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Summary. Darwin considered two major theories that account for the evolution of species.
Natural Selection was described as the result of competition within or between species affect-
ing its individuals relative survival ability, while Sexual Selection was described as the result
of competition within species affecting its individuals relative rate of reproduction. This theory
emerged from Darwin’s necessity to explain complex ornamentation and behaviour that while
being costly to maintain, bring no apparent survival advantages to individuals. Mate Choice
is one of the processes described by Darwin’s theory of Sexual Selection as responsible for
the emergence of a wide range of characteristics such as the peacock’s tail, bright coloration
in different species, certain bird singing or extravagant courtship behaviours. As the theory
attracted more and more researchers, the role of Mate Choice has been extensively discussed
and backed up by supporting evidence, showing how a force which adapts individuals not to
their habitat but to each other can have a strong impact on the evolution of species. While Mate
Choice is highly regarded in many research fields, its role in Evolutionary Computation (EC)
is still far from being explored and understood. Following Darwin’s ideas on Mate Choice,
as well as Fisher’s contributions regarding the heritability of mating preferences, we propose
computational models of Mate Choice, which follow three key rules: individuals choose their
mating partners based on their perception mechanisms and mating preferences; mating prefer-
ences are heritable the same way as any other trait; Mate Choice introduces its own selection
pressure but is subjected to selection pressure itself. The use of self-adaptive methods allows
individuals to encode their own mating preferences, use them to evaluate mating candidates
and pass preferences on to future generations. Self-adaptive Mate Choice also allows evalua-
tion functions to adapt to the problem at hand as well as to the individuals in the population.
In this study we show how Genetic Programming (GP) can be used to represent and evolve
mating preferences. In our approach the genotype of each individual is composed of two chro-
mosomes encoding: (i) a candidate solution to the problem at hand (ii) a mating partner eval-
uation function. During the reproduction step of the algorithm, the first parent is chosen based
on fitness, as in conventional EC approaches; the mating partner evaluation function encoded
on the genotype of this individual is then used to evaluate its potential partners and choose
a second parent. Being part of the genotype, the evaluation functions are subjected to evolu-
tion and there is an evolutionary pressure to evolve adequate mate evaluation functions. We
analyze and discuss the impact of this approach on the evolutionary process, showing how
valuable and innovative mate evaluation functions, which would unlikely be designed by hu-
mans, arise. We also explain how GP non-terminal and terminal sets can be defined in order to
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allow the representation of mate selection functions. Finally, we show how self-adaptive Mate
Choice can be applied in both academic and real world applications, having achieved encour-
aging results in both cases. Future venues of research are also proposed such as applications
on dynamic environments or multi-objective problems.

1.1 Introduction

Darwin’s theory of Natural Selection [4] has been widely accepted and endorsed by
the scientific community since its early years. Described as the result of competition
within or between species affecting its individuals rate of survival, it has had a deep
impact on multiple research field and is at the source of the ideas behind EC. The
theory of Sexual Selection [5] was later developed by Darwin to account for a num-
ber of traits that were observed in various species, which seemed to have no place in
his Natural Selection theory. Darwin described Sexual Selection as the result of the
competition between individuals of the same species affecting their relative rate of
reproduction, a force capable of shaping traits to high degrees of complexity and re-
sponsible for the emergence of rich ornamentation and complex courtship behaviour.

Despite having been discredited by the scientific community at the time, it is now
widely regarded as a major influence on evolution theory. Interest arose in the 1970s
through the works of Fisher [10, 11] and Zahavi [37] and since then the community
as gradually embraced it, having found its place in various research fields. While
it has come a long way, Sexual Selection is still far from understood in EC, both
regarding possible benefits and behaviour.

Mate Choice was one of the processes of Sexual Selection described by Darwin
and that mostly attracted his followers. This chapter describes a nature-inspired self-
adaptive Mate Choice setup and covers the design steps necessary for applying it.
A two-chromosome scheme where the first chromosome represents a candidate so-
lution and the second chromosome represents mating preferences is proposed. Two
approaches for encoding mating preferences are presented and differences discussed.
Details on how to apply each of them to problems with different characteristics are
given and design choices are discussed. The application of both approaches on dif-
ferent problems is reviewed and the observed behaviour discussed.

Section 1.2 introduces Mate Choice as well as its background, Section 1.3 gives
a general overview of Mate Choice in Evolutionary Computation and covers the
state of the art through a classification based on adaptation of mating preferences,
popular preference choices and the role of genders. The section finally introduces
the proposed setup, giving specific details on the ideas behind it and how to apply
it. Section 1.4 describes the application of both the proposed approaches to multi-
ple problems and discusses the obtained results and behaviours. Finally, Section 1.5
presents a summary.
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1.2 Sexual Selection through Mate Choice

Since his journey on the Beagle, Darwin has thoroughly studied the forces responsi-
ble for the evolution of species. The result of competition within or between species
affecting their individuals relative rate of survival was named Natural Selection.
Since the publication of Darwin’s On the Origin of Species by Means of Natural
Selection, or the Preservation of Favoured Races in the Struggle for Life in 1859
[4], the theory has become widely accepted by the scientific community. This was
achieved thanks to the evidence gathered by Darwin, its co-discoverer Alfred Russel
Wallace [6] as well as multiple following researchers, ultimately overcoming other
competitive ideas [3].

Despite such a success, Darwin battled with gaps in its theory. For instance, Dar-
win questioned how was it that Natural Selection could account for animal orna-
mentation or courtship behaviour. He observed a large number of species, where
individuals displayed rich and costly ornamentations or complex and risky courtship
behaviours that seemed to serve no purpose in survival, sometimes even risking it.
These characteristics challenged the theory of Natural Selection and the idea that
traits adapted to the environment in a purposeful way. Individuals carrying aimless
and costly features should be unfavored in competition, making such features bound
to face extinction.

However, as Darwin observed, that was not the case. Ornamentation and courtship
behaviour were spread across populations and species, although Natural Selection
could not explain their origin. He figured, however, that for these features to emerge
they had to bring some kind of competitive advantage. As they didn’t fit in Natural
Selection, he envisioned the existence of another trait-shaping selection force in na-
ture, one capable of shaping species in complex and diverse ways, by causing traits
that help in competing for mates to spread through future generations. These traits
were linked to reproduction, as he observed in nature, and brought evolutionary ad-
vantages, even when risking survivability. Darwin developed the theory of Sexual
Selection [5] to explain this phenomena and described it as the result of competition
within species affecting its individuals relative rate of reproduction.

Darwin therefore saw evolution as the interplay between two major forces, Natu-
ral Selection as the adaptation of species to their environment, and Sexual Selection
as the adaptation of each sex in relation to the other, in a struggle of individuals of
one sex for the possession of individuals of the other in order to maximize their re-
productive advantages. While the outcome of failing in Natural Selection would be
low survivability, the outcome of failing in Sexual Selection would be a low num-
ber or no offspring. From an evolutionary perspective, they reach the same outcome
with competition in reproductive rates between individuals leading to evolutionary
changes across populations.

Unlike his theory of Natural Selection, which easily found support on the scien-
tific community, his theory of Sexual Selection was mostly rebuffed. The scientific
community was not keen on Darwin’s ideas regarding Sexual Selection, specially
his ideas on Female Mate Choice and the impact it could have on evolution. It was
clear for them that Natural Selection was the only force capable of adapting species
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and so a number of theories emerged in order to explain rich displays or courtship
behaviour. One of the most avid opponents of Darwin’s ideas was Wallace who came
up with various reasons for the emergence of traits such as protection through dull
colors in females, recognition of individuals of the same species, usage of surplus
energy on courtship behaviour or non-selective side effects [3].

The community was better prepared to understand such ideas, which were em-
braced by various renowned researchers such as Huxley [3]. This lead to a time
where Darwin’s ideas on Sexual Selection and specially Mate Choice were dismissed
as non-important, and its impact to be regarded as a small part of Natural Selection.
These ideas remained for over a century, with the exception of a few works by a select
few researchers who made important contributions, such as Fisher [10] who explored
the origin of mating preferences and runaway sexual selection, Williams [36] who
discussed how ornaments should be considered as important as other adaptations or
Zahavi [37] who expanded on the role of displays as fitness indicators.

Overtime, the work of these researchers was able to gain some space in the com-
munity, eventually reaching more open-minded generations who were also better
equipped to test and understand the workings of Sexual Selection and Mate Choice.
The resulting discussion has for the past few decades attracted experimental biolo-
gists, psychologists and anthropologists that since then have put Darwin’s ideas as
well as those promoted by his followers to the test, contributing with increasing ev-
idence to back the ideas behind Sexual Selection through Mate Choice. Nowadays,
there is active research on various fields and the theory has been widely accepted by
the community. Two extensive reviews on Sexual Selection have been published by
Helena Cronin [3] and Malte Andersson [1].

Mate Choice is one of the main Sexual Selection processes described by Darwin
and where he put much of his effort, as did most of his followers. They aimed to
explain the emergence of aesthetic features such as ornamentation or courtship be-
haviour. One of the pillars of Darwin’s theories on evolution was that species went
through adaptations because they brought some kind of advantage over time. In this
case, these traits emerged because they brought reproductive advantage as a result
of preferences when selecting mating partners [5]. Fisher helped explain the relation
between mating preferences and traits, and the genetic link between them through
his theory of runaway sexual selection. He addressed how displays may arise as
a result of positive reinforcement between mental mating preferences and physical
traits, through a feedback loop that can lead to extravagant adaptations such as the
peacock’s tail, colorful appearance or complex courtship behaviour [10, 11].

Fisher’s work suggests the inheritance of mating preferences much like any other
trait, therefore adapting throughout the generations. This process can be better un-
derstood if mate choice is thought of like any other adaptive choice such as food
choice [24]. Still, criticism of theses ideas remained, since the evolution of traits
through such a runaway process with increasing speed could drastically risk the sur-
vival ability of individuals. Zahavi later expanded on this subject, suggesting that
aesthetic displays can act as indicators of fitness, health, energy, reproductive poten-
tial etc. He argued through his handicap principal [37] that even in the case of costly
displays and behaviour, which seemed to have no purpose in Natural Selection, it
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was in fact their high cost that made them good fitness indicators. As these traits
were handicaps, they couldn’t be maintained by weak, unfit individuals and that only
strong healthy individuals would be able to maintain them and survive. Therefore
reinforcement of mating preferences for these traits would be beneficial for females,
which would in turn reinforce such physical traits in males as suggested by Fisher
[10].

These ideas were explored and discussed by many other researchers, who finally
brought Sexual Selection through Mate Choice into the spotlight. Their work cor-
roborated Darwin’s ideas and brought new evidence allowing Sexual Selection to be
seen as an important force in Evolutionary Theory. The interplay between Natural
Selection and Sexual Selection was found to have a deep impact on various traits
on many different species, especially among those equipped with complex sensory
systems [3]. During the last few decades, Sexual Selection has found its place on
various research fields such as Evolutionary Biology, Evolutionary Psychology and
Evolutionary Anthropology. On the other hand, it is yet to attract the full attention of
the Evolutionary Computation community, despite the publication of several papers
over the last couple of decades.

The possible advantages that Sexual Selection, particularly through Mate Choice
can bring to the field of Evolutionary Computation have been previously discussed
by several researchers, and an extensive discussion on arguably the most relevant
ones has been published by Miller and Todd [24]. They find that the addition of Mate
Choice to Natural Selection can bring advantages such as i) increased accuracy when
mapping from phenotype to fitness, therefore reducing the “error” caused by different
forms of Natural Selection; ii) increasing the reproductive variance of populations by
distinguishing between individuals with no survival-relevant (fitness) differences; iii)
help populations escape from local optima through a directional stochastic process;
iv) contribute to the emergence of complex innovations which may eventually con-
tribute to fitness increasing; v) promote sympatric speciation, diversity and parallel
evolutionary searches.

1.3 Mate Choice in Evolutionary Computation

Mate Choice has been modeled in Evolutionary Computation by applying more or
less the same mechanism. Algorithm 1 succinctly describes the approach. First, par-
ent1 is selected from the population using fitness-based traditional operators. Sec-
ondly, a pool of potential mating partners is determined. These could be the whole
remaining population, a random subset or a group of individuals selected based on
a given characteristic. Thirdly, the mating candidates are evaluated according to a
given set of mating preferences. Finally, the candidate that according to the evalua-
tion best matches the first parent is selected as parent2.

To further understand how Mate Choice works, Figs. 1.1 and 1.2 show how tradi-
tional approaches and mate choice approaches work respectively. As seen in Fig. 1.1,
traditional approaches select each parent independently, based on their fitness alone,
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Algorithm 1 Parents Selection using Sexual Selection through Mate Choice
proc MateChoice(population) ≡

parent1← parentSelection(population)
candidates← candidatesSelection(population)
evaluateCandidates(parent1,candidates)
parent2← selectBest(candidates)

end

POPULATION

Selection Selection

Parent 1 Parent 2

Fig. 1.1. Parents Selection using traditional approaches

Most 

attractive

Random 

candidates

Selection

POPULATION

Selection Selection

Parent 1

Parent 2

Fig. 1.2. Parents Selection using a Mate Choice approach
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meaning that each individual should have reproductive success according to their fit-
ness value. However, these individuals are paired randomly, without any knowledge
about their mating partners. In mate choice approaches, as seen in Fig 1.2, individu-
als selected by traditional approaches are allowed to choose a mating partner based
on their own criteria, meaning the pairing is no longer random but happens with a
given characteristic in mind. This Mate Choice process is therefore ruled by the mat-
ing preferences as they will determine which individuals are good matches and are
more likely to achieve reproductive success by producing fit, attractive offspring.

1.3.1 State of the Art

Mating preferences may remain static over the generations or undergo adaptation.
In order to address preferences and adaptation mechanisms we will rely on the clas-
sification of adaptation of parameters and operators by Hinterding et al. [17]. Af-
terwards, we will look on different preferences and how they can be used to assess
genotypes or phenotypes. Finally we will discuss the use of genders in Mate Choice
strategies.

Adaptation of Mate Choice

Various authors rely on guiding the choice of mating partners using pre-established
preferences, which remain static over the evolution process. The most widely known
strategies are probably those that mate individuals based on similarity measures. Ex-
amples found in the literature include using Hamming distances [7, 8, 13, 26, 28,
29, 35], Euclidean distances [13, 29], number of common building blocks [29] or
even simply using the fitness value as a distance measure [7, 13, 14, 29, 35]. In some
implementations, the first selected parent chooses the candidate that maximizes simi-
larity [9, 16] while in other cases the candidate that minimises the measure is consid-
ered the best [35]. Other approaches attribute a probability of selection proportional
or inversely proportional to the distance measures [29].

Moreover, some authors don’t want to maximize or minimize distances but rather
consider an ideal distance and favour mating candidates that have distances closer to
that pre-established value. In this case the attractiveness of a candidate is established
using bell curves or other functions with a predefined center and width parameters
[28].

Other metrics have been applied such as in Hinterding and Michaelwicz’s study
on constrained optimization [16]. They suggest having the first parent select the mat-
ing candidate that in conjunction with itself maximizes the number of constraints
satisfied. A second example is the study by Fernandes et al. on vector quantization
problems where a problem specific metric is used [9]. Sometimes different metrics
are combined in a seduction function. This can be accomplished through the use of
rules such as choosing the fittest candidate if two candidates both maximize or min-
imize the similarity measure or choosing between them randomly if they both also
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share the same fitness value [35]. A different approach is to combine different met-
rics using different functions (such as weighted functions) which has been done for
instance by Ratford et al. [29].

While fixed parameters and mating preferences can often achieve competitive
results and reproduce desired behaviours in Mate Choice algorithms, allowing their
online control may be extremely valuable. Such approaches, which allow the Mate
Choice strategy to change online without external control, therefore turning it into a
dynamic process, can be subdivided into three groups: deterministic, adaptative and
self-adaptative.

Deterministic approaches are the least common among the literature. Still, Rat-
ford et al. give a good example [28]. On an aforementioned study they use a function
to calculate a candidate’s attractiveness which has two variables, centre and depth.
It values individuals whose hamming distance from the first parent is closer to the
centre of the function. However they complement this study by testing an approach
where the centre of the function is adjusted at each generation, so that dissimilar
individuals are favoured at the beginning of the run but the opposite happens at the
end.

Adaptative approaches are more common and rely on information about the evo-
lution process to adapt parameters or preferences. Fry et al. [12] have applied such a
strategy to control which operator is used to select the second parent, either a regular
tournament selection or a Mate Choice operator. In their study they choose mating
partners by combining fitness with a penalization for similar candidates (different
similarity measures are applied). However they use this operator with a given prob-
ability which is increased or reduced depending on its relative success in producing
enhanced offspring in previous generations. A second example can be found on stud-
ies by Sanchez-Velazco and Bullinaria [30, 31]. Mating candidates in this case are
evaluated based on a weighted function that combines three metrics: fitness, likeli-
hood of producing enhanced offspring, and age. While age is adapted deterministi-
cally at each generation, the second factor represents a feedback on each individual’s
ability to produce fit offspring in the past.

Self-adaptive approaches better resemble the workings of Mate Choice in na-
ture. By allowing preferences and parameters to be encoded in each individual, self-
adaptation allows them to take part in the evolution process and to impact not only
the individuals that encode them but the population as a whole. Possibly the simples
example of such an approach relies on encoding an index as an extra gene in each
individual. When evaluating its mating candidates, each individual will order them
from best to worst according to a given metric and select the candidate at the encoded
position. Galán and Mengshoel [13] have experimented with this approach using Eu-
clidean distance and fitness to order mating candidates. On the aforementioned study
by Fry et al. [12], a second approach was tested, where each individual encodes its
own probability of selecting a mating partner using a mate choice operator rather
than regular tournament selection. The probability is inherited by the offspring and
adapted by comparing their fitness with that of their parents.

More complex mating preferences can be found on self-adaptive approaches.
Miller and Todd [25, 34] suggest encoding a reference position on the phenotype
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space marking each individual’s ideal position for a mating candidate. When as-
sessing potential mating partners, the probability of mating varies according to their
distance to the reference position. New offspring inherit genetic material from both
parents through two-point crossover thus allowing for its self-adaptation throughout
the evolutionary process.

Holdener and Tauritz [18] relied on an extra chromosome to encode a list of de-
sired features to look for on mating candidates. They tackle a problem using a binary
representation on the first chromosome but rely on a real value representation on the
preferences chromosome. This chromosome has the same size as the first chromo-
some with each gene representing how much an individual wants the corresponding
gene to be set to 1. This information is used to evaluate mating candidates by compar-
ing the preferences chromosome with each candidate’s potential solution, favouring
desired genes. Preference genes are inherited from parents to offspring so that they
match the genes they influence and adapt to match the offspring’s relative success.
On a related study, Guntly and Tauritz [15] proposed a centralized approach in ad-
dition to an approach similar to the one described above. The centralized approach
relies on two preference vectors common to the whole population: one relative to
genes set to 0 and one relative to genes set to 1. These vectors are accessed by in-
dividuals when evaluating mating candidates in a similar fashion as in the previous
approach. The value of each gene is adapted at each selection step according to the
relative success of the offspring.

Smorokdina and Tauritz [32] proposed a different approach where each indi-
vidual encodes a mate choice function in addition to its own candidate solution to
the problem at hand. This function is represented as a tree which is used to select
a mating partner. The tree in each individual is initialized using only one terminal
node which corresponds to the remaining of the population. As a non-terminal set,
a number of selection operators can be used, which compare different metrics be-
tween mating candidates. Eventually the tree returns the preferred mating candidate.
If the produced offspring shows enhancements then it inherits the tree used for eval-
uation from its parents, otherwise it inherits the product of recombination between
the evaluation trees of both parents.

Mating preferences

As described above, many possible mating preferences have been applied by differ-
ent researchers. Some of them focus on the similarity between the first parent and
each mating candidate. A measure of similarity can be assessed either using geno-
typic [7, 8, 13, 26, 28, 29, 35] or phenotypic [13, 29] information.

Other metrics focus on characteristics of mating candidates such as previous re-
productive success, fitness or age [29]. Characteristics can be compared to those of
the first parent in an attempt to find a partner that complements it [16]. Often, when
multiple metrics are applied they are combined through rules or functions. In some
cases similarity measures are also combined with such metrics [29]. More interest-
ingly are perhaps approaches where the first parent is able to perceive certain geno-
typic or phenotypic traits on mating candidates and selects the one that best matches
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its preferences. This is often accomplished by encoding mating preferences in each
individual and comparing those preferences with traits displayed by each candidate
[18, 25, 32, 34].

Gender roles

In nature, Mate Choice is almost absolutely on the side of females. Due to their high
reproductive investment, they are picky when selecting a mating partner, looking for
a fit male that can provide good genes. On the other hand males are more willing
to mate with as many females as possible in an attempt to increase their number of
offspring and benefit the presence of their genes in following generations. Looking
back at Algorithm 1, parent1 takes the female role while the mating candidates and
therefore parent2 take the male role.

There are different approaches in the literature to establish which individuals will
take a female role or a male role. For instance, on some approaches a gender is at-
tributed randomly to each individual at the beginning of each generation [14, 30]
while in other cases gender is attributed alternatively when offspring are produced
[35]. In such cases where each individual has a fixed role, females can be selected
from their subpopulation using different strategies. In some cases all females are se-
lected and produce offspring once [14], in other cases traditional selection operators
are applied [35]. An alternative approach has each individual participating once as
a female and once as a male in the parent selection process [18]. Mating candidates
are selected from the males pool, often randomly. In other cases, all individuals in
the population have the chance to play either role. In these cases, any individual can
be selected as parent1, therefore for the role of female, and all the remaining can
be selected as mating candidates, or for the role of male. In these cases it is popular
to select females through traditional operators and males randomly. If an individual
takes the role of female at a selection step, it could be selected as male on the next
one and vice-versa.

1.3.2 Designing a nature-inspired Mate Choice approach

When designing Mate Choice approaches we feel that in order to best resemble the
natural process, models should follow three nature-inspired rules:

1. individuals must choose who they mate with based on their own mating prefer-
ences

2. mating preferences, as mental traits, should be inherited the same way as physi-
cal ones

3. mate selection introduces its own selection pressure but is subject to selection
pressure itself

We see the evaluation of mating candidates as a complex process, where the
relation between observed traits, or their weight on each individual’s mate choice
mechanism is difficult to establish beforehand. While some traits could be seen as
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valuable on a mating candidate, others could turn out to be irrelevant or even harm-
ful. The relation between them is also certainly not straightforward as they could
be connected in unforeseeable ways. Moreover, certain displayed traits may be very
important for survival purposes but hold little value for mate choice, or the other way
around. This value can also vary on each selection step, depending on the character-
istics of parent1, its mating preferences and the mating candidates involved.

This discussion is particularly relevant when we recall the following aspects of
Sexual Selection through Mate Choice:

1. each individual has its own characteristics and may benefit differently from re-
producing with different mates. Each individual also has its own distinct mating
preferences that may value different characteristics in mating candidates. The re-
productive success of individuals depends on choosing appropriate mating part-
ners the same way that it depends on how attractive they are to others.

2. the paradigm may result on cases where individuals with poor survival abilities
attain a high reproductive success because they display characteristics that are
favoured by mating preferences. Their offspring may achieve low fitness values
but may contribute to exploration and the emergence of innovation which may
eventually turn into ecological opportunities.

3. the handicap principle shows that certain traits may risk the survival ability of
individuals while in fact being indicative of good gene quality, thus reducing
the accuracy of fitness values. Mate Choice mechanisms may be able to help
increase the accuracy of mapping between phenotypes and fitness values and
translate that into reproductive success.

4. mating preferences and evolved physical traits have an intrinsic and deep de-
pendence between them which results from the feedback loop described in the
theory of runaway sexual selection. The resulting arms race causes mating pref-
erences to evolve in relation to displayed traits and physical traits to adapt in
relation to enforced mating preferences. This process can lead traits to a high
degree of elaboration.

With these ideas in mind and with the goal of designing mate choice mechanisms
that best resemble the natural process, we refrain from establishing what are good or
bad mating preferences. Also, we avoid linking each individual’s candidate solution
with its mating preferences using any pre-established method, such as inheritance
rules. We therefore treat genetic material regarding physical traits and mating prefer-
ences equally and leave the responsibility of adapting individuals up to the evolution-
ary process. Inheritance and selection pressure should be able to bring reproductive
and survival advantages to individuals carrying genes linked to appropriate pheno-
types and mating preferences through the intrinsic relation between Natural Selection
and Sexual Selection through Mate Choice.

The following subsections detail how we design Mate Choice approaches that
meet the presented rules and aspects.
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Representation

We propose a setup where each individual is composed by two chromosomes. The
first one encodes a candidate solution to the problem at hand while the second chro-
mosome encodes an individual’s mating preferences, which it will use to assess po-
tential mating partners. The first chromosome could use any representation wanted
for the problem at hand, be it a Genetic Algorithm (GA) vector, a GP tree or others.
We propose representing mating preferences, therefore the second chromosome, as
a GP tree.

Mating preferences can be represented using two possible approaches: i) rep-
resenting an ideal mating partner; ii) representing an evaluation function. The first
approach requires that we are able to map GP representations to the phenotype space
of the problem at hand. In this case, the terminal and non-terminal sets should be
established accordingly, for instance, if we are using a GP representation for the can-
didate solutions in the first chromosomes, then we can use the same terminal and
non-terminal sets. This approach can also be used if we rely on other representations
in the first chromosome but there are know GP representations, as long as both rep-
resentations map to the same phenotype space. The second approach requires that
the individuals can extract characteristics from their mating candidates and evalu-
ate them. The terminal set of the GP representation will be the evaluation of such
characteristics. The non-terminal set will provide a number of operators that allows
the creation of relations between characteristics into complex functions. At the end,
in this approach, the second chromosome encodes a GP function that evaluates a
number of characteristics on a mating candidate and through a number of operations
linking different characteristics, produces an attractiveness value.

Evaluation

The two representation approaches rely on different evaluation mechanisms, how-
ever Fig. 1.3 shows a general view of the process. On the first approach, when an
individual is assessing a mating candidate, an ideal mating partner according to that
individual’s preferences is mapped to the phenotype space and compared to the phe-
notype of the mating candidate. In order to do so, a similarity measure has to be
established and used. The mating candidate that best resembles an ideal partner and
therefore minimizes the metric used is selected as a mating partner. Notice that this
is conceptually different from selecting mating partners so that the distance between
parents is minimized or maximized. The behaviour resulting from this approach will
be much different but the design effort required is actually quite similar. As long as
there is a possible GP representation for the problem at hand, that can be used for
the second chromosome and for evaluation to take place, only a similarity measure
is required.

The second approach evaluates mating candidates in a different way. Instead of
comparing each mating candidate to an ideal mating partner, it will evaluate them
according to a number of displayed traits. Therefore, in order to design such an ap-
proach, we have to determine a perceptive system, or in other words, what charac-
teristics can each individual observe on others. To do so, researchers have to rely on
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Chromosome 1

Candidate solution

Phenotype

Chromosome 2

Perception system

Mating preferences

Atractiveness

Interpretation

PARENT 1

Chromosome 1

Candidate solution

Phenotype

Chromosome 2

Perception system

Mating preferences

CANDIDATE

Fig. 1.3. Representation of mating preferences and evaluation of mating candidates

their own knowledge of the problem and determine what may or may not be rele-
vant characteristics. This process often requires the deconstruction of the problem
at hand and subdividing it on a set of simpler problems, or assessing simpler objec-
tives that are implicit on the global fitness function. These characteristics will make
up the terminal set, so that when an individual is evaluating a candidate, the termi-
nal nodes on the GP tree representing its mating preferences will assume a numeric
value representing how the candidate performs on the present characteristics. The
operators included on the non-terminal set will determine how these values relate
with each other and what weight they have on the mating preferences. Finally, the
GP function returns a numeric value which represents the attractiveness of a mat-
ing candidate (Fig. 1.4 shows an example of a possible GP tree). The candidate that
achieves the highest attractiveness is selected as a mating partner. This approach is
more difficult to setup as it requires more knowledge from the person designing the
system. However, the choice of relevant characteristics does not have to be perfect,
the evolution process will be in charge of determining which are valuable, harmful or
irrelevant. It has the advantage of not requiring a GP representation of the problem
to be applicable.
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Fig. 1.4. Example of a GP tree combining a different characteristics to evaluate a mating
candidate

Operators and Parameters

The Mate Choice mechanism has been mostly described, but a few questions re-
main. The first one regards selection the first parent and the mating candidates. In
our approach we attribute gender roles during selection, meaning that any individual
can play the role of female or male. As in many studies, we select females using a
traditional operator which may be problem dependent. We usually select male mat-
ing candidates using a random operator. This way, any individual even if its survival
ability is very low, has the chance of being evaluated by a female and, if attractive
enough, may reproduce. All individuals are therefore subject to both natural and
sexual selection through mate choice. They both have an impact on the number of
offspring that each individual produces. Mate selection pressure is controlled by the
size of the mating candidates set. A higher number of mating candidates means that
more males will be competing for the same female causing less attractive individuals
to have smaller chances of reproducing.

When two parents have been selected, two new offspring are generated by means
of reproductive operators. In our setup we apply these operators independently at
each chromosome. This decision not only allows different strategies to be applied
to each of them, for instance if different representations are used, but also allows
operators to be applied with different probabilities and parameters. This is beneficial
since the two chromosomes may impact behaviour differently with the same oper-
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ators and parameters. Regarding the mating preferences chromosome, we suggest
applying either crossover or mutation exclusively and with a given probability. This
means that new offspring may inherit a combination of the mating preferences of
both its parents, a mutated version of the mating preferences of one of its parents, or
in case neither crossover or mutation occurs the offspring will inherit the exact mat-
ing preferences of one of its parents [19]. Unlike previous studies [18, 32], we don’t
check the feasibility of new offspring to decide on how their mating preferences will
be inherited. Finally, new offspring are inserted into the population of the following
generation.

1.4 Applications

The presented Mate Choice setup has been previously applied to different problems,
including real-world applications. We have had the chance to test both preference
representation approaches and have also compared to a GA representation on a spe-
cific problem. The section discusses the obtained results and observed behaviour.

Applying Mate Choice to symbolic regression has probably been the easiest to
setup [21]. Using a GP representation to tackle the problem allows us to rely on
the same terminal and non-terminal sets on both chromosomes. This way, the first
chromosome represents a candidate solution to the target function while the second
chromosome represents an ideal mating partner, as described previously. In a nut-
shell, evaluation of mating candidates is quite similar to the standard evaluation of
the phenotype of each individual, but instead of comparing the phenotype with the
target function, it’s compared to the ideal mating partner represented. The similarity
measure applied was the same. The approach was tested on 6 setups with different
characteristics, using a Tournament of 5 individuals to select the first parent which
chooses its mate from a pool of 5 candidates.

Table 1.1. Mean Best Fitness obtained over 50 runs obtained with a standard, mate choice and
random approaches on the symbolic regression of 6 functions

Function Standard Mate Choice Random
Keijzer-1 0.008005462 0.0059473756 0.0072442644
Keijzer-2 0.0063776454 0.0052139161 0.0062104645
Keijzer-3 0.0071500245 0.0056003145 0.0067438776
Keijzer-4 0.0890397335 0.0833904122 0.0840754187
Koza-1 0.0006384168 0.0014386396 0.0006481816
Nguyen-5 0.0014892713 0.0004783439 0.0025763115

Table 1.1 shows the obtained results. The instances where the proposed approach
performed statistically better than a standard one or the other way around are shown
in bold (A Wilcoxon Mann Whitney test with a significance level of 0.01 was used).
The Mate Choice approach was able to outperform the standard approach on all
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instances of the problem except for the Koza-1 function. However, the Koza-1 ap-
proach is regarded as a particularly easy one [23], where the standard approach is
able to convert faster and therefore gain advantage. Also, the Nguyen-5 instance
relies on a large population, which may explain why both approaches were able to
largely outperform the random approach, with the Mate Choice approach still achiev-
ing statistical differences from the standard one.

It is clear by observing the results of the random approach, where the mating can-
didate is selected randomly, that the evolution process benefits from a lower selection
pressure on the problem set. An analysis of the behaviour of each approach, focus-
ing on the Mean Cumulative Destructive Crossovers (MCDC) and Mean Cumulative
Neutral Crossovers (MCNC) shows that they behave differently. The Mate Choice
approach achieved consistently a smaller number of neutral crossovers (with statisti-
cal differences except for the Koza-1 function), which don’t contribute to fitness en-
hancements. At the same time it performed a larger number of destructive crossovers,
which reduce the fitness of the offspring when compared with their parents, with
statistical differences. This behaviour suggests that Mate Choice focus more on ex-
ploration than exploitation in this particular scenario, whereas the standard approach
promotes mating between the fittest individuals. This exploration seems to be impor-
tant for the enhanced results as it helps avoid convergence and turns explored traits
into ecological opportunities thus achieving better Mean Best Fitness (MBF) values.
The approach also obtains lower MCNC and higher MCDC values consistently when
compared with the random approach suggesting that the promoted behaviour is not
similar to randomly selecting mating partners. A larger analysis of the behaviour is
available [21].

Cluster Geometry Optimization (CGO) consists on finding the geometry of a
cluster so that its potential energy is minimized. The problem is a NP-hard task
[2] with important applications in Nanoscience, Physics, Chemistry and Biochem-
istry [38]. The problem provides a number of difficult test instances, from which
we have tested the applicability of Mate Choice on Morse clusters ranging from 41
to 80 atoms [20]. We have coupled our setup with an evolutionary algorithm that
has previously achieved state of the art results [27]. The initial approach relies on a
steady-state population with a substitution mechanism that controls which offspring
are allowed into the population. This mechanism is focused on maintaining diversity
in the population as this is seen as a key factor when tackling CGO problems.

Each individual encodes the Cartesian coordinates of each particle in the cluster
in the 3D space and evolve using GA operators. The Mate Choice setup adds a GP
chromosome that allows each individual to evaluate mating candidates on a number
of phenotypic features. When tackling the optimization of a Morse Cluster, each
individual not only encodes a candidate solution to a N sized cluster but also to all
N− i instances. How an individual performs on each of these smaller instances may
indicate good, bad or neutral genes, depending on the instance being optimized. It’s
up to the self-adaptive system to use this information in an appropriate way.

Table 1.2 shows the success rate on finding the putative optima on 30 runs for
each instance using a tournament of 5 individuals to select the first parent and 5
mating candidates. A pairwise proportions test was used to test for significant differ-
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Table 1.2. Success rate over 30 runs obtained by a standard and mate choice approaches on
the cluster geometry optimization of morse clusters of size N

N 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
Mate Choice 24 21 18 18 12 14 6 16 16 2 2 9 4 7 7 11 9 5 3 7
Standard 15 12 14 7 5 9 2 14 18 5 7 6 5 12 6 11 8 4 2 0

N 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
Mate Choice 1 6 8 8 9 10 5 3 6 6 6 3 6 5 5 3 3 4 2 5
Standard 1 12 6 11 8 8 5 4 6 8 6 7 6 1 2 4 7 3 6 5

ences [33] with a significance level of 0.01. Overall, out of 40 instances, the Mate
Choice approach was able to achieve higher success rates on 20 instances, 4 of them
with significant differences. Ties were found on 7 instances as well. A study on the
impact of the Mate Choice approach on the behaviour of the algorithm focusing on
population diversity as well as on the acceptance rate of the replacement operator
has shown relevant differences from a standard approach.

The replacement operator has a powerful role on this problem as it determines
which individuals are allowed in the population. If they are structurally similar (ac-
cording to a distance measure) to one individual of the population, the fittest one is
kept. If they are structurally dissimilar from all individuals, the offspring replaces
the worst one as long as it has a better fitness. Otherwise the offspring is discarded.
Therefore it is foreseeable that mating preferences will adapt so that new offspring
can overcome these restrictions.

Results suggest that the algorithm has successfully done so, with an increase in
the number of accepted individuals, both similar and dissimilar. Together, there has
been an increase of roughly 50% on the cumulative average number of substitutions.
While an increase in the acceptance rate of new offspring doesn’t necessarily trans-
late into a better performance it does show an adaptation to the replacement strategy.
The results in Table 1.2 suggests that such a behaviour contributes to competitive
and sometimes better success rates, which is corroborated by average fitness values
along the generations.

An analysis of the average population diversity also shows behavioural differ-
ences. While the standard approach is able to reach a higher average diversity, the
Mate Choice approach is able to maintain it steadier while at the same time conduct-
ing a much larger number of substitutions in the population. This effect may indicate
that individuals produced by Mate Choice in this scenario have smaller but steadier
impact, which seems beneficial on the population level. A more complete analysis
on the behaviour of Mate Choice on the optimization of Morse Clusters is available
[20].

A third application of our Mate Choice mechanism has been done on the problem
of Packing Circles in Squares(CPS). This problem consists on finding the configura-
tion of a set of circles of fixed radius so that they minimize the area of a containing
square [22]. In order to represent candidate solutions to this problem, each indi-
vidual encodes a vector of Cartesian coordinates representing the position of each
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circle, which is then mapped so that the area of the enclosing square is calculated.
Our approach adds a GP chromosome that is used to assess characteristics on other
individuals. Similarly to the CGO problem, we have divided the problem into several
subproblems, in this case, for the instance of packing N circles, we assess how an
individual performs on each N− i instance.

Therefore, the GP functions are initialized using a terminal set composed by
such characteristics and a number of arithmetic operators to combine them. Once
again, performing well on a given instance may be an indication of either good, bad
or neutral genes. The approach was compared to a standard approach, an approach
where mating partners are selected randomly from the candidates set and a third
approach where the mate evaluation function was encoded using GAs. The GA ap-
proach assesses all N− i characteristics on mating candidates and combines them on
a weighted sum. Each individual’s second chromosome encodes therefore a set of
weights, one for each characteristic and representing that characteristic’s impact on
the Mate Choice process. We expect the algorithm to evolve appropriate weights, ei-
ther negative, close to zero or positive, according to the weight of each characteristic.

Table 1.3. Mean Best Fitness over 30 runs obtained with a standard, random, mate choice
with GA representation and mate choice with GP representation on the packing of N circles
in squares

Mate Choice
N Optimal Standard Random GA GP
2 3.4142 3.4142 3.4142 3.4142 3.4142
3 3.9319 3.9320 3.9320 3.9319 3.9319
4 4.0000 4.0266 4.0001 4.0255 4.0001
5 4.8284 5.0056 4.9911 4.9250 4.9475
6 5.3282 5.3669 5.3674 5.3685 5.3804
7 5.7321 5.8227 5.8081 5.8296 5.8098
8 5.8637 6.0212 5.9615 5.9913 5.9898
9 6.0000 6.5184 6.4907 6.5401 6.5154
10 6.7474 6.8936 6.8854 6.9110 6.8536
11 7.0225 7.1619 7.1764 7.2232 7.1564
12 7.1450 7.3966 7.3565 7.4809 7.3438
13 7.4630 7.8088 7.8167 7.8355 7.7147
14 7.7305 8.0705 8.0950 8.1509 8.0048
15 7.8637 8.3324 8.4173 8.4345 8.2581
16 8.0000 8.7014 8.8632 8.8153 8.6012
17 8.5327 8.8765 9.2345 9.0836 8.8665
18 8.6564 9.0996 9.4966 9.2724 9.0984
19 8.9075 9.4442 9.9422 9.6036 9.3511
20 8.9781 9.7212 10.2839 9.7641 9.6030
21 9.3580 9.9788 10.7402 10.1307 9.9425
22 9.4638 10.2610 11.0512 10.3705 10.2693
23 9.7274 10.5201 11.5476 10.6498 10.5892
24 9.8637 10.7725 11.8382 10.8163 10.8034
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Experiments were conducted on problem instances using 2 to 24 circles. The
first parent was selected using a tournament of 5 individuals and sets of 5 mating
candidates. Table 1.3 shows the MBF over 30 runs obtained by each approach. The
GP based approach was able to achieve better results on 18 out of 23 instances,
8 of which with statistical differences (using a Wilcoxon Mann Whitney test with
a significance level of 0.05) while the GA based approach performed better on 4
instance, 1 of which with statistical significant differences. The results achieved by
the random approach suggest that the algorithm may benefit from a smaller selection
pressure on most of the instances. The results obtained by the GA approach were
disappointing as it was expected that it would be able to make a better use of the
information provided or at least evolve into the original fitness function and therefore
achieve results closer to the standard approach.

The results obtained by the GP approach suggest that the approach was able
to make good use of the information provided about mating candidates and build
appropriate functions to select mating candidates, which are likely to be radically
different from the weighted sum designed by us using our knowledge of the problem.
We believe that we would unlikely be able to design mating evaluation functions
capable of matching the ones evolved by the GP approach. A larger analysis on the
application of Mate Choice on the CPS problem is available.

Apart from the presented analysis on performance and behaviour of the Mate
Choice setup on the three addressed scenarios, there are a two observations that are
transversal and should be discussed. The first one regards the overhead of the setup,
which results from the need to evaluate mating candidates using preferences spe-
cific to each individual. While on the first approach, based on ideal mating partners,
this overhead depends on the metric being used, on the second approach it depends
on the characteristics being evaluated. On the first approach, each candidate is evalu-
ated once at each selection step as it is being compared to an ideal mating partner. On
the second approach, individuals share what characteristics they can see in mating
partners, therefore when a candidate is evaluated on a given characteristics, that pro-
cess doesn’t have to be repeated. The effort also depends on the mating preferences
present in the population at each generation. This makes estimating an overhead for
the Mate Choice operator a hard task. The second observation regards the complex-
ity of the evolved GP functions, which makes it extremely difficult to assess exactly
how individuals are evaluating others, which characteristics they value or not. Figure
1.4 shows what a GP tree representing a mating evaluation function may look like,
however they can be much larger in size. Still, the example is enough to show that
while we can see what characteristics are present, it is extremely difficult to assess
exactly what role they play in the function. Some of them may be extremely relevant
while others may be approximately neutral. Moreover, these functions are different
from individual to individual and may vary drastically over the evolution process so
that certain characteristics can be important at the beginning and others at the end,
or may have different importance to each individual. What we can assess however is
that we would unlikely be able to design such evaluation functions by hand and that
they are radically different from previously used functions. The results suggest that
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despite how they work, these functions are making a good use of the information that
they assess on mating candidates.

1.5 Synthesis

Sexual Selection through Mate Choice has been first proposed by Darwin to explain
animal characteristics that didn’t seem to fit in his theory of Natural Selection such as
extravagant ornamentation and complex courtship behaviour. The theory, while be-
ing mostly rejected by the active research community at the time, eventually was able
to gain the attention of researchers in multiple fields that have contributed with sup-
porting evidence over the years. Nowadays Sexual Selection through Mate Choice is
highly regarded by the scientific community as an important player in the evolution
of species.

Despite the success of the theory on other fields, the impact of Mate Choice in the
field of Evolutionary Computation is still very small, and a large number of questions
remain unanswered regarding its design, implementation, behaviour and potential
benefits. Several authors have proposed various approaches inspired by Mate Choice
and have tackled multiple problems with more or less success. We have addressed
a framework common for Mate Choice approaches and have reviewed important
contributions through a classification studies based on their adaptation mechanisms.
We have also covered preference choices and gender role attribution mechanisms.

We finally propose a nature-inspired Mate Choice setup. First we discuss relevant
aspects of Mate Choice in nature, propose 3 nature-inspired rules and follow up by
covering design choices such as representation, evaluation, operators and parameters.
The use of an extra chromosome to encode a GP tree to encode mating preferences
following two possible approaches was discussed as well as how it can be used to
evaluate mating partners and take part of the evolution process.

We present a discussion on the application of Mate Choice on three problems
and assess the behaviour of the algorithm. The discussed approaches differ drasti-
cally in behaviour from standard selection approaches as well as from an approach
where the mating partner is selected randomly. The differences in behaviour impact
performance as well as diversity, exploration and exploitation. A comparison with a
self-adaptive Mate Choice approach based on a GA representation is also included
and the differences discussed. Finally it’s argued that assessing the overhead caused
by this selection process is a difficult task and that the inner-workings of the evolved
Mate Choice functions are very complex, making it extremely difficult to see which
are relevant or irrelevant mating preferences. Still, the reported results suggest that
the evolved GP functions are able to use the provided information in meaningful and
beneficial ways. It is however unlikely that we would be able to design them by hand.
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