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Abstract: Representing large amounts of flows involves dealing with the representation of directionality and the re-
duction of visual cluttering. This article describes the application of two flow representation techniques to
the visualization of transitions of customers among supermarkets over time. The first approach relies in arc
representations together with a combination of methods to represent directionality of transitions. The other
approach uses a swarm-based system in order to reduce visual clutter, bundling edges in an organic fashion
and improving clarity.

1 INTRODUCTION

Nowadays data are collected faster than analyzed.
The advances in computation allow the storage and
processing of large amounts of data in a reasonable
time. Additionally, current visualization techniques
enable efficient analysis of data, while trying to deal
with generated visual clutter in order to achieve better
visual clarity. Graphical exploratory analysis of tran-
sitions in space is important to many fields of study,
since it enables the understanding of the amounts of
flows among geographical locations, while enabling
to focus on certain geographical areas and time spans.

In this article we present an application of visual
techniques to represent big amounts of consumption
data in more than 700 supermarkets and hypermar-
kets in Portugal, having all registered transactions
from May of 2012 to April of 2014. This article fo-
cuses on the graphical exploration of customers tran-
sitions among supermarkets over time. Transitions
are visualized in order to reveal flow patterns of cus-
tomers. We considered a transition whenever there is
a change in a transaction’s location in a customer’s
shopping history. These transitions can be repre-
sented as origin-destination (OD) vectors. The rea-
sons that cause a transaction can be fairly intricate,
but can perhaps be related with local and temporal
discounts, and seasonal and definite changes in a cus-
tomer’s residency.

This paper tackles the visualization of flows of
transitions using two approaches. More precisely,
the issue of visual clutter in high-dense representa-
tion and the directionality of flow streams. The first
approach employs a well known visualization tech-
nique, which is based on arc representation (sec-
tion 3 provides a detailed description of the applica-
tion of this technique to our data). The second ap-
proach relies on bio-inspired mechanism known as
flocking. The application of this technique enables
the representation to convey information on transition
flows with bio-inspired aesthetics while reducing the
amount of visual clutter to improve clarity (see sec-
tion 4 for a detailed description).

2 BACKGROUND AND RELATED
WORK

Arc diagrams are a widely known method to visual-
ize structures in text, songs or any other sequences of
symbols popularized by Wattenberg M. (Wattenberg,
2002). Since then, arcs have been applied in differ-
ent domains, namely in graph visualization and geo-
graphic visualization, particularly to represent origin-
destination data. The work of Schich et al. (Schich
et al., 2014) is an example of application of arcs in
geographic context to represent OD-like data. In this



work origin and destination represents, respectively,
the place of birth and place of death of notable people
in the history. The directionality is represented with
color interpolation (red-blue for origin-destination).
One of the concerns of origin-destination visualiza-
tion is the representation of directionality of edges,
particularly when dealing with bidirectional flows.
Recent work (Holten and van Wijk, 2009) has pre-
sented six different ways of edge directionality repre-
sentation (tapered, dark-to-light, light-to-dark, arrow,
curved, and green-to-red) and compared the reading
performance of each technique. This study suggests
that the tapered method is advantageous in most situa-
tions, unlike curved representation which is the worst
of all cases. In any cases, the representation of bidi-
rectional data is still challenging, due to additional vi-
sual information added to each edge.

Direct visualization of large volumes of OD data
generates high degrees of visual clutter. In these
cases a reduction strategy known as edge bundling
can be applied, which is characterized not only by
graph simplification, but also by the revelation of
principal streams of flow. Holten introduced edge
bundling for compound graphs. His work consisted of
routing edges through a hierarchical layout using B-
Splines (Holten, 2006). There are several variations
of edge bundling starting with force-directed (Holten
and Van Wijk, 2009) up to sophisticated kernel den-
sity estimation strategies (Hurter et al., 2012). Gener-
ally, edge bundling consists of drawing similar edges
on the same path, i.e. edges that are related in geom-
etry and direction are routed along the same path.

In the geographic context OD representation as a
rule refers to the flow visualization (also known as
flow maps), which is deeply rooted in the history of
information visualization. Early examples, such as
wine exports from France, produced by Minard (Tufte
and Graves-Morris, 1983, page: 25), represents quan-
tity as well as direction of wine exports encoded by
the thickness of the corresponding edges, which dis-
join from the parent edge. The work of Phan et al.
(Phan et al., 2005) describes an automated approach
to the generation of flow maps using a hierarchical
clustering algorithm, given a series of nodes and flow
data. Generally, in geographic context flow visual-
ization refers to the representation of amounts of any
type of variables that move from one location to an-
other (e.g. migrations, transportation of goods, etc.).
The advantage of flow maps is that they reduce visual
clutter by merging edges. However, they present a
series of of problems, such as the perception of direc-
tionality of flow, when large amounts of bidirectional
OD data is considered.

3 DATA DESCRIPTION

Our dataset consists of 278GB of information about
customer purchases in 729 supermarkets and hyper-
markets in Portugal in a time span of 24 months
(from May, 2012 until April, 2014), including the
geo localization of 682 supermarkets, as well as the
regions of the country they belong to. The dataset
comprises approximately 2.86 billions of transactions
where each transaction has the following attributes:
customer card id, amount spent, product designation,
quantity of the purchased products and the date and
time of the transaction. It is important to note that
several individuals may hold the same customer card
with an unique client id (e.g. members of a family).
The dataset has a total of 6.6 Million unique card ids.

Before the extraction of transitions among super-
markets we first compute their geographical clusters.
The reason for that is because the majority of super-
markets belong to shopping centers which are consid-
ered as a unique geographical location. In this case
the DBSCAN algorithm (Ester et al., 1996) was ap-
plied with the parameters of 0 for K and 0.01 for ep-
silon. As a result 304 clusters were obtained, where
the extracted locations are the centroids of the clusters
of supermarkets (each centroid will be referenced as
a single supermarket for the sake of simplicity).

With the clusters computed we proceed to ex-
tract transitions as follows: first the data is aggre-
gated by day (24 hours); then for each client the
sequence of transitions is computed by excluding
subsequences of repeated places. For example, let
X = (A,A,B,B,B,C) be the sequence of supermarkets
where a client made transactions. So, the transition
sequence would be Xtr = (t1(A,B), t2(B,C)).

4 ARC REPRESENTATION

Our first approach was based on direct representation
of the data. The transition sequence is directly en-
coded by edges, that represents the link between the
origin-destination supermarket, as well as the num-
ber of clients that transitioned. The directionality of
the edge is represented based on the combination of
taped and curved methods, due to the bidirectionally
of data. Since arc-based approach usually do not rep-
resent directionality, the thickness of arcs in our visu-
alization increase as they approach their destination,
resembling the trajectory of a projectile or a comet.
The asymmetrical curve gives a more natural sense
of direction. Arcs where also used because they re-
duce visual clutter when compared with straight lines
methods.



4.1 Arc Anatomy

The arcs consist of a bezier curve (Farin et al., 2002,
page: 4-6) with two control points (see Figure 1).
These points are the vertices of triangles ODC1 and
DOC2. The two triangles are computed differently
with empirically determined values. The length of the
DC1 edge has 60% of the length of OD, and the an-
gle β is equal to 27. The OC2 edge has 90% of the
length of OD, and the angle α varies proportionally
to the OD length, and is constrained to the range [10,
20]. The upper and lower angular limits correspond to
the maximum and minimum length of the set of ODs.
By adjusting the C2 control point the arc changes its
curvature, making the long arcs visually distinct from
short ones.

Figure 1: The position of control points for different OD
distances.

The arc on its own does not convey any informa-
tion besides the connection of two points. In order
to encode the quantity of clients involved in the same
transitions we use the thickness and transparency of
the line (Figure 2). The thickness give a good estima-
tion of the encoded value, while opacity diminishes
the impact of less relevant transitions. Only the des-
tination side of the arc changes its thickness, interpo-
lating from the destination value (amount of transi-
tioned clients) to a certain minimum at the opposite
side of the arc. Moreover, this kind of representa-
tion gives a clear understanding of the direction of OD
data (Holten and van Wijk, 2009).

The color of each arc varies with respect to the
corresponding value. The minimum and maximum
numbers of transitions are represented with blue and
orange respectively, and intermediate colors are inter-
polated according to the value (Figure 2). Therefore,
arcs that represent few transitions appear in transpar-
ent blue color, unlike arcs that represent high number
of transitions, which appear in saturated orange color.

4.2 Application

Each day in the dataset is visualized separately dis-
playing only the transitions that occurred on that par-

Figure 2: Arcs representing the data variable. Reading top
down each arc represents maximum, 75% quartile, median
and 25% quartile value. The colors are interpolated in the
range RGBA[(86,150,255,30),(255,152,74,100)]

ticular day. By navigating on the timeline the user
can change the current day. Although, we can zoom
to any part of the country to analyze it in detail, we
focused on two major metropolitan areas - Porto and
Lisbon - and in a general view of the country (Figure
3). In the general view all the arcs whose origin and
destination locations are inside the same region are
not represented, since the density of such transitions
at this zoom level does enable a proper representation
beyond visual noise. Therefore, in the general view
we opted to visualize only inter-regional transitions.
In closer views we only display the arcs that fit in the
viewing area.

While applying this technique to the dataset we
noted several limitations. First, a large data density
generates a high degree of visual clutter, making gen-
eral view hard to analyze (Figure 3, image on the left).
For instance edges that connect supermarkets in Lis-
bon and supermarkets in Porto hide a significant part
of the edges that connect other urban areas, for ex-
ample Coimbra and Porto. Also, in our data the most
of the transitions occur within shorter distances limit-
ing this approach in terms of analysis, since it is ex-
tremely difficult to estimate the values and direction
of short arcs (See for example Figure 3, images in the
middle and on the right).

5 SECOND APPROACH

In the second approach we relied on nature-inspired
mechanisms, more precisely on a swarm system.
Each transition in the sequence is encoded through
a simulated path of a boid. By running the system
each boid interacts with the ghosts of other boids
(Reynolds, 1987), updating its own path at each sim-



Figure 3: The general view of Portugal (left), metropolitan area of Porto (middle), metropolitan area of Lisbon (right). The
displayed date is 23 of December, 2012. The scale of the zoomed views with respect to the general view is 1:10.

ulation step. Ghosts of each boid hold information
about the position, direction, destination and data
value at each simulation point on the path. The pro-
cess is iterative and in each execution cycle all the
active boids are simulated.

5.1 Flocking and Flow Representation

In order to reflect the flowing nature of the informa-
tion we resort to a swarm system, which is comprised
by artificial agents (boids) that react to the presence
and characteristics of neighboring boids. While run-
ning the system each boid simulates the flow of data,
adapting the paths that represent OD edges, bundling
them and making visual patterns emerge. As a result,
the visualization represents the flows in the dataset
with reduced degree of visual clutter.

Each boid in the system is characterized by di-
rection, speed, radius of vision, the number of tran-
sitions that it represents, a set of behavioral rules, and
its unique origin-destination points. During the simu-
lation each boid leaves persistent traces, further refer-
enced as ghosts, that contain information for the speed
and position at that point as well as a reference to the
boid itself.

The behavioral rules of each boid are determined
through the interaction with the traces of other mem-
bers of the flock. Pairwise comparison between boids
and ghosts establishes the relationship between them
and their behavior. If the agents advance in simi-
lar directions, they are considered friendly. If the
agents advance in opposite directions, they are con-
sidered unfriendly. Otherwise, they ignore each other.
The degree of similarity affects the force of attraction
or repulsion between agents and ghosts. Therefore,
friendly agents advance together as a group and un-

friendly agents repel from each other avoiding colli-
sions. Figure 4 illustrates this behavior.

Figure 4: Pairwise comparison between one boid and neigh-
boring ghosts. The black dot and the arrow in the center are
the current boid and its direction. The gray dots are ghosts
left by other boids. The dashed circle is the radius of vi-
sion and the dashed lines are the relations with the ghosts
green and red lines represent friendly and unfriendly rela-
tionships, respectively. Gray dashed line connects the ghost
that is ignored.

The direction and the speed of each boid B with
position ~pB depends on the position ~pX of ghosts X
within the radius of vision dV R and the angle between
their direction vectors ~dX and ~dB. Each boid in the
system simulates its path until reaching its destina-
tion. Otherwise, the boid finishes its simulation and
is marked as inactive. The following rules are applied
to each active boid in the system.

Stick with friends. Each boid attempts to move
towards the center of the group of friendly ghosts.
Friendly ghosts are determined by the angle between
directions of the boid and neighbor ghosts. Their
similarity creates stronger relationship and are deter-



mined by the distance and the angle between their di-
rections.

||~pX − ~pB| | ≤ dV R

~̂dX ~dB<amax

}
⇒ ~vF = 1

nX
∑X

~pX−~pB
|| ~pX−~pB||w(X ,B) (1)

Avoid unfriendly boids. Each boid attempts to
avoid collision with the ghosts of other boids if the an-
gle between their directions are bigger than π−amax.

||~pX − ~pB| | ≤ dV R

~̂dX ~dB<π−amax

}
⇒ ~vF = 1

n ∑X

{
−⊥ d̂Bw(X ,B) i fCZ(~pX )≥ 0
⊥ d̂Bw(X ,B) i fCZ(~pX )<0

(2)

Similarity between two boids determines the
weight of the force, and is related to the distance be-
tween boids, the angle between their directions, and
the data value, this is, the quantity of transactions that
are encoded. Boids that contain higher quantities have
greater impact over the other members of the flock.
So, the similarity between two boids is computed as
follows:

w(X ,B) =
wa(~dX , ~dB)+wm(~pX , ~pB)

2
×dataX (3)

wa(~dX , ~dB) = 1−

 ~̂dX ~dB

amax

3

(4)

wm(~pX , ~pB) = 2(2−0.1|| ~pX−~pB||) (5)
Where dX and dB are the vectors of the direction

of boid B and ghost X , and amax is the maximum an-
gle allowed between two direction vectors. dataX
is the normalized value of data variable ((value−
min)/(max−min)). All the parameters were empiri-
cally determined.

Avoid static points. Every boid B in the system at-
tempts to avoid collision with the static points S with
the position ~cS, which is the centroid of a cluster of
supermarkets. The origin and destination points do
not enter in the calculation.

||~cS− ~pB| | ≤ dSP⇒ ~vSP = 1
n ∑S

{
−⊥ d̂B i fCZ(~CS)≥ 0
⊥ d̂B i fCZ(~CS)< 0

(6)

CZ(~p) =
(

~p− ~pB

‖~p− ~pB‖
× ~dB

)
Z

(7)

Finally, each boid is always attracted by its desti-
nation, having the force vector equal to the normal-
ized vector pointing towards the boids destination.
When the boid approximates its destination, all the
forces, except the destination force, are ignored and
the speed is limited to 1. This restriction ensures that
each boid reaches its destination.

The location of boids is defined by applying the
computed vector forces as follows: all the forces are
added to the acceleration; then the acceleration is
added to the speed; finally, the speed is limited to the
predefined maximum and is added to the current lo-
cation. The maximum defined speed reflects on the
visual output resulting in high and low curvature of
edges for speed limited to 1 and 3, respectively.

In each iteration the boid’s paths are updated ac-
cording to the current state of the system. More pre-
cisely, during the execution cycle each boid interacts
with the ghosts left by other boids and never with their
own ghosts. The process stops when the boid reaches
its destination or its path remain unaltered during last
three simulation steps. In order to determine if a path
has changed since the last iteration we compute the
root-mean-square deviation (RMSD) at each iteration.
So, given the current path PC and the previous path PP
which comprise sequences of ghosts P computed in
current and the last iteration, RMSD is calculated as
follows:

RMSD =

√
1
n

i

∑
n
‖PCi−PPi‖2 (8)

Where n is the minimum number of ghosts in both
paths. If the average of the last three RMSD is below
a certain threshold (in our case 0.5) then the boid is
marked as inactive preventing it from further updating
of its path.

The application of this technique to the data has
similar aspects with the first approach - focus on the
general view and two zoomed views for Lisbon and
Porto metropolitan areas. In the general view all the
supermarkets that belong to the same region are not
considered, while in the zoomed views the edges that
do not fit in the zoomed area are not computed. The
number of transitions per path is encoded by the thick-
ness of the line and by the color scheme used in arc
representation. The directionality is represented using
the tapered method (see Fig. 5).

At this stage we found limitations in our approach.
First there is no guaranty that the algorithm con-
verges, since it highly depends of the overall state of
the system, which varies according to the data. For
that reason we established a threshold equal to 99.9%
of inactive boids to force the algorithm to stop. The
complexity of the algorithm also depends on data,
more precisely it depends on the number of OD edges
and their length, since each boid computes its position
by considering the trails of every other boid and more
lengthy edges implies that more trails are generated.



Figure 5: General view of Portugal, image on the left, and metropolitan area of Lisbon, image on the right. The displayed
date is 23 of December, 2012.

6 DISCUSSION

In this section, arc representation, swarm-based rep-
resentation and force directed edge bundling (FDEB)
are compared and discussed. The visual output from
the three techniques is displayed in Figure 6. To com-
pare the approaches we choose a day before Christ-
mas (23 of December of 2012) and zoomed on Lis-
bon’s view. The same visual mapping is applied in
all three approaches allowing a fair comparison be-
tween them. The usage of the color and the thickness
of edges was described in previous sections.

The very first comparison reveals the efficiency
of visual clutter reduction. As can be observed, the
force directed edge bundling method generates less
visual clutter in comparison with arc and swarm-
based representation. Also, swarm-based visualiza-
tion is less cluttered than arc representation. When
using swarms, main streams of flow are visually dis-
tinct from each other leaving enough space for the
ones with less impact.

In the swarm system each boid attempts to avoid
the boids with opposite directions, as such the simu-
lated paths are never routed through the same trail,
making it possible to distinguish paths that encode
opposite directions. As can be observed, this isn’t
the case when using the FDEB, and the arc methods.
These algorithms do not take into account the direc-
tionality of streams, which is an emergent character-
istic of the swarm-based approach. Finally, since the

boids in the system attempt to avoid static points, the
Supermarkets, nodes encoded with white circles, are
clearly visible and do not visually interfere with the
lines drawn by the swarming algorithm.

7 CONCLUSIONS AND FUTURE
WORK

In this article we have presented two graphical ex-
plorations of transitions among supermarkets. In the
first approach we explored direct representation of
transition sequences. This consists of the combina-
tion of curved and taped strategies to represent origin-
destination data, which enables the perception of bidi-
rectional edges. The shape of the arcs, inspired on the
trajectory of launched projectiles, enforces the read-
ability of direction. The number of clients, whose
transition is represented by an arc, is encoded by the
line thickness, and by color.

The second approach overcomes the cluttering is-
sue in the visualization compared to the first one. This
approach consists of a set of boids that represent each
transition with their paths. Each singe boid follows
simple behavioral rules by pairwise interaction with
other neighbor boids. When two neighboring boids
advance in the similar direction they are considered
as friends and attempt to move together. In contrast,
when two neighboring boids have opposite directions



Figure 6: Three approaches for representing OD data. Force directed edge bundling (left), arc-based representation (middle)
and swarm-based representation (right). Displayed metropolitan area of Lisbon on 23 of December of 2012.

they are considered as not friends and attempt to avoid
each other. Otherwise, they ignore each other. The
relation between two boids is determined by the dis-
tance between them and the angle between their direc-
tions. The boids that represent more customers have
higher impact on other members of the system. Fi-
nally, every boid attempts to avoid static points, ex-
cept when these are located nearby the origin or the
destination point.

The arcs visualization for large volumes of origin-
destination data generates high degree of visual clut-
ter. In contrast, our swarm-based approach simplified
the visualization representing the flow data in a nat-
ural and organic manner, but is computationally in-
tensive when high volumes of data are considered.
The force directed edge bungling method generates
even less visual clutter in comparison with our ap-
proaches. However, the swarm-based representation
visually separates the streams of flow with opposite
directionality, which does not happens in force di-
rected edge bundling.

As future work we will improve the performance
of our swarm-based approach, for example by using
a quadtree structure to store and gain faster access
to nearby ghost boids. In order to further improve
the efficiency of the technique, the algorithm can up-
date existing ghost boids with new information in-
stead of indefinitely adding new ghost boids to the
same quadtree cell.
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