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Abstract

Tasks such as image retrieval, scene classi�cation, and obj ect recognition often make
use of local image features, which are intended to provide a reliable and ef�cient image
representation. However, local feature extractors are designed to respond to a limited set
of structures (e.g. blobs or corners), which might not be suf�cient to capture the most
relevant image content.
We discuss the lack of coverage of relevant image information by local features as well
as the often neglected complementarity between sets of features. As a result, we pro-
pose an information-theoretic-based keypoint extraction that responds to complementary
local structures and is aware of the image composition. We empirically assess the valid-
ity of the method by analysing the completeness, complementarity, and repeatability of
context-aware features on different standard datasets. Under these results, we discuss the
applicability of the method.

1 Introduction

Local feature extraction is a prominent and proli�c researc h topic for the computer vision
community, as it plays a crucial role in many vision tasks. Local feature-based strategies
have been successfully used in numerous problems, such as wide-baseline stereo matching
[1, 18, 31], content-based image retrieval [23, 26, 30], object class recognition [6, 22, 27],
camera calibration [9], and symmetry detection [4]. The key idea underlying the use of local
features is to represent the image content by a sparse set of salient regions or (key)points. By
discarding most of the image content, we save computation and improve robustness as there
are redundant local image patches rather than a limited number of global cues [29].

The desired properties of a local feature extractor are dictated by its application. For
example, matching and tracking tasks mainly require a repeatable and accurate feature ex-
traction. The objective is to accurately identify the same features across a sequence of im-
ages, regardless of the degree of deformation. It is not relevant if the set of features fails to
cover the most informative image content. On the other hand, tasks such as object (class)
recognition, image retrieval, scene classi�cation, and im age compression, require a robust
image representation [32]. The idea is to analyse the image statistics and use local features to
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(a) (b)
Figure 1: Proposed keypoint extraction: (a) Context-aware keypoints on a well-structured
scene (100 most informative locations); (b) A combination of context-aware keypoints (green
squares) with SFOP keypoints [9] (red squares) on a highly textured image.

capture relevant image content. Here, the requirements of repeatability and accuracy become
less relevant.

This paper focuses on the problem of providing a robust feature-based image represen-
tation. Our contribution is a feature extractor aimed at covering the most informative image
content. The proposed algorithm, coined as Contex-Aware Keypoint Extractor (CAKE),
responds to complementary local structures and is aware of the image composition. We
follow an information-theoretic approach by assuming that the so-called salient locations
correspond to points within structures with a low probability of occurrence, which is in ac-
cordance with a plausible characterisation of visual saliency [3]. We are motivated by the
fact that the majority of local feature extractors makes strong assumptions on the image con-
tent, which can lead to an ineffectual coverage of the content [5, 8]. Here, the idea is not
to formulate any a priori assumption on the structures that might be salient. Moreover, our
scheme is designed to take advantage of different local representations (descriptors).

A context-aware extraction can respond to features with a reasonable degree of comple-
mentarity as long as they are informative. For images with many types of structures and
patterns, one can expect a high complementarity among the features retrieved by a context-
aware extractor. Conversely, images with repetitive patterns inhibit these extractors from
retrieving a clear summarised description of the content. In this case, the extracted set of
features can be complemented with a counterpart that retrieves the repetitive elements in the
image. To illustrate the above-mentioned advantages, we depict these two cases in Figure 1.
The left image shows a context-aware keypoint extraction on a well-structured scene, retriev-
ing the 100 most informative locations. This small number of features is suf�cient to provide
a good coverage of the content, which includes several types of structures. The right image
depicts the bene�ts of combining context-aware keypoints w ith strictly local ones (SFOP
keypoints [9] ) to obtain a better coverage of textured images.

2 Related Work

We will provide a brief, yet illustrative, description of solutions that have contributed towards
establishing local feature extraction as a mature research topic. For a more complete review,
we will refer to the work of Tuytelaars and Mikolajczyk [32] and references within.
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A large family of local feature extractors is based on local differential geometry. The
Harris-Stephens keypoint extractor is a well-known example of an algorithm based on lo-
cal differential geometry: it takes the spectrum of the structure tensor matrix to de�ne a
saliency measure. The Scale Invariant Feature Operator (SFOP) [9] also relies on the struc-
ture tensor matrix. It responds to corners, junctions and circular features. This explicitly
interpretable and complementary extraction is a result of a uni�ed framework that extends
the gradient-based extraction previously discussed in [7] and [24] to a scale-space represen-
tation [16]. The Hessian matrix is often used to extract blob-like structures, either by using
its determinant� it attains a maximum at blob-like keypoints � or by searching for local ex-
trema of the Laplacian operator, i.e., the trace of the Hessian matrix. The Harris-Laplace [19]
is a scale covariant region extractor that results from the combination of the Harris-Stephens
scheme with a Laplacian-based automatic scale selection. The Harris-Af�ne scheme [ 20],
an extension of the Harris-Laplace, relies on the combination of the Harris-Laplace opera-
tor with an af�ne shape adaptation stage [ 17]. Similarly, the Hessian-Af�ne extractor [ 20]
follows the same af�ne shape adaptation. However, the initi al estimate is taken from the de-
terminant of the Hessian matrix. Some extractors rely solely on the intensity image, such as
the Maximally Stable Regions (MSERs) extractor [18], which retrieves stable regions (with
respect to intensity perturbations) that are either brighter or darker than the pixels on their
outer boundaries. In [10], Gilles proposes an information-theoretic algorithm: keypoints cor-
respond to image locations at which the entropy of local intensity values attains a maximum.
Kadir and Brady [11] introduce a scale covariant salient region extractor, which estimates
the entropy of the intensity values distribution inside a region over a certain range of scales.
Salient regions in the scale space are taken from scales at which the entropy is at its peak.
In [12], Kadir et al. propose an af�ne covariant version of the extr actor introduced in [11].
Dickscheid et al. [5] suggest a local entropy-based extraction, which uses the entropy density
of patches to build a scale-space representation. This density is expressed using a model for
the power spectrum that depends on the image gradient and noise.

3 Context-Aware Keypoint Extraction

Our context-aware keypoint extraction is formulated in an information theoretic framework.
We de�ne saliency in terms of information content: a keypoin t corresponds to a particular
image location within a structure with a low probability of occurrence (high information
content). We follow Shannon’s de�nition of information [ 28]: if we consider a symbol s,
its information will be given by I(s) = � log(p(s)), where p(�) denotes the probability of a
symbol. In the case of images, de�ning symbols is complex and the content of a pixel x is
not very useful, whereas the content of a region around the point would be more appropriate.
We can consider w(x) 2RD, any viable local representation (e.g. the Hessian matrix) as a
�codeword� that represents x. We can see the image codewords as samples of a multi-variate
probability density function (PDF). In the literature, there is a number of methods to estimate
an unknown multivariate PDF with a suf�cient number of sampl es. Among all, we have
decided to use the Parzen density estimator [25], also known as Kernel Density Estimator
(KDE). The KDE is appropriate for our objective since it is non-parametric, which will allow
us to estimate any PDF, as long as there is a suf�cient number o f samples. Using the KDE,
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the probability of a codeword w(y) is

bp(w(y)) =
1

Nh ∑
x2Φ

K

�
d(w(y);w(x))

h

�
; (1)

where d is a distance function, K is a kernel, h is a smoothing parameter called bandwidth,
Φ is the image domain, and N represents the number of pixels. The idea of the KDE method
is to blur the contribution of each sample x by spreading it to a certain area in RD with a
certain shape, which is de�ned by K. If K has compact support, or decreases as a function
of the distance d, then codewords in dense areas of the multi-variate distribution will have
higher probability than isolated samples. There are several choices for the kernel. The most
commonly used and the most appropriate for our method is a multidimensional Gaussian
function with zero mean and standard deviation σk. Using a Gaussian kernel, (1) becomes

�p(w(y)) =
1

NΓ ∑
x2Φ

e
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2σ2
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�
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where h has been substituted by the standard deviation σk and Γ is a proper constant such
that the estimated probabilities are taken from an actual PDF. Having de�ned the probability
of a codeword, we can de�ne the saliency measure as follows:

m(y) =� log

 
1
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x2Φ

e
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�d2(w(y);w(x))

2σ2
k

�!
: (3)

In this case, context-aware keypoints will correspond to local maxima of m that are beyond
a certain threshold T .

To conclude, we need to de�ne a distance function d and set a proper value to σk.

The distance d We use the the Mahalanobis distance. Let W be the set of all the multi-
variate samples, i.e., W =

S
x2Φ w(x) and ΣW the covariance matrix of W . The Mahalanobis

distance between w(y) and w(x) is dM(w(x);w(y)) =
q

(w(x)�w(y))T Σ�1
W (w(x)�w(y)).

By considering the aforementioned distance, which is invariant under af�ne transformations,
the following property can be drawn:

Property 1. Let w(1) and w(2) be codewords such that w(2)(x) = T (w(1)(x))), where T is
an af�ne transformation. Let p (1) and p(2) be the probability maps of w(1) and w(2), i.e.,
p(i)(�) = p(w(i)(�)), i = 1;2. In this case,

p(2)(x)� p(2)(y) () p(1)(x)� p(1)(y);8x;y 2Φ:

The smoothing parameter σk If σk is too large, the KDE over-smoothes the estimated
PDF, which cancels the inherent PDF structure due to the image content. On the other
hand, if σk is too small, the interpolated values between different samples might be very
low, such that there is no interpolation anymore. We propose a strategy, in the case of an
univariate distribution, to determine σ?

k , an optimal σk, aiming at �suf�cient blurring� while
having the �highest sharpen� PDF between samples. For our pu rposes, we can use univariate
distributions, since we approximate the KDE computations of a D-dimensional multi-variate



MARTINS ET AL.: CONTEX-AWARE KEYPOINT EXTRACTION 5

PDF by estimating D separate univariate PDFs (see Appendix). Having a series of N samples
w, we de�ne the optimal σk for the given distribution as

σ?
k = argmax

σ>0

Z wi+1

wi

1p
2πσ

�������������

d

0

BB@e

�(w�wi)
2

2σ2 +e

�(w�wi+1)2

2σ2

1

CCA

dw

�������������

dw; (4)

where wi and wi+1 is the farthest pair of consecutive samples in the distribution. It can be
shown that, by solving (4), we have σ?

k = jwi�wi+1j. It can also be demonstrated that for
σ < jwi�wi+1j=2, the estimated PDF between the two samples is concave, which provides
insuf�cient smoothing.

4 Hessian-based CAKE instance

In this section, we introduce an instance of the context-aware keypoint extractor. Different
instances are given by considering different local representations.

The Hessian matrix appears as a suitable intrinsic codeword as it describes the local shape
characteristics. Furthermore, the inclusion of multi-scale components provides a framework
to design an instance characterised by a quasi-scale-covariant extraction. The codeword for
the multi-scale Hessian-based instance is

w(x) =
�

t2
1 Lxx(x;t1) t2

1 Lxy(x;t1) t2
1 Lyy(x;t1) t2

2 Lxx(x;t2) t2
2 Lxy(x;t2) t2

2 Lyy(x;t2)

� � � t2
MLxx(x;tM) t2

MLxy(x;tM) t2
MLyy(x;tM)

�T
;

(5)

where Lxx, Lxy and Lyy are the second order partial derivatives of L, a Gaussian smoothed
version of the image, and ti, with i = 1; : : : ;M, represents the scale.

5 Experimental Validation and Discussion

We have evaluated and compared the performance of the Hessian-based CAKE instance
(which we will refer to as [HES]-CAKE) using three criteria: completeness, complementar-
ity, and repeatability. We can quantify completeness as the amount of image information that
is preserved by a set of features. Complementarity is a particular case of completeness anal-
ysis: it re�ects the amount of image information coded by set s of potentially complementary
features [5]. The repeatability score is a measure that ascertains how precisely an extractor
responds to the same locations under several image transformations, which re�ects the level
of covariance and robustness. The experiments were performed on the Oxford dataset [21]
and on the dataset used by Dickscheid et al. for completeness evaluation [5]. The latter com-
prises four categories of natural scenes [14, 15], the Brodatz texture collection [2] as well as
a set of aerial images. Example images from this dataset are depicted in Figure 2.

With the aim of comparison, we have also evaluated the performance of some of the
leading algorithms on scale or af�ne covariant feature extr action: the Hessian-Laplace (HES-
LAP), the Harris-Laplace (HARLAP), the Scale Invariant Feature Operator (SFOP), and the
Maximally Stable Extremal Regions (MSER) extractor. The implementations are the ones
given and maintained by the authors and default parameters were used.
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Table1 outlines the parameter settings for the CAKE instance. We note that our extractor
retrieves more features than its counterparts. For a fair evaluation of repeatability, we have
de�ned a threshold to avoid a considerable discrepancy in the number of features.

Table 1: [HES]-CAKE parameter settings.
[HES]-CAKE
Number of scales 12
ti+ 1=ti (ratio between successive scale levels) 1.19
t0 (initial scale) 1.4
Non-maximal suppression window 3� 3
T (threshold) 12 or 3000 keypoints (for the Oxford dataset)/None (otherwise)
sk optimal
NR (number of samples, seeAppendix) 200

The evaluation protocols require regions rather than keypoints. We use the normalised
Laplacian operator,Ñ2Ln = t2(Lxx + Lyy), to determine the characteristic scale for each de-
tected keypoint, which, in this case, corresponds to the oneat which the normalised Lapla-
cian attains an extremum. This scale de�nes the radius of a circular region centred about the
keypoint.

The non-optimised Matlab implementation of [HES]-CAKE takes, on average, 272.3
seconds to process an 800� 600 image.

Brodatz Aerial Forest Mountain Tall building Kitchen
(30 images) (28 images) (328 images) (374 images) (356 images) (210 images)

Figure 2: Example images from the categories in the dataset.

5.1 Completeness and complementarity

To measure completeness, Dickscheid et al. [5] compute an entropy density,pH , based on
local image statistics, which is not context-aware, and a feature coding density,pc, derived
from a given set of features. The (in)completeness measure corresponds to the Hellinger

distance between the two densities:dH(pH ; pc) =
q

1
2 å x2F (

p
pH (x) �

p
pc(x))2. When

pH andpc are very close,dH will be small, which means that the set with a coding density
pc ef�ciently covers the image content, i.e., the set has a highcompleteness. We note that this
measure penalises the use of large scales (which is a straightforward solution to achieve full
coverage of the content) as well as the presence of features in pure homogeneous regions. On
the other hand, it rewards the “�ne capturing" of local structures or superimposed features
appearing at different scales.

Figure3 outlines the completeness results for each image category (Figure2), in terms

of the distances betweenpH and pc. As in [5], we have plotted the liney =
q

1
2, which

corresponds to an angle of 90 degrees betweenpH andpc. Any distance beyond this thresh-
old will correspond to a pair of “suf�ciently different" densities. Regardless of the image
collection, the [HES]-CAKE achieves the best completenessscores. The completeness and
complementarity scores obtained from the third image in each Oxford sequence are reported
in Figure4. Here, the Hessian-based instance shows a better performance on well-structured
scenes such as “Gra�tti", “Bikes" or “Leuven". Conversely,the relevant content of highly


