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Abstract—The effectiveness of Artificial Neural Networks
(ANNs) depends on a non-trivial manual crafting of their
topology and parameters. Typically, practitioners resort to a time
consuming methodology of trial-and-error to find and/or adjust
the models to solve specific tasks. To minimise this burden one
might resort to algorithms for the automatic selection of the most
appropriate properties of a given ANN. A remarkable example
of such methodologies is Grammar-based Genetic Programming.
This work analyses and compares the use of two grammar-
based methods, Grammatical Evolution (GE) and Structured
Grammatical Evolution (SGE), to automatically design and
configure ANNs. The evolved networks are used to tackle several
classification datasets. Experimental results show that SGE is
able to automatically build better models than GE, and that
are competitive with the state of the art, outperforming hand-
designed ANNs in all the used benchmarks.

I. INTRODUCTION

The process of searching for adequate classification models
often follows a difficult and time consuming trial-and-error
approach [1]. Moreover, such models tend to behave well
on specific problems and fail to generalise to others where
they were not trained on, i.e., learning is not incremental or
cumulative. That said, for each problem one wants to solve
there is the need to repeat the entire trial-and-error search.

To promote learning in an incremental fashion, first there is
the need to develop automatic approaches capable of finding
accurate models able to learn specific tasks, so that at a later
stage those models can be reused to allow modular and cumu-
lative knowledge acquisition. In order to answer this question,
we propose Neural Networks Structured Grammatical Evolu-
tion (NN-SGE): a novel approach, where we rely on evolution
to automatically build Artificial Neural Networks (ANNs). It is
a Grammar-based Genetic Programming (GGP) methodology
designed not only for the evolution of the topologies of ANNs
(number of neurons and their connectivity) but also for the
evolution and tuning of the numerical parameters (weights,
bias). We rely on the use of grammars to define the problem
domain space, in order to allow a plug-and-play approach,
easy to adapt to a wide range of problems and ANN types.

The remainder of the paper is organised as follows. Sec-
tion II details the background concepts and state of the art
methodologies focusing on grammar-based methodologies for
the evolution of ANN topologies and/or weights optimisation.
In Section III we present NN-SGE, followed by an experimen-
tal analysis (Section IV). To end, in Section V, conclusions
are drawn and future work is addressed.

II. BACKGROUND AND STATE OF THE ART

In this section we introduce the background concepts related
with GGP: Grammatical Evolution (GE) (Section II-A) and
Structured Grammatical Evolution (SGE) (Section II-B). In
Sections II-C and II-D we review the state of the art in the
field of Evolutionary Artificial Neural Networks (EANNs).

A. Grammatical Evolution

Grammatical Evolution (GE) is a Genetic Programming
(GP) algorithm introduced by Ryan et al. [2], where the
evolved programs are derivations of an a-priori defined
Backus-Naur Form (BNF) grammar: a notation for represent-
ing Context-Free Grammars (CFGs). CFGs are rewriting sys-
tems that are formally defined by a 4-tuple, G = (N,T, P, S),
where: (i) N is the set of non-terminal symbols; (ii) T is the
set of terminal symbols; (iii) P is the set of production rules
of the form x ::= y, x ∈ N and y ∈ N ∪ T ∗; and (iv) S is
the initial symbol.

In GE individuals are commonly represented as variable-
length decimal strings, where each integer represents a gram-
mar derivation step. A decoding procedure is applied to
each individual, mapping it into a grammar derivation. The
decoding procedure reads each codon from left to right and
decides which derivation step is to be applied, according to
the following rule:

rule = codon MOD non terminal possibilities,

where non terminal possibilities is the number of possibilities
for the expansion of the current non-terminal symbol. If for a
given non terminal symbol there is only one possibility for its
expansion no integer is consumed. An example of the mapping
procedure can be found in Section 4.1 of [2].

When applying the decoding procedure, and due to recursive
grammars, it is common for the number of codons (i.e.,
integers) to be insufficient. To tackle that, it is possible to
use wrapping, i.e., the genetic material is reused and codons
reread starting from the first one. However, it has been shown
in the literature that wrapping is not effective [3].

B. Structured Grammatical Evolution

Motivated by the redundancy and locality issues in GE,
Lourenço et al. [4] proposed Structured Grammatical Evolu-
tion (SGE): a new genotypic representation for GE. Redun-
dancy is linked with the modulus mathematical operation used
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in GE’s decoding operation, that allows multiple codons to
generate the same output. Consequently, mutation is affected
because it is likely that a mutation in one of the individual’s
codons generates no change in its phenotype. Additionally,
when a mutation does impact the phenotype of the individual
it is probable that the mutation changes too much of the
individual structure (low locality), since a modification in one
of the codons may alter all the derivation procedure from that
point onwards.

In SGE the genotype of an individual consists of a
list of genes, one for each possible non-terminal sym-
bol. Furthermore, a gene is a list of integers of the
size of the maximum number of possible expansions
for the non-terminal it encodes; each integer is a value
in the interval [0, non terminal possibilities − 1], where
non terminal possibilities is the number of possibilities for
the expansion of the considered non-terminal symbol. As a
consequence, it is necessary to pre-process the input grammar
so that the maximum number of expansions for each non-
terminal is discovered (further detailed in Section 3.1 of [4]).
To deal with recursion, a set of intermediate symbols are
created, which are no more than the same production rule
replicated a pre-defined number of times. In a sense, the
creation of intermediate symbols works as the definition of
a maximum tree depth, as in standard tree-based GP. The
direct result of the SGE representation is that, on the one
hand, the decoding of individuals no longer depends on the
modulus operation and thus its redundancy is removed; on the
other hand, locality is enhanced, as codons are associated with
specific non-terminals.

The procedure of mapping an individual from the genotype
to the phenotype is similar to the one found in GE but with
two main differences: (i) as mentioned above, there is no need
to use the modulus operation, and integers are used as in
the genotype; (ii) integers are not read sequentially from a
single list of integers, but are rather read sequentially from
lists associated to each non-terminal symbol. An example of
the aforementioned procedure is detailed in Section 3 of [4].

C. Evolution of Artificial Neural Networks

Several works concerning the automatic evolution of ANNs
can be found in the literature [5]. Often, they are grouped ac-
cording to the aspects of the ANN they optimise: (i) evolution
of the network parameters; (ii) evolution of the topology; and
(iii) evolution of both the topology and parameters.

The evolution of the weights is mainly motivated by the
gradient descent nature of some of the learning algorithms
(e.g., backpropagation) that makes them likely to get trapped
in local optima [6]. When training ANNs using evolutionary
approaches the topology of the network has to be provided and
the only target of evolution are the weights of the connections
between the different neurons, which are normally encoded
using binary [7] or real representations (e.g., CoSyNE [8],
Gravitational Swarm and Particle Swarm Optimization applied
to OCR [9], training of deep neural networks [10]).

When applying evolutionary approaches to evolve the
weights, the topology of the network is predefined and kept
fixed during the evolutionary process. To overcome this lim-
itation methodologies for automatising the evolution of the
structure have also been investigated. When focusing on the
evolution of the topology there are two possibilities for finding
the weights: (i) use a deterministic learning methodology (e.g.,
backpropagation) or (ii) simultaneously evolve the topology
and weights of the networks.

Regarding the used representation for the evolution of the
topology of ANNs it is possible to divide the methodologies
into two main types: those that use direct encodings (e.g.,
Topology-optimization Evolutionary Neural Network [11],
NeuroEvolution of Augmenting Topologies [12]) and those
that use indirect encodings (e.g., Cellular Encoding [13]). As
suggested, in the first two works the genotype is a direct
representation of the network, and in the latter there is the
need to apply a mapping procedure to transform the genotype
into a readable and interpretable network. Focusing on indirect
representations, in the next section we detail grammar-based
approaches for evolving ANNs.

D. Grammar-based Evolutionary Artificial Neural Networks

Over the last years several approaches applying GE to
EANNs have been proposed. Tsoulos et al. [14] describe a
methodology that uses a BNF grammar to encode both the
network topology and parameters, i.e., input vectors, weights
and bias. The evolved networks are simple Feed-Forward
Neural Networks (FFNNs) with just one hidden-layer. Later,
motivated by the fact that GE is not suited for the evolution
and tuning of real values, Soltanian et al. [15] introduced GE-
BP: an approach similar to the one proposed by Tsoulos et
al., but that uses GE only for the evolution of the topology.
The training of the networks relies on the backpropagation
algorithm, this way avoiding the optimisation of the weights
and bias. The used BNF grammar is a simpler version of the
one used in [14], where all the production rules associated
with the encoding of real values are removed.

In another approach to try to optimise both the topology and
weights of FFNNs with just one hidden-layer, Ahmadizar et al.
combine GE with a Genetic Algorithm (GA) [16]. Whilst GE
is applied to the evolution of the topology, the GA is used for
searching the weights and bias. Furthermore, a novel fitness
assigning scheme is detailed, considering not only the quality
of the networks based on their classification performance,
but also an adaptive penalty term. This penalty term is a
function of the number of neurons in the hidden-layer and aims
at rewarding simpler structures, increasing the generalisation
ability of the evolved ANNs.

Although GE is the most common approach for the evo-
lution of ANNs by means of BNF grammars it is not the
only one. In [17], Si et al. present Grammatical Swarm Neural
Networks (GSNN): an approach that uses Grammatical Swarm
for the evolution of the weights and bias of a fixed ANN
architecture. As only the weights are being evolved the used
grammar is a simple rewriting system for generating real



numbers in the [−10, 10] interval. In [18], Jung and Reggia
detail a method for searching adequate topologies of ANNs
based on descriptive encoding languages: a formal way of
defining the environmental space and how should individuals
be formed. To train the ANNs the Resilient Backpropagation
(RPROP) algorithm is used. Finally, important to mention
Cellular Encoding [13] which is also based on a rewriting
system and grammar-trees to promote the evolution of ANNs.

III. NEURAL NETWORKS STRUCTURED GRAMMATICAL
EVOLUTION

NN-SGE is our proposal for the evolution of ANNs using
SGE. Due to the higher locality and lower redundancy of SGE
we hypothesise that NN-SGE is better suited for optimising
the topology and parameters of the evolved ANNs. Next, we
detail the components of the evolutionary engine that differ
from the standard SGE implementation.

A. Mutation
In the standard SGE implementation the probability of

mutating each gene, i.e., changing one of the integers from the
list of integers associated to a non-terminal symbol is the same,
and equal to 1⁄n, where n is the number of genes (which equals
the number of non-terminal symbols). However, the number
of integers in each gene is not the same. To overcome this
drawback, we propose a roulette-like approach for selecting
the gene to be mutated, being the probability of choosing each
gene equal to:

pi =
len(genei)∑n
j=1 len(genej)

,

where i is the i-th gene, n is the total number of genes and
len(gene) is the number of integers of that gene that are being
used to map the individual from the genotype to the phenotype.
Next, we select one of the integers from the chosen gene,
and change its value to a new one. Mutations are not applied
to non-expressed integers, i.e., those that are not used in the
mapping procedure.

B. Crossover
We rely on one-point crossover to combine two parents. We

start by choosing a random cutting point in the genotype, and
then we swap the genetic material between the two parents.
In SGE the genetic material that is swapped corresponds
to genes and as such not directly to the integers, i.e., the
genetic information that is swapped consists of lists of integers
encoding the expansions of a given non-terminal symbols.

C. Fitness Evaluation
The performance of each ANN is measured by the Root

Mean Square Error (RMSE) obtained while solving a classi-
fication task. To avoid overfitting and to tackle unbalanced
datasets we consider the RMSE per class, and the fitness
function is the multiplication of the exponential values of the
multiple RMSEs per class, as follows:

fit =
m∏
c=1

exp

(√∑nc

i=1(oi − ti)2
nc

)
,

where m is the number of classes of the problem, nc is the
number of instances of the problem that belong to class c,
oi is the confidence value predicted by the evolved network,
and ti is the target value. The rationale behind the use of the
exponential function is related to the fact that we aim to ensure
that higher errors are more penalised than lower ones, to avoid
the classification function from being too constrained to the
error in one of the classes, failing to learn the overall problem.

Other metrics such as the accuracy or f-measure could have
been used. However such type of properties just take into
account the networks output, and therefore we would easily
end with multiple individuals having the same quality, which
would make evolution more difficult.

IV. EXPERIMENTAL RESULTS

To validate our approach, NN-SGE is used to evolve both
the topology and parameters of ANNs in 4 classification
problems. The results are analysed and compared with oth-
ers obtained using GE and GE-based approaches designed
specifically for the evolution of ANNs [14]–[16]. We also
compare NN-SGE with hand-designed ANNs, trained with the
backpropagation (BP) learning algorithm.

A. Datasets

We selected 4 binary classification problems from the UCI
Machine Learning repository [19]. All problems are binary due
to the limitations imposed by the grammatical formulations,
which do not allow the generation of dynamic productions, so
that neurons can be reused. The problems have an increasing
complexity in terms of the classification task that is to be per-
formed. In the next paragraphs we present a brief description
of the used datasets.
Flame [20] – This dataset contains artificial generated data

for clustering purposes. It has 240 instances with two
attributes each that are to be separated into two different
classes, the first one containing 87 instances and the
second one with 153 instances.

Wisconsin Breast Cancer Detection (WDBC) [21] – The
WDBC is comprised of 30 features extracted from
digitalised images of breast masses. The dataset has 569
instances, where 212 are malign and 357 are benign.

Ionosphere [22] – This benchmark is used for the classifica-
tion of ionosphere radar returns, where the returns are
classified into two different classes: good (225 instances)
if it returns evidences of structure; and bad (126 in-
stances) otherwise. 34 features are provided.

Sonar [23] – The sonar dataset contains 60 properties of
sonar signals that allow a classification model to separate
between signals that are bounced off a metal cylinder
(111 instances) or a rock cylinder (97 instances).

B. Grammar

The grammar used to evolve ANNs is depicted in Figure 1
and is based on the ones used in [14]–[16]. The grammar
allows the evolution of both the topology and parameters of
one hidden-layer ANNs. In simple words, it is capable of



<sigexpr> ::= <node>
| <node> + <sigexpr>

<node> ::= <weight> ∗ sig(<sum> + <bias>)

<sum> ::= <weight> ∗ <features>
| <sum> + <sum>

<features> ::= x1

| . . .
| xn

<weight> ::= <number>

<bias> ::= <number>

<number> ::= <digit>.<digit><digit>
| –<digit>.<digit><digit>

<digit> ::= 0 | 1 | 2 | 3 | 4
| 5 | 6 | 7 | 8 | 9

Fig. 1. BNF grammar used for the conducted experiments. n represents the
number of features of the problem.

representing a series of neurons (<sigexpr>) as well as their
connections to the input neurons. Each neuron is represented
by <node> and is no more than a weight multiplied by
the result of the activation function, which takes as input
a weighted sum of the multiple input nodes: <features>,
where n denotes the number of attributes of the problem. All
neurons use the sigmoid function (sig) as activation function,
and therefore the output of the ANNs is sig(<sigexpr>).
By encoding connections, the evolved networks are not fully
connected and feature selection is performed. An example of
an ANN that can be built using the detailed grammar is:
−9.99 ∗ sig(−6.93 ∗ x8 + 9.93 ∗ x1 + 9.40 ∗ x10 + 6.56 ∗
x12 + −1.99) + −6.98 ∗ sig(8.99 ∗ x20 + −4.69 ∗ x32 +
−4.68) + 9.99 ∗ sig(1.84 ∗ x16 + −7.60 ∗ x47 + 0.99). The
former example represents an ANN generated for the sonar
dataset and is graphically represented in Figure 4. The network
is composed by three hidden-neurons, where each neuron is
connected to 4, 2 and 2 features, respectively.

C. Experimental Setup

Table I details the experimental parameters for NN-SGE and
GE. To make the comparison as fair as possible, we apply just
one mutation to 95% of the population individuals, instead
of defining a per-gene mutation probability. By doing this we
ensure that only one change occurs in each individual, making
the two methodologies similar in terms of the way they explore
their search space. Additionally, in both engines the mutation
operator is only allowed to change the integers that are used
in the genotype to phenotype mapping and populations are
initialised at random.

All datasets were partitioned in the same way: 70% of
each class instances are used for training and the remaining
30% for testing. Only the train data is used to assess the
fitness of the individuals; thus, the test data is kept aside from

TABLE I
EXPERIMENTAL PARAMETERS.

Parameter Value
Number of runs 30
Population size 100

Number of generations 500
Total number of evaluations 50000

Crossover rate 95%
Mutation rate 1 mutation in 95% of the individuals

Tournament size 3
Elite size 1%

SGE Parameter Value
Recursion level 6
GE Parameter Value
Individual size 200

Wrapping 0
Dataset Parameter Value
Training percentage 70%
Testing percentage 30%

the evolutionary process and used exclusively for validation
purposes, i.e., to evaluate the behaviour of the networks in the
classification of instances that have not been seen during the
creation of the ANN. No pre-processing or data augmentation
methodologies were applied to the datasets, i.e., the datasets
are used as they were obtained.

D. Evolving Artificial Neural Networks

To evaluate the ability of NN-SGE to evolve models suited
for the classification of the used datasets we focus our attention
on the analysis of several network properties, namely: (i)
fitness; (ii) RMSE; (iii) accuracy; (iv) Area Under the ROC
Curve (AUROC); (v) f-measure (vi) number of neurons; and
(vii) number of used features. All properties except the fitness
are analysed in the train and test sets. For a theoretical
explanation of each of the used metrics refer to [24].

Evolutionary Results

Figure 2 depicts the evolution of the fitness of the best
individuals across 50000 evaluations (100 individuals during
500 generations) for all the datasets described in Section IV-A.
Each plot shows the comparative evolution of NN-SGE with
GE and the results are averages of 30 independent runs. NN-
SGE consistently presents mean fitness values below GE for
all datasets. Remind that the goal of evolution is to minimise
the per class exponential RMSE value and thus lower values
mean better ANN performances.

An one-by-one analysis of the plots shows that the dif-
ferences between NN-SGE and GE are greater in the flame
and ionosphere datasets than in the WDBC and sonar ones.
In the flame and ionosphere datasets GE converges faster
(around 30000 and 20000 evaluations, respectively) and the
evolution of new ANNs stagnates. On the contrary, NN-SGE
takes around 40000 evaluations to converge in the ionosphere
dataset and it seems to still be evolving in the flame one.
This is explained by the dimensionality of the search spaces:
flame only has 2 attributes and thus the domain is flatter,
making it less likely for the algorithms to be trapped in a
local optimum; on the other hand, the ionosphere dataset has
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Fig. 2. Evolution of the fitness of the best individuals across 50000 evaluations
for the flame, WDBC, ionosphere and sonar datasets. The results are averages
of 30 independent runs.
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Fig. 3. Evolution of the fitness of the best individuals across 250000
evaluations for the sonar dataset. Results are averages of 30 independent runs.

34 features and thus a larger search space. Regarding the
number of evaluations that are needed in each problem for
the different methodologies to converge, NN-SGE because of
its higher locality and lower redundancy is able to explore the
search space more efficiently, and therefore it takes longer to
converge due to the number of feasible solutions it encounters.

In WDBC the NN-SGE approach is able to obtain better re-
sults in terms of means, but the differences are not statistically
significant (see below). In WDBC the average quality of the
best individuals of the initial population is close to 2.2, whilst
in the remaining problems is around 2.5. As such, the degree
for improvement is much smaller, and with the number of
evaluations given NN-SGE and GE end having similar results.
In the sonar results we have the opposite. The problem is
much more difficult (perceptible from the higher fitness of the
initial population) because of the greater number of attributes
(60), which leads to a larger search space. For that reason,
we performed this experiment again, with a larger number of
evaluations. In concrete, we increased the maximum number
of evaluations by 5, i.e., 250000 (500 individuals over 500
generations). The results with the larger number of evaluations
are depicted in Figure 3. The difference becomes larger and
the results are better than the ones previously achieved.

So far, the results presented focus only on the analysis of the
training set and therefore we have not yet analysed the gener-
alisation ability of NN-SGE, i.e., the ability to evolve models
that also perform well on unseen data. Table II reports the
RMSE, accuracy, AUROC and f-measure of the best networks
for the train and test sets. We complement this information
with the fitness of the best individuals (only measured in
the training set), number of neurons and number of features
that are used. Each cell is formatted as follows: mean ±
standard deviation; bold values indicate the methodology that
obtained the best results for that specific dataset. Looking
at the results depicted in the table it is possible to see
that NN-SGE is consistently superior to GE. The NN-SGE
fitness and RMSE values are lower than the ones attained
by GE and the accuracy, AUROC and f-measure values are
higher in the experiments performed with NN-SGE. This
behaviour is consistent between the training and testing sets.
Moreover, standard deviation values are lower in NN-SGE
which indicates that it consistently finds good results.

Comparing the train and test results in GE the differences
between the train and test sets are, on average, 0.06, 0.05, 0.05
and 0.05 for the RMSE, accuracy, AUROC and f-measure,
respectively. For NN-SGE the differences are, on average,
0.08, 0.06, 0.05, 0.06 for the RMSE, accuracy, AUROC and
f-measure, respectively. Despite the fact that the differences
in NN-SGE are slightly superior to the ones found in GE
for the analysed performance metrics, it is our perception
that this is not an indicator of overfitting, but rather a result
of the NN-SGE superior results. This is also supported by
the networks complexity. NN-SGE is capable of finding and
optimising the weights and bias of topologies with a greater
number of neurons and that use a larger number of problem
features, proving that NN-SGE performs a better exploration



TABLE II
EXPERIMENTAL RESULTS: FITNESS, RMSE, ACCURACY, AUROC, F-MEASURE, NUMBER OF NEURONS AND NUMBER OF USED FEATURES. RESULTS ARE

BASED ON THE 30 BEST NETWORKS IN TERMS OF FITNESS, ONE FROM EACH INDEPENDENT RUN.

Fitness RMSE Accuracy AUROC F-measure Neurons FeaturesTrain Test Train Test Train Test Train Test

Flame NN-SGE 1.32 ± 0.25 0.16 ± 0.13 0.22 ± 0.13 0.96 ± 0.08 0.93 ± 0.09 0.98 ± 0.04 0.96 ± 0.08 0.96 ± 0.08 0.94 ± 0.09 4.87 ± 1.83 2.00 ± 0.00
GE 1.58 ± 0.36 0.28 ± 0.15 0.31 ± 0.15 0.90 ± 0.10 0.88 ± 0.11 0.96 ± 0.05 0.93 ± 0.08 0.91 ± 0.09 0.89 ± 0.09 3.33 ± 1.40 1.97 ± 0.18

WDBC NN-SGE 1.46 ± 0.08 0.19 ± 0.03 0.23 ± 0.04 0.95 ± 0.02 0.93 ± 0.02 0.99 ± 0.01 0.98 ± 0.02 0.93 ± 0.03 0.91 ± 0.03 3.73 ± 1.53 12.0 ± 6.51
GE 1.55 ± 0.18 0.24 ± 0.09 0.27 ± 0.09 0.92 ± 0.12 0.90 ± 0.12 0.98 ± 0.02 0.97 ± 0.03 0.88 ± 0.18 0.86 ± 0.18 3.13 ± 1.53 8.40 ± 3.81

Ionosphere NN-SGE 1.48 ± 0.18 0.21 ± 0.07 0.32 ± 0.05 0.93 ± 0.11 0.87 ± 0.10 0.94 ± 0.04 0.90 ± 0.05 0.93 ± 0.18 0.89 ± 0.17 3.53 ± 1.36 12.1 ± 5.79
GE 1.82 ± 0.28 0.33 ± 0.10 0.38 ± 0.07 0.79 ± 0.20 0.76 ± 0.18 0.86 ± 0.18 0.83 ± 0.09 0.78 ± 0.32 0.76 ± 0.31 2.50 ± 1.41 7.33 ± 5.33

Sonar 50k NN-SGE 1.85 ± 0.18 0.34 ± 0.06 0.44 ± 0.04 0.84 ± 0.12 0.73 ± 0.09 0.91 ± 0.04 0.82 ± 0.05 0.78 ± 0.23 0.64 ± 0.20 3.07 ± 1.39 13.3 ± 6.42
GE 2.01 ± 0.23 0.38 ± 0.08 0.45 ± 0.06 0.76 ± 0.16 0.68 ± 0.12 0.88 ± 0.06 0.81± 0.05 0.70 ± 0.29 0.61 ± 0.25 2.53 ± 1.20 9.40 ± 5.73

Sonar 250k NN-SGE 1.62 ± 0.16 0.27 ± 0.04 0.42 ± 0.05 0.92 ± 0.04 0.78 ± 0.05 0.93 ± 0.04 0.84 ± 0.05 0.90 ± 0.05 0.74 ± 0.07 4.23 ± 1.33 21.93 ± 0.53
GE 1.82 ± 0.16 0.33 ± 0.06 0.45 ± 0.04 0.86 ± 0.08 0.73 ± 0.06 0.91 ± 0.04 0.81 ± 0.05 0.82 ± 0.16 0.68 ± 0.14 3.93 ± 1.78 11.37 ± 4.45

x47x32x20x16x12x10x8x1

h3h2h1

o1

Fig. 4. Example of one of the best performing ANNs (in terms of fitness)
evolved using NN-SGE for the classification of the sonar dataset. Weights
and bias values are omitted for simplicity reasons. x, h and o represent input,
hidden and ouput neurons, respectively.

of the problems domain reaching solutions that perform better.
An example of one of the best evolved networks for the sonar
dataset is depicted in Figure 4.

Concerning the comparison with state-of-the-art GGP ap-
proaches to evolve ANNs, NN-SGE is able to evolve solutions
that surpass the ones achieved by previous works. Tsoulos et
al. [14] report an accuracy of 0.9544 in the WDBC dataset and
0.9034 in the ionosphere. The results are incomplete, since
they only show the results attained by the best networks. NN-
SGE mean accuracy values for WDBC and ionosphere are
0.93 and 0.87, respectively. However, the best found networks
have test accuracies up to 0.97 and 0.96 for the WDBC and
ionosphere, respectively. In [15], Soltanian et al. report an
average test accuracy of 0.899 in the ionosphere benchmark.
Despite lower than NN-SGE, the authors use backpropagation
to finetune the weights of the evolved networks and longer
experiments (in terms of needed evaluations). Later, we show
that by fine tuning the best evolved networks of each run
similar results are achieved. More recently, Ahmadizar et
al. [16] combined a GA with GE, obtaining a RMSE of
0.4398 and an accuracy of 0.7201 in the sonar benchmark and
0.8694 in the ionosphere dataset. The proposed evolutionary
approach takes into account the generalisation ability of the
evolved networks, by measuring the classification accuracy on
the testing set, which is considered in the fitness function.
By doing so, the evolutionary engine is provided with all

TABLE III
GRAPHICAL OVERVIEW OF THE STATISTICAL RESULTS. SEE TEXT.

Flame WDBC Ionosphere Sonar 50k Sonar 250k
Fitness +++ ∼ +++ ++ +++

RMSE Train ++ ∼ +++ ++ +++
Test ∼ ∼ +++ ∼ ++

Accuracy Train ++ ∼ +++ ++ +++
Test ++ ∼ ++ ∼ ++

AUROC Train ++ ∼ +++ ++ ++
Test ++ ∼ +++ ∼ ++

F-measure Train +++ ∼ +++ ∼ +++
Test ++ ∼ +++ ∼ ++

the dataset information, and no data is kept aside from the
evolutionary process. Thus, this results should be compared
with our training ones, which are superior. Additionally, we
also use less computational resources in the training phase
than previous approaches, since we perform less evaluations.
Tsoulos et al. report having used 1 million evaluations (500
individuals, 2000 generations), Soltaian et al. used from 92000
to 250000 evaluations, and Ahmadizar et al. used 250000
evaluation (500 individuals, 500 generations).

Statistical Analysis

To verify if the differences between the approaches are
meaningful we perform a statistical analysis. We start by
checking whether the samples follow a Normal Distribution
using the Kolmogoro-Smirnov and Shapiro-Wilk tests, with a
significance level α = 0.05. The tests revealed that we cannot
say that NN-SGE does not follow a Normal Distribution.
However, for GE the test revealed that it does not follow a
normal distribution. Based on the results of these tests, we will
assume that our data does not follow any distribution, and will
use non-parametric tests to perform the pairwise comparison
for each one of the recorded metrics.

We used the MannWhitney U test with the same level of
significance α = 0.05. Table III uses a graphical overview to
present the results of the statistical analysis: ∼ indicates no
statistical difference between NN-SGE and GE and + signals
that NN-SGE is statistically better than GE. The effect size is
denoted by the number of + signals, where +, ++ and +++
correspond respectively to low (0.1 ≤ r < 0.3), medium (0.3 ≤
r < 0.5) and large (r ≥ 0.5) effect sizes. A − signals scenarios
where the NN-SGE is worse than GE.
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Fig. 5. Box plots of the test accuracies for all used datasets.

Looking at the results, it is possible to see that NN-SGE is
never worse than GE. Moreover, the approaches are equivalent
in 15 occasions: on the test RMSE of the flame dataset, for
all comparisons on the WDBC, and on the test and f-measure
results of the sonar 50k dataset. For all the other comparisons
NN-SGE outperforms GE, and the effect size is medium in
16 occasions, and large in 14 occasions. These results confirm
the viability of the proposed approach. Figure 5 depicts the
test accuracies for the best individuals of each approach, for
all the problems considered.

Analysing the Evolved Networks

To better understand the impact of evolving the weights
and topology of an ANN we fine-tune the networks built by
SGE using backpropagation (BP) in two different scenarios:
(i) considering the evolved topology and the weights as the
initial weights for the BP algorithm (BP NN-SGE); and (ii)
considering the topology but not the evolved weights (BP
NN-SGE (top.)). In addition, we also compare the obtained
networks with the results obtained by training Fully Connected
Neural Networks (FCNNs) with one hidden-layer and number
of nodes equal to the ones used by the best networks evolved
using NN-SGE. The results are depicted in Table IV and are
averages of 30 networks, one for each evolutionary run. For
convenience, the first row (NN-SGE) shows the results prior to
the application of the BP algorithm (copied from Table II). The
BP algorithm is applied until convergence, up to a maximum
of 1000 epochs, with the default parameters of pybrain [25]: (i)
learning rate (lr): 0.01; (ii) lr decay: 1; and (iii) no momentum.

Focusing on the results obtained by applying BP to the
evolved networks (BP NN-SGE and BP NN-SGE (top.)) it
is clear that the evolution of both the topology and weights is
important for achieving better results. If we do not consider
the weights the performance of the networks is inferior to
the ones that used the evolved weights. This difference is
confirmed by the statistics, which show that BP NN-SGE is
always statistically superior to BP NN-SGE (top.) (α = 0.05).
Moreover, the advantage of evolving the weights is also
noticeable in the number of training epochs: when the evolved
weights are used, the number of BP epochs that are needed for
the learning algorithm to converge is lower than when weights

are initialised at random. This behaviour is observable in all
the conducted experiments.

The results obtained by the handcrafted FCNNs are consis-
tently worse than those obtained by BP NN-SGE. BP NN-SGE
is statistically superior to the handcrafted 29 times (marked
with two asterisks) and there is no statistical difference in the
remaining cases. These results prove that evolution is helpful
and facilities the process of finding effective networks to solve
the considered problems.

Comparing BP NN-SGE with the baseline (NN-SGE) it is
noticeable that in the first two datasets (flame and WDBC)
the results obtained without fine-tune are slightly superior
to those resulting from further training using BP. After a
careful examination we conclude that this is a result of the
implementation of the BP algorithm that splits the training data
into two disjoint sets. Therefore it is not guided taking into
account all data instances, and because the flame and WDBC
problems have lower complexity when comparing with the
ionosphere and sonar, evolution is able of attaining a near-
perfect tuning of the weights.

V. CONCLUSIONS AND FUTURE WORK

In this paper we propose a novel methodology for the
evolution of the topologies and parameters of ANNs for
multiple classification tasks. The proposed approach is based
on SGE, where the mutation operator was changed to consider
the different production rules under different probabilities.
These probabilities are based on the number of integers for
that production rule that are used in the genotype to phenotype
mapping. The fitness aims at minimising the RMSE in the clas-
sification task at hand; however, in order to avoid overfitting,
we consider the RMSE per class, which is combined with the
exponential function. By doing so, low errors have less impact
than greater ones.

NN-SGE is tested in four classification datasets, with an
increasing complexity: flame, WDBC, ionosphere and sonar.
Results show that NN-SGE is able to create more effective
ANNs than GE: the most similar Grammar-based GP ap-
proach. The performance of the evolved ANNs is better in
terms of fitness, RMSE, accuracy, AUROC and f-measure in
the train and test sets, which proves that NN-SGE is capable
of evolving consistent ANNs, that perform well beyond the
training data. Notwithstanding, we performed a statistical
analysis to assess the significance of the results. The analysis
revealed that NN-SGE is consistently statistically superior
when compared with GE. We also compared the best NN-SGE
evolved networks with hand-designed ones, and the results
showed that NN-SGE is consistently statistically superior to
them.

Next steps to expand on this work will focus primarily on
the study of the quality and impact of the feature selection
in the obtained results and on the generalisation of NN-SGE
to the evolution of ANNs with more than one hidden-layer.
Therefore, we will compare the selected features with those
selected by well established feature selection approaches (e.g.,
correlation feature selection) and investigate methodologies for



TABLE IV
COMPARISON BETWEEN THE BEST NN-SGE NETWORKS AND FULLY CONNECTED NEURAL NETWORKS (FCNNS). ∗ MEANS THAT BP NN-SGE IS

STATISTICALLY SUPERIOR TO BP NN-SGE (TOP.) AND ∗∗ THAT IT IS STATISTICALLY SUPERIOR TO BP NN-SGE (TOP.) AND FCNN. SEE TEXT.

RMSE Accuracy AUROC F-measure EpochsTrain Test Train Test Train Test Train Test

Flame

NN-SGE 0.16 ± 0.13 0.22 ± 0.13 0.96 ± 0.08 0.93± 0.09 0.98 ± 0.04 0.96 ± 0.08 0.96 ± 0.08 0.94 ± 0.09 -
BP NN-SGE 0.19 ± 0.14∗∗ 0.23 ± 0.14∗∗ 0.93 ± 0.13∗∗ 0.91 ± 0.14∗∗ 0.94 ± 0.13∗∗ 0.92 ± 0.16∗∗ 0.94 ± 0.10∗∗ 0.93 ± 0.13∗∗ 558 ± 482

BP NN-SGE (top.) 0.43 ± 0.08 0.43 ± 0.08 0.70 ± 0.11 0.69 ± 0.11 0.63 ± 0.27 0.62 ± 0.25 0.81 ± 0.06 0.80 ± 0.06 633 ± 438
FCNN 0.40 ± 0.08 0.40 ± 0.08 0.74 ± 0.11 0.75 ± 0.11 0.68 ± 0.30 0.71 ± 0.28 0.81 ± 0.08 0.81 ± 0.08 749 ± 406

WDBC

NN-SGE 0.19 ± 0.03 0.23 ± 0.04 0.95 ± 0.02 0.93 ± 0.02 0.99 ± 0.01 0.98 ± 0.02 0.93 ± 0.03 0.91 ± 0.03 -
BP NN-SGE 0.26 ± 0.07∗∗ 0.28 ± 0.06∗∗ 0.90 ± 0.08∗∗ 0.88 ± 0.08∗∗ 0.95 ± 0.09∗∗ 0.94 ± 0.09∗∗ 0.82 ± 0.22∗∗ 0.80 ± 0.23∗∗ 343 ± 425

BP NN-SGE (top.) 0.36 ± 0.09 0.36 ± 0.09 0.79 ± 0.12 0.78 ± 0.12 0.85 ± 0.19 0.84 ± 0.19 0.55 ± 0.40 0.54 ± 0.39 697 ± 408
FCNN 0.46 ± 0.06 0.46 ± 0.06 0.66 ± 0.09 0.66 ± 0.09 0.56 ± 0.14 0.56 ± 0.14 0.11 ± 0.27 0.11 ± 0.27 657 ± 358

Ionosphere

NN-SGE 0.21 ± 0.07 0.32 ± 0.05 0.93 ± 0.11 0.87 ± 0.10 0.94 ± 0.04 0.90 ± 0.05 0.93 ± 0.18 0.89 ± 0.17 -
BP NN-SGE 0.20 ± 0.05∗∗ 0.31 ± 0.05 0.95 ± 0.03∗∗ 0.89 ± 0.03∗ 0.94 ± 0.04∗ 0.90 ± 0.05∗ 0.97 ± 0.02∗∗ 0.91 ± 0.02∗ 259 ± 307

BP NN-SGE (top.) 0.31 ± 0.06 0.35 ± 0.06 0.88 ± 0.08 0.83 ± 0.08 0.87 ± 0.14 0.84 ± 0.16 0.91 ± 0.05 0.89 ± 0.05 863 ± 274
FCNN 0.23 ± 0.03 0.31 ± 0.04 0.94 ± 0.02 0.88 ± 0.03 0.96 ± 0.02 0.91 ± 0.05 0.95 ± 0.01 0.91 ± 0.02 818 ± 233

Sonar 50k

NN-SGE 0.34 ± 0.06 0.44 ± 0.04 0.84 ± 0.12 0.73 ± 0.09 0.91 ± 0.04 0.82 ± 0.05 0.78 ± 0.23 0.64 ± 0.20 -
BP NN-SGE 0.33 ± 0.06∗∗ 0.43 ± 0.04∗ 0.84 ± 0.12∗∗ 0.74 ± 0.09∗ 0.91 ± 0.05∗∗ 0.82 ± 0.05∗ 0.79 ± 0.23∗∗ 0.67 ± 0.19∗ 99 ± 160

BP NN-SGE (top.) 0.48 ± 0.04 0.49 ± 0.03 0.61 ± 0.11 0.59 ± 0.10 0.67 ± 0.15 0.63 ± 0.14 0.42 ± 0.32 0.40 ± 0.31 519 ± 477
FCNN 0.39± 0.06 0.43 ± 0.04 0.77 ± 0.12 0.70 ± 0.11 0.84 ± 0.13 0.78 ± 0.11 0.70 ± 0.25 0.63 ± 0.22 775 ± 391

Sonar 250k

NN-SGE 0.27 ± 0.04 0.42 ± 0.05 0.92 ± 0.04 0.78 ± 0.05 0.93 ± 0.04 0.84 ± 0.05 0.90 ± 0.05 0.74 ± 0.07 -
BP NN-SGE 0.26 ± 0.06∗∗ 0.41 ± 0.05∗ 0.92 ± 0.04∗∗ 0.78 ± 0.05∗∗ 0.93 ± 0.03∗∗ 0.85 ± 0.05∗∗ 0.91 ± 0.04∗∗ 0.75 ± 0.07∗∗ 118 ± 223

BP NN-SGE (top.) 0.45 ± 0.05 0.47 ± 0.04 0.66 ± 0.14 0.62 ± 0.12 0.70 ± 0.20 0.67 ± 0.18 0.50 ± 0.31 0.46 ± 0.28 624 ± 472
FCNN 0.40 ± 0.07 0.44 ± 0.05 0.74 ± 0.16 0.69 ± 0.13 0.79 ± 0.18 0.76 ± 0.16 0.72 ± 0.16 0.67 ± 0.11 654 ± 425

updating the grammatical production rule that defines the neu-
rons in the previous layer (<features>). Later, the approach
will be tested on the evolution of different ANN types, such
as Convolutional Neural Networks or AutoEncoders.
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