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Abstract. An evolutionary generative system for type design, Evotype,
is described. The system uses a Genetic Algorithm to evolve a set of
individuals composed of line segments, each encoding the shape of a
specific character, i.e. a glyph. To simultaneously evolve glyphs for the
entire alphabet, an island model is adopted. To assign fitness we resort to
a scheme based on Optical Character Recognition. We study the evolv-
ability of the proposed approach as well as the impact of the migration in
the evolutionary process. The migration mechanism is explored through
three experimental setups: fitness guided migration, random migration,
and no migration. We analyse the experimental results in terms of fit-
ness, migration paths, and appearance of the glyphs. The results show
the ability of the system to find suitable glyphs and the impact of the
migration strategy in the evolutionary process.
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1 Introduction

Although conventional computational design tools are effective for precise design
tasks during the later phases of the design process, they offer insufficient support
to design exploration during the earliest, essentially conceptual, stages of the
design process.

We present an evolutionary system for type design — Evotype. Although it
is still a work in progress, the system is already able to automatically generate
alternative designs for glyphs from scratch. A glyph consists in a specific graphic
expression of a given readable character. For the purposes of this article, we focus
in the evolution of glyphs for letters of the Roman alphabet.

The main contribution presented herein is a functional prototype of a gener-
ative system capable of creating consistent glyphs. Other contributions include:
(i) a Genetic Algorithm (GA) with a generic representation wherein individuals
are composed by line segments encoded as sequence of numeric values; (ii) a
fully autonomous evolutionary approach for the evolution of glyphs; (iii) the use
of an island model and the study of the impact of migration on evolution; and
(iv) the use of a Machine Learning (ML) approach to guide the evolution and
the migration process.

The paper is organised as follows: section 2 presents related work, considering
applications of evolutionary techniques in the domain of glyphs design; section 3
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thoroughly describes the GA of the proposed system; section 4 describes the
experimental setup; section 5 presents the analysis of the experimental results;
finally, conclusions and future work is presented in section 6.

2 Related Work

Designers, engineers, artists, and scientists have been using evolution-based tech-
niques to support the creative process and evolve innovative artefacts. Although
evolutionary glyph design is a relatively unexplored area, some applications exist.

Butterfield and Lewis [1] employ Interactive Evolutionary Computation (IEC)
to explore the creation of fonts. More specifically, they evolve deformations, i.e.
the letters of a specific typeface are deformed by a set of implicit surface primi-
tives, which are encoded in the genotypes. Lund [2] also uses IEC to evolve the
settings of a parametric typeface system. Each parameter controls the appear-
ance of a given characteristic of the font. Unemi and Soda [3] propose an IEC
system for the design of Japanese Katakana glyphs. Schmitz [4] presents the
interactive program genoTyp, which allows the user to create new fonts through
the breeding of existing ones, according to genetic rules and manual manipula-
tion of their genes. The possibility of recombining famous typefaces is exciting,
however, the limitations of the representation hinder the quality of the results.
Levin et al. [5] use IEC to implement the Alphabet Synthesis Machine, a system
which allows the creation and evolution of abstract letter forms.

Despite evolutionary systems for glyph design exist, as far as we know all
of them rely on user evaluation. Thus, the user interactively iterates a cyclic
process of selection and generation until an acceptable solution is obtained. As
such, all suffer from the well-known limitations of IEC systems, namely user-
fatigue and inconsistency in evaluation. Additionally, they require the creation
of a parametric typeface (e.g., [2]), or pre-existing typefaces or skeletons (e.g.,
[4] and [1], respectively), and are conditioned by these requirements.

3 The Approach

Evotype evolves glyph designs for various characters in a parallel and autonomous
way. To achieve this, a GA [6] is implemented to evolve different populations of
candidate glyph designs. Each individual is a glyph design. Each population lives
in its own island and is composed of individuals that represent a specific charac-
ter. Thus, to evolve glyphs for 26 characters we use 26 populations in 26 islands.
The different islands can communicate with each other, allowing the migration
of glyphs among them.

The system is schematically represented in figure 1 and behaves as follows.
The evolutionary process begins with the initialisation of all populations with
randomly created glyphs. The individuals are evaluated and then selected for
mating according to their fitness. Recombination and mutation operators are
applied to generate offspring. The selection stage follows, determining which
individuals proceed to the next generation. The next step is migration, where
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Fig. 1. Overview of Evotype.

individuals may be moved to or received from other islands. As depicted in
figure 1 the process is cyclically repeated. The termination criterion is based on
the number of generations. In the following subsections we detail the genetic
mechanisms employed in Evotype.

3.1 Representation

The genotype consists of a sequence of genes encoding a glyph. Each gene codifies
a two-dimensional line segment that is composed by a sequence of five numbers,
wherein the first four are the coordinates of its end points and last one correspond
to its thickness (see figure 2). The genotype’ length may vary from individual
to individual, thus different individuals can be composed of different number of
line segments.

A mapping mechanism, normally referred to as embryogenesis, is in charge for
the expression of the genotype into a perceptible artefact—the phenotype. The
phenotype consists in a graphical representation of the genotype, i.e. a glyph
created from the encoded parameters. The expression process consists in the
drawing of dark line segments, defined by the genotype, on a white canvas, as
illustrated in figure 3.

{ [X1,Y1,X2,Y2,T ], [X1,Y1,X2,Y2,T ],...}

1

2 3 4

1

2 3 4

Fig. 2. Encoding of the genotype, composed of genes that codify line segments (1)
defined by their end points (2 and 3) their thickness (4).

The dimension of the search space is reduced through the use of a rect-
angular grid that constraints the coordinates of the line segments’ end points,
which must adhere to the grid points. The density of the grid is configured by
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Fig. 3. Mapping process from genotype to phenotype. On the left, the genotype; On
the middle, an intermediate representation depicting the grid and the correspondence
between genes and line segments; On the right, the phenotype.

the user.The representation ensures high locality. Neighbouring genotypes are
mapped to similar phenotypes, meaning that small modifications of the genetic
code induce small changes in the phenotypic space.

3.2 Initialisation

The initial populations are seeded with randomly generated glyphs. Each glyph
of the first population is composed of a single line segment, with all the gene
values set by uniform random selection over the admissible interval for each
parameter. All islands receive identical initial populations. This initialisation
setup provides equality and simplicity among all initial populations, enabling
us to access the ability of the system to evolve glyphs for different characters,
starting from the same set of random glyphs.

3.3 Crossover

The crossover operation consists in the exchange of line segments between par-
ents. Crossover operates on gene boundaries, preserving the integrity of line
segments. The operator proceeds as follows: randomly select a rectangular area
of the grid; determine, for both parents, the line segments whose middle points
are inside the rectangle; exchange those line segments between parents. As illus-
trated in figure 4, crossover may be asymmetric, in the sense that the number of
line segments a genotype “receives” may be different from the one it “donates”.

3.4 Mutation

Mutation also operates on a gene basis. Thus, the mutation of a gene implies
changing one of its five parameters by a value of one, as illustrated in figure 5.
At the phenotype level, this variation results in the minimum translation of one
of the end points of the line segment in one of the four possible directions—up,
down, left, or right—or the minimum variation of its thickness. The impact of
this change at the phenotype level depends on the density of the grid. A denser
grid allows smaller visual variations. The probability of mutation is defined per
gene, meaning that multiple genes may be mutated.

A second type of mutation exists, gene deletion and insertion, allowing the
variation of the size of the genotype. There is a probability of deleting a randomly
selecting gene and inserting a randomly created one.
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Fig. 4. Crossover process. On the left, two parents, the corresponding genotypes, and
a randomly selected rectangular area (shaded region). The selected area determines
the line segments that will be exchanged (1, 2, and 3). On the right, the results of the
crossover operation at the genotype and phenotype level.

 [0,4,2,0,4]}

{[0,4,3,3,2],
 [2,0,4,4,4],

 [0,4,2,0,4]}

{[0,4,3,2,2],
 [2,0,4,4,4],

Fig. 5. Mutation process. On the left, the original genotype and phenotype; On the
right, the results of the mutation operator.

Unfeasible variations are prevented during the mutation, including transla-
tions of coordinates that (i) go beyond the grid limits, (ii) create line segments
with null length, or (iii) generate two line segments which are defined by the
same end points.

3.5 Evaluation

As previously mentioned, each population (i.e. each island) is composed of in-
dividuals that are candidate graphic representations of a specific character. As
such, the fitness of an individual depends on the environment, i.e. the island were
it lives. In the scope of this paper we use Optical Character Recognition (OCR)
to assign fitness. The details of the fitness assignment scheme are described in
section 4.1.

3.6 Migration

Migration can occur once per each island in each generation. The probability
of occurrence is determined by the migration rate. To study the influence of
migration in the evolutionary process we considered three migration mechanisms:

No Migration – As the name indicates, no migration is used. The islands are
isolated.

Random – When migration occurs, each island selects one random individual
among the ones living on different islands. A copy of the individual is added
to the population of the island, replacing the individual with worst fitness.
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Fig. 6. Screenshot of the graphic user interface of Evotype. A demo video can be seen
on http://cdv.dei.uc.pt/2015/evotype.mov.

Fitness Guided – When migration occurs, each island evaluates all its indi-
viduals according to the environment of the other islands. A copy of the
individual that attains the highest fitness is added to the queue of that des-
tination island. When this process is completed for all islands, each island
checks its immigration queue, which may be empty, and selects the fittest
individual. This individual is added to the population of the island, replacing
the individual with worst fitness.

It is important to remember that in Evotype fitness is local. Therefore, the
fitness of an individual depends on the environment (i.e. the character it is trying
to represent graphically) and each island corresponds to a different character.

3.7 Visualisation

Evotype is able to fluidly show the evolutionary process through a simple graphic
user interface, conceived to allow the user to visualise the different evolving
glyphs of all islands (see figure 6). Islands (each corresponding to a character)
are arranged horizontally in different columns, in alphabetical order from left
to right. The individuals (glyphs) of the current generation of each island are
depicted vertically, in descending order of fitness. At any moment of the evolu-
tionary process, the user can export the evolved glyphs as vectors files to make
further design refinements.

The glyphs’ fitness is visualised through a simple graphic approach. The
fitness value of each individual is represented through a horizontal line that
overlays the corresponding column, and is vertically positioned according to the
mapped value of the fitness value to the height of the interface (higher fitness
values on top). We consider this fitness visualisation technique functional for the

http://cdv.dei.uc.pt/2015/evotype.mov
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Table 1. Evolutionary System

Parameter Setting

Number of runs 30
Number of generations 100
Population size 100
Crossover rate 0.8
Delete gene mutation rate 0.075
Insert gene mutation rate 0.075
Change gene mutation rate 0.3
Selection method Tournament
Tournament size 3
Elite size 1
Glyph grid size 40 × 40

Table 2. Classifier

Parameter Setting

Input image size 48 × 48
Quantized colours 5
Threshold (θ) 200
Promotion (α) 1.005
Demotion (β) 0.995
Initial weights values 2
Training iterations 1000
Examples per island 78

purposes of this work, in the sense that we are not particularly interested in
seeing the specific fitness values. Instead, we wish to visualise the distribution
and convergence of fitness over time, and the comparison of fitness values among
islands.

4 Experimental Setup

In this work, we evolve glyphs for all the uppercase letters of the Roman alpha-
bet, so a total of 26 islands are considered. We conduct experiments to assess
the adequacy of the engine for the evolution of glyphs. Furthermore, we study
the impact of the migration policy (see section 3.6) in evolution.

The experimental parameters used in the course of the experiments described
in this paper are summarised in tables 1 and 2. In the following subsections we
detail the fitness assignment scheme for the experiments.

4.1 Fitness

In this work, we have 26 islands, each one evolving towards a different objective,
so we need to provide a proper fitness function to guide evolution for each island.
We consider that interactive evolution of all these islands’ populations would be
an hard and tedious task. For that reason, we sought to use an automatic fitness
assignment scheme.

We are dealing with the evolution of character glyphs. Certainly, one of the
preconditions of a visual character representation is its recognisability. As such,
we evolve images that are recognised automatically as specific characters. We
choose an OCR ML approach to automatically assign fitness. Although the use
of ML to assign fitness is not novel (refer to, e.g., [7,8,9]).

Each individual is processed as a bit map image by an OCR system, and
the intermediary values from OCR process are used to assign fitness. Based on
the work of Burry et al. [10] we use Sparse Network of Winnow (SNoW) [11], a
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Fig. 7. Standardised fitness of the best individual of the last generation of each island.
With a solid line, the no migration; dashed line, the random migration; and dotted
line, the fitness guided migration. The visualised results are averages of 30 runs.

sparse network of linear units, as the classifier system for the OCR approach. The
SNoW classifier is characterised as having two layers, the input layer and n target
nodes, which are linked through weighted edges. To perform OCR, we train,
offline and per character, 26 different classifiers. The input examples consist of
bitmap images corresponding to the characters of 78 different typefaces. These
are pre-processed to extract features, which are used in training/classification.
The process and decisions made for the feature extraction are based on the work
of Burry et al. [10]. Table 2 summarises the overall OCR system parameters.

To deal with the OCR multi-class classification problem we use a one versus
all strategy for training and classification. We train each classifier by treating all
the instances of the character as the positive class and all instances of all other
characters as the negative class. Thus, each classifier has two target nodes, one
for the positive class (i.e. the character in question) one for the negative class
(i.e. all the remaining characters). The activations of the nodes indicates the
degree of membership of the input image to the respective class.

To assign fitness each input image is mapped to a 2D space where the x
coordinate corresponds to the activation value of the positive class node of the
classifier, and the y coordinate corresponds to the activation value of the negative
class node. Thus, the ideal scenario would be maximising x while minimising y.
Unfortunately, this is typically not possible since the letters share characteristics
among them. For instance, the input pattern that maximizes the x coordinate
for Q, will, necessarily, yield a high y value due to the presence of examples of
the letter O in the negative class. Therefore, as is often the case multi-objective
optimization problems, a compromise between x and y is necessary to obtain
good results.

As such, we adopted the following procedure, establish a target activation
point empirically. We begin by calculating the input pattern that minimises the y
coordinate, the activation value of the output node corresponding to the negative
class for this pattern becomes yt. Then, also analytically, we determine the input
pattern for which the absolute difference between the activation values between x
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Fig. 8. Progression of the fitness of the fittest individual of each island over 100 gen-
erations. The results are grouped per island from left to right in the following order:
no migration, random migration and fitness guided migration. Each graphic bar repre-
sents the variation of the standardise fitness of the best individual from 0 to 1 across
the generations, divided in 5 different intervals of equal size (0.2). These intervals are
represented by different shades of grey which change from darker to lighter according
to its fitness value (from lower to higher). The visualised results are averages of 30
runs.

and y is minimal. Such input, typically, has the features necessary for the image
to be classified as a member of the positive class, but still possesses features
that are common with other characters. The activation value of the output node
corresponding to the positive class for this pattern becomes xt. Finally the fitness
of a new input image is based on the following formula: dist(x) = ‖(xt, yt) −
(xi, yi)‖, where xi, yi are the activation values of the output nodes associated
with the input image, and results in the euclidean distance between these two
points. Since we wish to minimise the distance to this point, fitness becomes:
fitness(x) = 1/(1 + dist(x)).

5 Experimental Results

We begin the analysis of the experimental results by focusing on the fitness
values obtained by the 3 migration strategies. Figure 7 summarizes these results
by presenting the average fitness of the best individual of the last generation.
For the purposes of readability the fitness values have been normalized to [0, 1],
by dividing the raw fitness scores by the maximum fitness score obtained for
each character in the course of the 90 runs (30 per migration strategy). A brief
perusal of the results indicates that fitness based migration outperforms the
other two strategies, attaining higher fitness values for 20 out of the 26 islands.
There are two “ties” among strategies, namely for islands I and N. Random
migration outperforms the other methods for three islands (A, W, and Z), while
no migration obtains the best results for island T.
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Fig. 9. Best individuals of each island for different generations from a typical run using
fitness guided migration.

To better understand the dynamics of the evolutionary process we summarise
in figure 8 the evolution of fitness over time. The results suggest that the use
of migration (fitness guided or random) promotes a faster convergence for max-
imum fitness values. To illustrate how the evolution of fitness is reflected in the
graphic appearance of the glyphs, figure 9 depicts the glyphs evolved through
time in a typical run using fitness based migration.

Regarding the speed of convergence to maximum fitness values, fitness guided
is the first approach to attain high fitness values in 22 of 26 islands, with the
exceptions being the letters A, V, W, and Z. These exceptions can be justified
by the analysis of the migration paths along the evolutionary process. Figure 10
depicts the average number of migrations among islands for fitness guided mi-
gration.

The results in these islands can be justified as follows. For the letter Z,
the migration paths indicate that the island does not receive immigrants from
other islands, as such the performance of the no migration and fitness guided
migration should be, and is, comparable. The same justification explains the
results obtained for island A and V. The explanation for the behaviour observed
in island W is harder to explain, in this fitness guided case migration appears
to be detrimental to the evolutionary process, the migration of individuals from
island A to island W, although helpful in the beginning of the run, leads to
premature convergence to sub-optimal solutions.

Figure 10 also shows that islands corresponding to visually similar characters
migrate more individuals among them. Some examples of these migration paths
are the following: A→W; B→D; E→B,F; F→P; K,X→N; L→E; H,N,V→M;
C�G; D�O; I�T; and P�R.

Although the analysis of the evolutionary process is valuable, from an evolu-
tionary design point of view, the analysis of the visual output of the system is
also important. The visual results presented in figure 11 highlight the diversity of
the glyphs evolved in different runs. Additionally, and although this is difficult to
measure objectively, migration appears promotes the visual coherence among the
characters of different islands, which is important from a typeface design point
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Fig. 10. Visualisation of the average number of migrations between the different islands
when using fitness guided migration. Origin islands are positioned horizontally and the
destiny islands vertically. High numbers of migrations are highlighted by darker squares.
The results are averages of 30 runs.

of view. These outputs may be provided to a type designer as alternative sources
of inspiration, thus arguably assisting creation of glyphs during the conceptual
phase of the creative process. The analysis of the impact of these suggestions is
outside the scope of the paper, and will be left for a future opportunity.

6 Conclusions and Future Work

We have presented Evotype, an evolutionary approach for the automatic gen-
eration of character glyphs with an automatic fitness assignment scheme based
on an OCR approach. The approach adopts an island model where the glyphs
corresponding to each character populate each island. The experimental results
shows that migration of individuals among islands is beneficial, provided that
the fitness in the destination environment is taken into consideration. More im-
portantly, the experimental results show that Evotype provides an efficient ar-
chitecture to evolve and explore alternatives for glyph design.

Future work will focus on: (i) the extension of the genetic representation to
allow a wider range of graphic primitives; (ii) the exploration of different mi-
gration policies and topologies; (iii) the exploration of other fitness assignment
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Fig. 11. Some examples of glyphs evolved in different runs.

schemes, which may promote the diversity, aesthetic appeal, and creative po-
tential of the glyphs; and (iv) the further development of the system as tool for
supporting the creativity of the designer.
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