalue � observedvalue|
(1.1)

We use the target values of 1.3 and 0.90 for fractal dimension and lacu-
narity, respectively. These values were established empirically by calculating
the fractal dimension and lacunarity of images that we find to have desirable
aesthetic qualities.

Complexity

This fitness function, based on the work of Machado et al. [12, 16, 15], assesses
several characteristics of the image related with complexity. In simple terms,
the rationale is valuing images that constitute a complex visual stimulus but
that are, nevertheless, easy to process. A thorough discussion of the virtues
and limitations of this approach is beyond the scope of this Chapter, as such,
we focus on practical issues pertaining its implementation. The approach relies
on the notion of compression complexity, which is defined as calculated using
the following formula:

C(i, scheme) = RMSE(i, scheme(i))⇥ s(scheme(i))

s(i)
(1.2)
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where i is the image being analysed, scheme is a lossy image compression
scheme, RMSE stands for the root mean square error, and s is the file size
function.

To estimate the complexity of the visual stimulus (IC(i)) they calculate
the complexity of the JPEG encoding of the image (i.e. IC(i) = C(i, JPEG)).
The processing complexity (PC(i)) is estimated using a fractal (quadratic tree
based) encoding of the image [7]. Considering that as time passes the level of
detail in the perception of the image increases, the processing complexity is
estimated for di↵erent moments in time (PC(t0, i), PC(t1, i)) by using fractal
image compression with di↵erent levels of detail. In addition to valuing im-
ages with high visual complexity and low processing complexity, the approach
also values images where PC is stable for di↵erent levels of detail. In other
words, according to this approach, an increase in description length should be
accompanied by an increase in image fidelity. Taking all of these factors into
consideration, Machado et al. [12, 16, 15] propose the following formula for
fitness assignment:

IC(i)a

(PC(t0, i)⇥ PC(t1, i))b ⇥ (PC(t1,i)�PC(t0,i)
PC(t1,i) )c

(1.3)

where a, b and c are parameters to adjust the importance of each component.
Based on previous work [15], the ability of the evolutionary engine to ex-

ploit the limitations of the complexity estimates was minimized by introducing
limits to the di↵erent components of this formula, as follows:

8
<

:

IC(i) ! max(0,↵� |IC(i)� ↵|)
PC(t0, i)⇥ PC(t1, i) ! � + |(PC(t0, i)⇥ PC(t1, i))� �|
PC(t1, i)� PC(t0, i) ! � + |(PC(t1, i)� PC(t0, i))� �|

(1.4)

where ↵, � and � operate as target values for IC(i), (PC(t0, i)⇥PC(t1, i) and
PC(t1, i)�PC(t0, i), which were set to 6, 24 and 1.1, respectively. These values
were determined empirically through the analysis of images that we find to
be desirable. Due to the limitations of the adopted fractal image compression
scheme this approach only deals with greyscale images. Therefore, all images
are converted to greyscale before being processed.

Bell

This fitness function is based on the work of Ross et al. [23] and relies on the
observation that many fine-art works exhibit a normal distribution of color
gradients. Following Ross et al. [23] the gradients of each color channel are
calculated, one by one, in the following manner:

|rri,j |2 =
(ri,j � ri+1,j+1)2 + (ri+1,j � ri,j+1)2

d

2
(1.5)
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where ri,j is the image pixel intensity values for position (i, j) and d is a
scaling factor that allows to compare images of di↵erent size; this value was
set to 0.1% of half the diagonal of the input image (based on [23]). Then the
overall gradient Si,j is computed as follows:

Si,j =
q
|rri,j |2 + |rgi,j |2 + |rbi,j |2 (1.6)

Next, the response to each stimulus Ri,j is calculated:

Ri,j = log
Si,j

S0
(1.7)

Where S0 is a detection threshold (set to 2 as indicated in [23]). Then the
weighted mean (µ) and standard deviation (�2) of the stimuli are calculated
as follows:

µ =

P
i,j Ri,j

2

P
i,j Ri,j

(1.8)

�

2 =

P
i,j Ri,j(Ri,j � µ)2

P
i,j Ri,j

(1.9)

At this step we introduce a subtle but important change to Ross et al. [23]
work: we consider a lower bound for the �

2, which was empirically set to 0.7.
This prevents the evolutionary engine to converge to monochromatic images
that, due to the use of a small number of colors, trivially match a normal
distribution. This change has a profound impact in the experimental results,
promoting the evolution of colorful images that match a normal distribution
of gradients.

Using µ, �2 and the values of Ri,j a frequency histogram with a bin size
of �/100 is created, which allows calculating the deviation from normality
(DFN). The DFN is computed using qi, which is the observed probability and
pi, the expected probability considering a normal distribution. Ross et al. [23]
uses:

DFN = 1000 ·
X

pi log
pi

qi
(1.10)

However, based on the results of preliminary runs using this formulation,
we found that we consistently obtained better results using:

DFNs = 1000 ·
X

(pi � qi)
2 (1.11)

Which measures the squares of the di↵erences between expected and ob-
served probabilities. Therefore, in the experiments described in this Chapter
Bell fitness is assigned according to the following formula: 1/(1 +DFNs).
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Table 1.1: Parameters used for the experiments described in this Chapter.

Initialization (see algorithm 1) Values
min, max number of symbols (1,3)
min, max number of rules (1,3)
min, max calls per production rule (1,2)
Evolutionary Engine Values
Number of runs 30
Number of generations 100
Population size 100
Crossover probability 0.6
Mutation probability 0.1
Tournament size 10
Elite size Top 2% of the population
CFDG Parameters Values
Maximum number expansion steps 100000
Limits of the geometric transformations rotate 2 [0,359], size 2 [-5,5]

x 2 [-5,5], y 2 [-5,5], z 2 [-5,5]
flip 2 [-5,5], skew 2 [-5,5]

Limits of the color transformations hue 2 [0,359], saturation 2 [-1,1]
brightness 2 [-1,1], alpha 2 [-1,1]

Terminal symbols SQUARE, CIRCLE, TRIANGLE

1.5.1 Combining Di↵erent Functions

In addition to the tests where the fitness functions described above were used
to guide evolution, we conducted several experiments where the goal was to
simultaneously maximize several of these functions. This implied producing
a fitness score from multiple functions, which was accomplished using the
following formula:

combinedfitness(i) =
Y

j

log (1 + fj(i)) (1.12)

where i is the image being assessed and fj refers to the functions being
considered. Thus, to assign fitness based on the Complexity and Bell functions
we compute: log(1+Complexity(i))⇥log(1+Bell(i)). By adopting logarithmic
scaling and a multiplicative fitness function we wish to promote the discovery
of images that maximize all the measures being considered in the experiment.

1.6 Configuring the Evolutionary Engine

The evolutionary engine has several novel characteristics that di↵erentiate
it from conventional GP approaches. Therefore, it was necessary to conduct
a series of tests to assess the adequacy of the engine for the evolution of
CFDGs and to determine a reasonable set of configuration parameters. These



14 Penousal Machado et al.

tests were conducted using JPEG Size as fitness function and allowed us to
establish the experimental parameters summarized in Table 1.1, which are
used throughout all the experiments described herein. In general, the results
show that the engine is not overly sensitive to the configuration parameters,
depicting an adequate behavior for a wide set of parameter configurations.
Although the optimal parameters settings are likely to depend on the fitness
function, a detailed parametric study is beyond the scope of this Chapter.
Therefore, we did not attempt to find an optimal combination of parameters.

The use of a graph-based representation and genetic operators is one of
the novel aspects of our approach. The use of such operators may introduce
changes to the graph that may make some of the nodes (i.e. some production
variables) unreachable from the starting node. For instance, a mutation of
the node Edera of Figure 1.1 may remove the call to node Ciglio making
most of the graph unreachable. Although, unreachable nodes have no impact
on the phenotype, their existence may influence the evolutionary process.
On one hand they may provide space for neutral variations and promote
evolvability (unreachable nodes may become reattached by subsequent genetic
operators), on the other they may induce bloat since they allow protection
from destructive crossover. To study the impact of unreachable nodes in the
evolutionary process we considered three variations of the algorithm:

Unrestricted – The crossover points are chosen randomly;
Restricted – The crossover points are chosen randomly from the list of reach-

able nodes of each parent;
Restricted with Cleaning – In addition to enforcing the crossover to occur in

a reachable region of the graph, after applying crossover and mutation all
unreachable nodes are deleted.

Figure 1.5 summarizes the results of these tests depicting the best and
average fitness for each population. As it can be observed, although the be-
haviors of the three di↵erent approaches are similar, the restricted versions
consistently outperform the unrestricted implementation by a small, yet statis-
tically significant, margin. The di↵erences between the restricted approaches
are not statistically significant.

The di↵erences among the three approaches become more visible when
we consider the evolution of the number of reachable and unreachable nodes
through time. As it can be observed in Figure 1.6, without cleaning, the num-
ber of unreachable nodes grows significantly, clearly outnumbering the number
of reachable nodes. The number of reachable nodes of the restricted versions is
similar, and smaller than the one resulting from the unrestricted version. Al-
though cleaning does not significantly improve fitness in comparison with the
restricted version, the reduction of the number of rules implies a reduction of
the computational cost of interpreting the CFDGs and applying the crossover
operators. As such, taking these experimental findings into consideration, we
adopt the Restricted with Cleaning variant in all further tests.
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Fig. 1.5: Best and average fitness values for di↵erent implementations of the
genetic operators using JPEG Size as fitness function. The results are averages
of 30 independent runs.
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Fig. 1.6: Evolution of the average number of reachable and unreachable nodes
across populations for di↵erent implementations of the genetic operators using
JPEG Size as fitness function. The results are averages of 30 independent runs.

The non-deterministic nature of the CFDGs implies that each genotype
may be mapped into a multitude of phenotypes (see Section 1.3). The genotype
to phenotype mapping of a non-deterministic grammar depends on a rendering
seed, which is passed to Context Free. We considered two scenarios: using a
fixed rendering seed for all individuals; randomly generating the rendering
seed whenever genotype to phenotype occurs. The second option implies that
the fitness of a genotype may, and often does, vary from one evolution to the
other, since the phenotype may change.
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Fig. 1.7: Evolution of the best and average fitness across populations when us-
ing fixed and random rendering seeds using JPEG Size as the fitness function.
The results are averages of 30 independent runs.
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Fig. 1.8: Box plots of fitness values of the fittest individuals of each of the 30
evolutionary runs using di↵erent rendering seed setups.

Figure 1.7 summarizes the results of these tests in terms of the evolution
of fitness through time. As expected, using a fixed rendering seed yields better
fitness, but the di↵erences between the approaches are surprisingly small and
decrease as the number of generations increases. To better understand this
result we focused on the analysis of the characteristics of the CFGDs being
evolved. Figure 1.8 depicts box plots of fitness values of the fittest individuals
of each of the 30 evolutionary runs using di↵erent setups:

Fixed – individuals evolved and evaluated using fixed rendering seeds; Ran-
dom – individuals evolved using random rendering seeds and evaluated
using the same seeds as the ones picked randomly during evolution;

Fixed Random – individuals evolved using fixed rendering seeds and evalu-
ated with 30 random seeds each;

Random Random – individuals evolved using random rendering seeds and
evaluated with 30 random seeds each.
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In other words, we take the genotypes evolved in a controlled static envi-
ronment (fixed random seed) and place them in di↵erent environments, pro-
ceeding in the same way for the ones evolved in a changing environment. The
analysis of the box plots shows that, in the considered experimental settings,
the fitness of the individuals evolved in a fixed environment may change dra-
matically when the environmental conditions are di↵erent. Conversely, using
a dynamic environment promotes the discovery of robust individuals that per-
form well under di↵erent conditions. Although this result is not unexpected,
it was surprising to notice how fast the evolutionary algorithm was able to
adapt to the changing conditions and find robust individuals. In future tests
we wish to explore, and exploit, this ability. Nevertheless, for the purposes of
this Chapter, and considering that the use of a fixed rendering seed makes the
analysis and reproduction of the experimental results easier, we adopt a fixed
rendering seed in all further tests presented in this Chapter.

1.7 Evolving Context Free Art

After establishing the experimental conditions for the evolutionary runs we
conducted a series of tests using each of the fitness functions described in
Section 1.5 to guide evolution. In a second step, based on the results obtained,
we combined several of these measures performing further tests. The results
of using each of the measures individually are presented in Section 1.7.1 while
those resulting from the combination of several are presented in Section 1.7.2.

1.7.1 Individual Fitness Functions

Figure 1.9 summarizes the results of these experiments in terms of evolution
of fitness. Each chart depicts the evolution of the fitness of the best individual
when using the corresponding fitness function to guide evolution. The values
yield by the other 5 fitness functions are also depicted for reference to illustrate
potential inter-dependencies among fitness functions. The values presented in
each chart are averages of 30 independent runs (180 runs in total). To improve
readability we have normalized all the values by dividing each raw fitness value
by the maximum value for that fitness component found throughout all the
runs.

The most striking observation pertains the Fractal Dimension and Lacu-

narity fitness functions. As it can be observed, the target values of 1.3 and
0.9 are easily approximated even when these measures are not used to guide
fitness. Although this is a disappointing result, it is an expected one. Estimat-
ing the fractal dimension (or lacunarity) of an object that is not a fractal and
that can be described using Euclidean geometry yields meaningless results.
That is, although you obtain a value, this value is meaningless in the sense
that there is no fractal dimension to be measured. As such, these measures
may fail to capture any relevant characteristic of the images. In the considered
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Fig. 1.9: Evolution of the fitness of the best individual across populations.
The fitness function used to guide evolution is depicted in the title of each
chart. The other values are presented for reference. The results are averages
of 30 independent runs for each chart.

experimental conditions, the evolutionary algorithm was always able to find,
with little e↵ort, non-fractal images that yield values close to the target ones.
Most often than not, these images are rather simplistic. We conducted several
tests using di↵erent target values, obtaining similar results.

An analysis of the results depicted in Figure 1.9 reveals that maximiz-
ing JPEG Size promotes Contrasting Colors and Complexity, but does not
promote a distributing of gradients approaching a normal distribution (Bell).
Likewise, maximizing Contrasting Colors originates an improvement in JPEG

Size and Complexity during the early stages of the evolutionary process; Bell
is mostly una↵ected. Using Complexity to guide evolution results in an in-
crease of JPEG Size and Contrasting Colors during the early stages of the
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Fig. 1.10: Best individual of each of the 30 runs using JPEG Size as fitness
function.

runs, but the number of Contrasting Colors tends to decrease as the num-
ber of generations progresses. The Complexity fitness function operates on
a greyscale version of the images, as such it is not sensitive to changes of
color. Furthermore, abrupt changes from black to white create artifacts that
are hard to encode using JPEG compression, resulting in high IC estimates.
Fractal image compression, which is used to estimate PC, is less sensitive to
these abrupt changes. Therefore, since the approach values images with high
IC and low PC, and since it does not take color information into considera-
tion, the convergence to images using a reduced palette of contrasting colors
is expected. Like for the other measures, Complexity and Bell appear to be
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Fig. 1.11: Best individual of each of the 30 runs using Contrasting Colors as
fitness function.

unrelated. Finally, maximizing Bell promotes an increase of JPEG Size, Con-
trasting Colors and Complexity during the first generations. It is important
to notice that this behavior was only observed after enforcing a lower bound
for �

2 (see Section 1.5). Without this limit, maximizing Bell results in the
early convergence to simplistic monochromatic images (typically a single black
square on a white background). The adoption of a quadratic deviation from
normality estimate (DFNs) also contributed to the improvement of the visual
results.

Figures 1.10 to 1.15 depict the best individual of each evolutionary run us-
ing the di↵erent fitness functions individually. A degree of subjectivity in the
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Fig. 1.12: Best individual of each of the 30 runs using Fractal Dimension as
fitness function.

analysis of the visual results is unavoidable. Nevertheless, we believe that most
of the findings tend to be consensual. When using JPEG Size to guide evolu-
tion, the evolutionary engine tended to converge to colorful circular patterns,
with high contrasts of color (see Figure 1.10). The tendency to converge to cir-
cular patterns, which is observed in several runs, is related with the recursive
nature of the CFDGs and the particularities of the Context Free rendering
engine. For instance, repeatedly drawing and rotating a square while changing
its color will generate images that are hard to encode. Furthermore, the ren-
dering engine automatically “zooms in” the shapes drawn cropping the empty
regions of the canvas. As such, rotating about a fixed point in space tends to
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Fig. 1.13: Best individual of each of the 30 runs using Lacunarity as fitness
function.

result in images that fill the entire canvas, maximizing the opportunities for
introducing abrupt changes and, therefore, maximizing file size. Additionally,
these CFDGs tend to be relatively stable and robust, which further promotes
the convergence to this type of image.

Unsurprisingly, the results obtained when using Contrasting Colors are
characterized by the convergence to images that are extremely colorful. Al-
though some exceptions exist, most runs converged to amorphous unstruc-
tured shapes, which contrasts with circular patterns found when using JPEG

Size. In our opinion this jeopardizes the aesthetic appeal of the images, that
tend to have a random appearance, both in terms of shape and color.
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Fig. 1.14: Best individual of each of the 30 runs using Complexity as fitness
function.

As anticipated by the data pertaining the evolution of fitness, the visual
results obtained using Fractal Dimension and Lacunarity (Figs. 1.12 and 1.13
are disappointing. None of the runs converged to images of fractal nature.
These results reinforce earlier findings using expression based evolutionary
art systems, indicating that these measures are not suitable for aesthetically
driven evolution [16].

As Figure 1.14 illustrates, using Complexity tends to promote convergence
to monochromatic and highly structured images. As previously, the tendency
to converge to circular and spiral patterns is also observed in this case, and is
explained by the same factors. Furthermore, since fractal image compression
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Fig. 1.15: Best individual of each of the 30 runs using Bell as fitness function.

takes advantage of the self-similarities present in the image at multiple scales,
the convergence to structured and self-similar structures that characterizes
these runs was expected. As mentioned when analysing results pertaining
the evolution of fitness, the convergence to monochromatic images with high
contrast is due to the di↵erent sensitivity of JPEG and fractal compression
to the presence of abrupt transitions.

The most predominant feature of the images evolved using Bell, Figure
1.15, is the structured variation of color, promoted by the need to match
a natural distribution of color gradients. The shapes evolved result from an
emergent property of the system. In other words, as previously explained,
when using CFDG a circular pattern is easily attainable and provides the
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Fig. 1.16: Evolution of the fitness of the best individual across populations
using a combination of measures. The combination used to guide evolution is
depicted in the title of each chart. The other values are presented for reference,
but have no influence in the evolutionary process. The results are averages of
30 independent runs for each chart and have have been normalized to improve
readability.

conditions for reaching a natural distribution of color gradients. Although
this is not visible in Figure 1.15 the individuals reaching the highest fitness
values tend to use a large color palette.

1.7.2 Combining Several Measures

We performed several experiments where a combination of measures was used
to assign fitness (see Section 1.5.1). We conducted tests combining Fractal Di-

mension and Lacunarity with other measures, these results confirm that these
measures are ill-suited for aesthetic evolution in the considered experimental
setting. Tests using JPEG Size in combination with other measures were also
performed. The analysis of the results indicates that they are subsumed and
surpassed by those obtained when using Complexity in conjunction with other
metrics. This results from two factors: on one hand Complexity already takes
into account the size of the JPEG encoding; on the other the limitations of
Complexity regarding color are compensated by the use of measures that are
specifically designed to handle color information. As such, taking into account
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Fig. 1.17: Best individual of each of the 30 runs using the combination of
Contrasting Colors with Complexity as fitness function.

the results described in the previous Section, as well as space constraints, we
focus on the analysis of the results obtained when combining: Contrasting
Colors, Complexity and Bell.

Figure 1.16 summarizes the results of these experiments in terms of evo-
lution of fitness. Each chart depicts the evolution of the fitness of the best
individual when using the corresponding combination of measures as fitness
function. The values yield by the remaining measures are depicted but do
not influence evolution. The values presented in each chart are averages of
30 independent runs (120 runs in total). As previously, the values have been
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Fig. 1.18: Best individual of each of the 30 runs using the combination of
Contrasting Colors with Bell as fitness function.

normalized by dividing each raw fitness value by the maximum value for that
fitness component found throughout all the runs.

As it can be observed, combining Contrasting Colors and Complexity leads
to a fast increase of both measures during the early stages of the runs, fol-
lowed by a steady increase of both components throughout the rest of the
runs. This shows that, although the runs using Complexity alone converged
to monochromatic imagery, it is possible to evolve colorful images that also
satisfy the Complexity measure.

Combining Contrasting Colors and Bell results in a rapid increase of
the number of contrasting colors during the first generations. Afterwards,
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Fig. 1.19: Best individual of each of the 30 runs using the combination of
Complexity with Bell as fitness function.

increases in fitness are mainly accomplished through the improvements of the
Bell component of the fitness function. This indicates that it is easier to max-
imize the number of contrasting colors than to attain a normal distribution
of gradients. This observation is further attested by the analysis of the charts
pertaining the evolution of fitness when using Contrasting Colors, Complexity

and Bell individually, which indicate that Bell may be the hardest measure to
address. The combination of Complexity and Bell is characterized by a rapid
increase of complexity during the first populations, followed by a slow, but
steady, increase of both measures throughout the runs. The combination of
the three measures further establishes Bell as the measure that is most di�-
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Fig. 1.20: Best individual of each of the 30 runs using the combination of
Contrasting Colors, Complexity and Bell as fitness function.

cult to address, since the improvements of fitness are mostly due to increases
in the other two measures. Significantly longer runs would be necessary to
obtain noteworthy improvements in Bell.

Figure 1.17 depicts the best individual of each evolutionary run using as
fitness a combination of the Contrasting Colors and Complexity measures. As
it can be observed, in most cases, the neat structures that characterize the runs
using Complexity (see Figure 1.14) continue to emerge. However, due to the
influence of the Contrasting Colors measure, they tend to be colorful instead of
monochromatic. Thus, the visual results appear to depict a good combination
of both measures. The same can be stated for the images resulting from using
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Contrasting Colors and Bell. As can be observed in Figure 1.18, they are
more colorful than those evolved using Bell (see Figure 1.15) but retain a
natural distribution of color gradients, deviating from the “random” coloring
schemes that characterize the images evolved using Contrasting Colors (see
Figure 1.11).

The images obtained when using Complexity and Bell simultaneously (Fig-
ure 1.19) are less colorful than expected. Visually, the impact of Complexity

appears to overshadow the impact of Bell. Nevertheless, a comparison between
these images and those obtained using Complexity alone (Figure 1.14) reveals
the influence of Bell in the course of the runs: the monochromatic images
are replaced by ones with a wider number of color gradients, and these color
changes tend to be subtler.

Finally, as expected, the images obtained in the runs using the three mea-
sures (Figure 1.20) often depict, simultaneously, the features associated with
each of them. As previously, the influence of the Bell measure is less obvious
than the others, but a comparison with the results depicted in Figure 1.17
highlights the influence of this measure. Likewise, the structures that emerge
from runs using Complexity and the colorful images that characterize runs
using Contrasting Colors are also less often. Thus, although the influence of
each measure is observable, we consider that significantly longer runs would
be necessary to enhance their visibility.

1.8 Conclusions

We have presented a graph-based approach for the evolution of Context Free
Design Grammars. This approach contrasts with the mainstream evolutionary
art practices by abandoning expression-based evolution of images and embrac-
ing the evolution of images created through the combination of basic shapes.
Nevertheless, the procedural nature of the representation, which characterizes
Genetic Programming approaches, is retained. We describe the evolutionary
engine, giving particular attention to its most discriminating features, namely:
representation, graph-based crossover, mutation and initialization.

We introduce six di↵erent fitness functions based on evolutionary art lit-
erature and conduct a wide set of experiments. In a first step we assess the
adequacy of the system and establish satisfactory experimental parameters. In
this context, we study the influence of unexpressed genetic code in the evolu-
tionary process and the influence of the environment in the robustness of the
individuals. In the considered experimental settings, we find that restricting
crossover to the portions of the genome that are expressed and cleaning un-
expressed code is advantageous, and that dynamic environmental conditions
promote the evolution of robust individuals.

In a second step, we conducted runs using each of the six fitness functions
individually. The results show that Fractal Dimension and Lacunarity are
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ill-suited for aesthetic evolution. The results obtained with the remaining fit-
ness functions are satisfactory and correspond to our expectations. Finally, we
conducted runs using a combination of the previously described measures to
assign fitness. Globally, the experimental results illustrate the ability of the
system to simultaneously address the di↵erent components taken into con-
sideration for fitness assignment. They also show that some components are
harder to optimize than others, and that runs using several fitness components
tend to require a higher number of generations to reach good results.

One of the most prominent features of the representation adopted herein
is its non-deterministic nature. Namely, the fact that a genotype may be
mapped into a multitude of phenotypes, i.e. images, produced from di↵erent
expansions of the same set of rules. As such, each genotype represents a family
of shapes that, by virtue of being generated using the same set of rules, tend to
be aesthetically and stylistically similar. The ability of the system to generate
multiple phenotypes from one genotype was not explored in this Chapter,
and will be addressed in future work. Currently we are conducting experiments
where the fitness of a genotype depends on a set of phenotypes generated from
it. The approach values genotypes which are able to consistently produce fit
and diverse individuals, promoting the discovery of image families that are
simultaneously coherent and diverse.
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