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Abstract 

Inverse Combinatorial Optimization has become a relevant research subject over the past decades. 

In graph theory, the Inverse Shortest Path Length problem becomes relevant when we don’t have 

access to the real cost of the arcs and want to infer their value so that the system has a specific 

outcome, such as one or more shortest paths between nodes. Several approaches have been 

proposed to tackle this problem, relying on different methods, and several applications have been 

suggested. This study explores an innovative evolutionary approach relying on a genetic algorithm. 

Two scenarios and corresponding representations are presented and experiments are conducted to 

test how they react to different graph characteristics and parameters. Their behaviour and 

differences are thoroughly discussed. The outcome supports that evolutionary algorithms may be a 

viable venue to tackle Inverse Shortest Path problems.  

 Keywords: Inverse Combinatorial Optimization, Inverse Shortest Path Length, Genetic 

Algorithms 
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Introduction 

 Graph theory is highly appraised in Computer Science as well as several other fields, with 

applications on a large number of well documented problems (Gross & Yellen, 2005). A formal 

definition of a graph has been given for instance by Gross and Yellen (2005), but as succinctly as 

possible, a graph is a collection of nodes connected (or partially connected) by arcs with an 

associated cost such that successive arcs form paths between nodes. There are many widely known 

problems in the literature related to graph theory, such as that of finding the shortest path between 

two nodes (source and sink). This problem has been widely studied in the past and several efficient 

solutions have been developed by the scientific community (Bellman, 1956; Bertsekas, 1991; 

Dijkstra, 1959; Floyd, 1962; Johnson, 1977; Moore, 1959).  

 However, when solving such optimization problems, we often assume that we have access 

to all the information required and that this data is accurate. Often in real applications this is not the 

case. In shortest path problems, for instance, we may not have access to the real cost of the arcs 

(distances, travel times, etc.), we may have estimates or only partial knowledge of their values. A 

possible solution to extend our knowledge on the arc costs is to consider the inverse problem. This 

requires only that we have access to the topology of the graph and a desired outcome for the system, 

such as one or more shortest paths between pairs of               nodes. Inverse optimization 

allows a vector of arc costs to be calculated, or at least estimated, so that our desired outcome is 

optimal and the path costs as close as possible to previous estimations that we may have access to. 

 Inverse optimization problems are highly complex and widely relevant, but so far have 

failed to attract the attention of the Evolutionary Computation community. The need to test the 

viability of evolutionary approaches to tackle inverse optimization problems or in this case Inverse 

Shortest Path Length (ISPL) problems specifically is the main motivation for this study. We 

propose an unprecedented Genetic Algorithm approach which is tested on two different scenarios 
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and hope to provide a baseline for future work on the subject. We experiment with several design 

choices, compare the obtained results, and discuss the resulting behaviours. The following section 

covers Inverse Combinatorial Optimization, previous work on both Inverse Solution Optimization 

Problems and Inverse Objective Value Optimization Problems is presented and discussed. 

Afterwards, the ISPL problem is introduced and our Genetic Algorithms approach described. Our 

experimentation setup, including the applied methodology, is described and the obtained results are 

presented and analysed. Finally, conclusions are drawn and future work proposed. 

Inverse Combinatorial Optimization 

 On a broad analysis, inverse optimization problems can be branched into two classes: 

inverse solution optimization problems and inverse objective value optimization problems (Hung & 

Director-Sokol, 2003). Briefly, inverse solution optimization problems require finding an arc costs 

vector that makes a desired solution optimal. Variations include the minimum cut problem (Zhang 

& Cai, 1998), inverse maximum flow problem (Yang, Zhang, & Ma, 1997), inverse center location 

problem (Cai, Yang, & Zhang, 1999), the inverse shortest path problem (ISPP) (Cai & Yang, 1994), 

among others. Inverse objective value optimization problems require that a solution is found that 

matches a desired value for the objective function rather than assuming there is a desired optimal 

solution. This type of problem has been much less explored than inverse solution optimization 

problems but the reverse center location (Zhang, Yang, & Cai, 1999) and the Inverse Shortest Path 

Length (ISPL) (Fekete, Hochstättler, Kromberg, & Moll, 1999) are examples, with ISPL probably 

being the most widely known. Heuberger (2004) presented various methods that had been 

successfully applied in the past to a set of inverse combinatorial problems on an extended survey. 

The following subsections further explore the two classes of inverse combinatorial optimization and 

previous work regarding each one. 

Inverse Solution Optimization Problems 

 Burton and Toint (1992) were likely the first to address the ISPP. They present a 
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specialization of the dual Quadratic Programming method by Goldfarb and Idnani (1983), which 

computes a sequence of optimal solutions based on constraints. These constraints are incorporated 

into the algorithm at each step and contribute to reaching the desired optimum. Zhang et al. (1995) 

considered the problem as a Linear Programming model rather than a Quadratic Programming one 

and transformed it into a convenient form. They then proposed a column generation algorithm for 

the Linear Programming model which is arguably more effective to handle large size problems. 

 Xu and Zhang (1995) have addressed the ISPP, looking for weighted vectors under which 

the shortest paths correspond to the desired ones. They suggest that such solution vectors form a 

polyhedral cone and show a close relation between the ISPP and the minimal cutset problem in 

graph theory. Zhang and Cai (1998) have studied a general inverse minimum cut problem with 

multiple cuts and bounded increments and decrements. They also attribute specific costs to 

adaptations on the capacity of each arc. It is shown that this problem can be transformed into a 

minimum cost circulation problem and is therefore solvable efficiently by polynomial algorithms. 

The minimum cut problem as well as the inverse maximum flow problems have also been 

addressed by Yang et al. (1997) and the ISPP by Cai and Yang (1994). 

 Cai et al. (1999) have discussed the inverse center location problem. They question whether 

the inverse problem is solvable in polynomial time whenever the original is. They show that the 

inverse center location problem contradicts this hypothesis as it is NP-hard despite its counterpart 

having a strongly polynomial method to solve. 

 Mao-Cheng and Li (1997) consider the inverse matroid intersection problem which, as 

described, is a generalization of several Inverse Solution Optimization Problems, such as the ISPP, 

the inverse minimum spanning tree, the inverse bipartite matching and the inverse minimum 

arborescence problems. The inverse matroid intersection problem is formulated as a combinatorial 

linear program but may also be transformed into a minimum cost circulation problem. The study is 

finally extended into approaches with multiple common independent sets. 
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 Liu and Zhang (2003) review part of the existing methods applied to Inverse Solution 

Optimization Problems into four categories: simplex methods for general inverse linear 

programming problems, combinatorial algorithms for certain special inverse combinatorial 

optimization problems, column generating methods and ellipsoid methods for specific inverse 

combinatorial linear programming problems. They address the maximum-weight problem in 

nonbipartite graphs and propose a binary search algorithm as well as an ascending algorithm and an 

ellipsoid method. 

 Day et al. (2002) address the Inverse Multicommodity Flow Problem as a way to find the 

appropriate set of costs for a railroad system for shortest-path routing with impedances. As the 

problem is too large to be feasible, Day (2002) proposes preprocessing methods that ensure its 

feasibility while transforming the problem as little as possible. The authors propose a primal-dual 

solution algorithm and a hot start basis-finding algorithm to tackle the problem within a reasonable 

amount of time. They also consider using Lagrangian relaxation. 

 Ahuja and Orlin (2001) propose a unified approach to several inversion problems. They 

develop a unified framework which they first apply to the inverse linear programming problem and 

then specialize on the ISPP, the assignment problem, the minimum cut problem and the minimum 

cost flow problem, achieving faster algorithms for each. They report improvements over previous 

results on each algorithm and also produce new results on inverse linear programming and inverse 

network flow models. Other studies by the same research group are also available (Ahuja & Orlin, 

2000; Ahuja & Orlin, 2001; Ahuja & Orlin, 2002; Sokkalingam, Ahuja, & Orlin, 1999). Hochbaum 

(2003)tackled the inverse spanning-tree problem, relying on a formulation different from those used 

by Sokkalingam et al. (1999) and Ahuja and Orlin (2000). He exploits the structure of the graph that 

results from his formulation to apply less constraints and therefore improve algorithm complexity. 

Inverse Objective Value Optimization Problems 

 Ahmed and Guan (2004) consider the inverse optimal value problem where they originally 
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have a linear program with a set of cost vectors restricted to a convex compact set. In their study 

they show it to be a NP-hard task unless under certain structural characterizations that reduce the 

problem to a concave maximization or concave minimization problem. They also describe an 

algorithm based on solving linear and bilinear programming models. 

Fakete et al. (1999) have studied ISPL problems focusing on the characteristics of the 

graphs and the idea of estimating travel times in road networks based on a set of source-destination 

pairs. They consider a general case and show it to be NP-complete. They also consider specific 

cases such as planar graphs, directed graphs and special distance graphs. Certain polynomially 

solvable cases are also identified. 

 Hung and Sokol (2003) have conducted an extensive study on ISPL problems. They report 

ISPL to be NP-complete on the general case and addresses several complex cases in order to find 

out when it becomes intractable. Polynomially solvable cases are also discussed. They propose a set 

of heuristics as well, discuss their characteristics and tests their performance on several problems. 

Finally they apply these heuristics to datasets from real world telecommunications and report worse 

results than on random instances due to infeasibility issues on real world instances. 

Burton, Pulleyblank and Toint (1997)  examine the case where upper bounds are set on 

ISPPs. This expansion on their aforementioned work is classified as an Inverse Objective Value 

Optimization Problem study as several solutions may be accepted as long as the defined constraints 

are met. They show that the problem is NP-Complete and test a local minimisation algorithm on 

several examples, while analysing its behaviour. 

 Zhang et al. (1999) have tackled a generalised reverse center location problem where 

distances between given pairs of vertices are bounded by predefined limits. The authors consider 

this problem as a special case of that studied by Burton et al. (1997). They differ in the objective 

function which in this case can manage different cost coefficients on various arcs, while restrictions 

on the magnitude of adjustments are applied as well. They formulated the problem as a mixed 
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integer programming model which is relaxed to find approximate global optimal solutions. 

 The same research group later expanded on this study by addressing a special case (Zhang, 

Yang, & Cai, 2004) and not only by considering the original problem under different conditions but 

also by considering a vertex-to- points approach, where the distance from a vertex to all the points 

on the edges are maintained below a given upper bound (Zhang, Yang, & Cai, 2004 (2)). Zhang and 

Lin have also shown that the general model is NP-complete and have proposed a dynamic 

programming model for the special case of a single                pair and a combinatorial 

algorithm for the case of trees with a single source. 

 Cui and Hochbaum (2010) focus on special cases of the ISPL, such as the                

          problem or the                              problem. While these scenarios can be 

solved in polynomial time for the Feasible ISPL variance, it is shown that they are NP-complete for 

the general ISPL formulation. The study also identifies cases where ISPL becomes polynomially 

solvable and addresses the Lower Bounding ISPL, where shortest path lengths are kept above given 

bounds. 

The Inverse Shortest Path Length Problem 

 In this section the ISPL problem is formally described. We try to maintain the notation used 

by Cui and Hochbaum (2010) as much as possible. Then, a genetic algorithms approach to the ISPL 

is introduced. 

Formal Statement 

 An instance of the ISPL problem can be described using two graphs over the same set of 

nodes   and arcs  , which in these case are undirected, without loss of generalization. The graph 

        includes a nonnegative weight vector   which lists our original estimations for the 

weight of each arc.   includes therefore the paths between each               pair in  . A second 

graph          describes the pairwise distance       which correspond to the desired shortest 

path distance between nodes     for each               pair in  .    includes therefore a distances 
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vector  . The first graph is often referred to as the network graph and the second one as the 

distances graph. 

 An ISPL problem instance can therefore be defined as              and       

        . Furthermore, let        denote the shortest path from   to   in     ,        be the 

length of        and        contain the length of path   in     . 

 A penalty function is usually also required to act on deviations on arc weights in  . For each 

arc         there is a function          where    (       ) is the cost of adjusting the cost of 

arc       from     to    . Various functions can be applied here such as monotonically decreasing or 

monotonically increasing functions (Cui & Hochbaum, 2010). Usually, the penalty function 

satisfies         , for all        . In this study    (       )  |       |. 

 Considering      and      , the weight vector       
| |

 is said to be    satisfying if 

           for all paths         . Therefore, the ISPL consists on finding a    satisfying 

weight vector   on   that minimizes the penalty cost      which is the sum of the penalty 

functions for all arcs,      ∑    (       )         . 

 The definition above or equivalent ones are broadly used on existing studies in the literature, 

there are however variations such as the Feasible ISPL, the Lower Bounding ISPL or the Upper 

Bounding ISPL. The approach followed in this study is however the original ISPL formulation, as 

described above. 

A Genetic Algorithms Approach 

 This section describes how the ISPL problem was tackled using genetic inspired approach, 

focusing on design choices regarding the GA. To develop our setup and run experiments we opted 

to use the ECJ simulator (Luke, et al., 2001). This simulator allows a broad control over the design 

aspects of the algorithm such as representations, selection, crossover and mutation operators as well 

as associated probabilities and other relevant parameters. 

 The algorithm relies on a population of solution candidates which, by means of different 
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operators, searches for increasingly better solution candidates to hopefully solve the task. Each 

individual of the population represents a costs vector as a chromosome, which is easily mapped to a 

     graph with the aid of a stored   graph. In detail, each chromosome contains a set of genes, 

each gene representing the cost of an individual arc in G. Therefore, the size of the chromosome 

corresponds to the number of arcs in  . 

 Regarding operators, we opted for selecting parents through tournament selection, they 

undergo two-point crossover and the resulting offspring are then subjected to gaussian mutation. 

Since gaussian mutation is being applied, it is important to analyse the impact of varying standard 

deviation values associated with the distribution. Also, elitism is applied, meaning that the best 

individual from each generation is maintained to the next one. 

 The fitness function used in the GA has been partially discussed in the previous section. In 

detail, a       graph is stored and used in the evaluation process of each individual. During this 

evaluation process, for each pair      , the distance     is calculated based on Dijkstra’s algorithm 

(Dijkstra, 1959) and compared to the prescribed value      through      ∑             (|       |) 

using the same monotonically increasing function within the interval      . The penalty cost is 

therefore able to assess the quality of each individual of the population and corresponds to the 

fitness function applied during evaluation. Obviously, we’re dealing with a minimization problem, 

meaning that selection will favour individuals whose fitness values are closer to 0 over larger 

values. 

 Two different scenarios are considered: the first one assumes that we have no arc cost 

estimations; the second one uses initial arc cost estimations. These two scenarios allow us to 

address two different situations that may come up on real world problems. We expect the algorithm 

to achieve better results on the second scenario than on the first one as we only have to evolve arc 

cost adjustments rather than start searching for adequate costs from a blind estimation. 

 On the first scenario, each gene of an individual corresponds directly to an arc cost and its 
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initial value is sampled from a uniform distribution within the interval      . On the second 

scenario, initial cost estimations are established. Each gene of an individual corresponds to an 

adjustment to be made to the corresponding initial estimation rather than directly to an arc cost. For 

this reason, initial gene values are sampled from a gaussian distribution with     and        

which seems appropriate as we want adjustments to start at small values and evolve from there. 

Gene values are contained in the interval        and arc costs in      . During evaluation, in order 

to calculate an arc cost,    , we add adjustments to initial cost estimations and obtain a vector  . 

 In both scenarios, constraints are set on the mutation operator so that gene values are 

maintained inside their appropriate intervals. In detail, genes are  disturbed using values sampled 

repeatedly from a gaussian distribution with     until a valid result comes up or until a maximum 

number of attempts is completed (     ), at which point no mutation occurs. Various   values 

are tested. Also during evaluation on the second scenario, cost values are truncated to the 

appropriate interval. 

Experimentation 

 This section explains the experimental setup used to test our GA on the ISPL problem. 

Firstly, the methodology is assessed, including a parametric study devised to find the most adequate 

parameters, and a description of our final experiments. The results are then reported and analysed. 

Methodology 

 The relevant parameters concerning the GA are described in Table 1. A study was 

conducted on the mutation’s probability and standard deviation and how they affect the algorithm’s 

behaviour. This study included both scenarios. Table 1 describes the tested parameters. The column 

labeled range of values shows the tested values for the assessed parameters and the column labeled 

default value shows fixed values. When a parameter is being studied, all other are attributed the 

default value. 

 Concerning the generation of graphs, several graph structures were designed, each with 
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different characteristics thus allowing us to explore the behaviour of the GA under different 

conditions. For this purpose, the networkx package (Hagberg, Swart, & S Chult, 2008) was used for 

the generation of random graphs, although the source code was modified in order to allow us to 

easily specify the number of arcs desired for each graph. Notice that in this study a graph can’t have 

multiple arcs with the same source and target and a maximum number of arcs for each graph was 

established. This means that a graph with   nodes can have at most         ⁄  arcs. 

Table 1: Parameter study (related to the genetic algorithm) used in the assessment of the algorithm. 

Parameter Range of values Default Value  

Number of generations - 100 

Number of individuals - 100 

Tournament size - 5 

Crossover Probability - 0.8 

Mutation Probability [0.01, 0.02, 0.05, 0.10] 0.05 

Mutation Std. Deviation [0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30] 0.1 

Source-Sink Disturb [0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30] 0.1 

 

 The tests were organised in 4 different setups. Setups 1 and 2 aim to test the algorithm’s 

behaviour using smaller graphs while setups 3 and 4 test the algorithm’s performance with bigger 

graphs. Table 2 includes all the tests completed for each setup as well as tested graph parameters. 

Notice that on setups 1 and 2, for each tested graph, 20 repetitions were completed. On setups 3 and 

4, due to large computational effort requirements, only 10 repetitions were completed for each 

graph tested. 

 Besides having to generate graph structures for G, we also needed to generate the associated 

   graph with the desired shortest path distances. This set was built based on a predefined number 

of               paths. In order to do so we attribute weights to the graph using a uniform 

distribution within the interval       and save the shortest paths between random               

pairs using a Dijkstra’s algorithm (Dijkstra, 1959). The generated   and    graphs are maintained 

and used in each repetition. 
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 Finally, the desired shortest path costs are disturbed, resulting on a smaller chance that a 

viable set of desired shortest path costs exists as they may conflict with each other. This approach 

makes the ISPL problem much tougher to solve and reduces the chances that a viable solution can 

be found by the algorithm. In detail, this is accomplished by disturbing the cost of each arc 

belonging to a shortest path on the generated graph using values sampled from an initial distribution 

with     (different   values are tested). Only after disturbing the costs, are the desired shortest 

path costs determined on both scenarios. Specifically on the second scenario, the initial estimated 

costs of the arcs are set during the generation of the graphs, before disturbing their value. Therefore, 

the estimated costs are an approximation of the true arc costs, which become worse and worse 

estimations as the value of   is increased, thus making it an increasingly tougher problem to solve. 

Table 2: Sets of Graphs used for the assessment. 

Configuration Graphs Repetitions Nodes Arcs Paths Description 

Setup 1 30 20 

15 100 100 Subset1 

30 100 100 Subset2 

30 200 100 Subset3 

Setup 2 30 20 

15 100 200 Subset1 

30 100 200 Subset2 

30 200 200 Subset3 

Setup 3 3 10 

50 500 1000 Subset1 

100 500 1000 Subset2 

50 1000 1000 Subset3 

100 1000 1000 Subset4 

Setup 4 3 10 

50 500 3000 Subset1 

100 500 3000 Subset2 

50 1000 3000 Subset3 

100 1000 3000 Subset4 

 

 The parametric study was conducted for each parameter individually, maintaining all the 

others at their default value. Only the smaller graphs, those from setups 1 and 2, were used during 

these study. For the graphs in setups 3 and 4, the parameters that we considered best were applied. 
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The results from these tests are shown and discussed in the following section. 

Results and Analysis 

 This subsection includes a discussion of the obtained results for the tested setups. As 

previously mentioned, a parametric study was conducted on setups 1 and 2, whose results are firstly 

addressed. The discussion starts by focusing on the effect of different mutation probabilities (Tables 

3 and 4), followed by mutation standard deviations (Tables 5 and 6) and finally by the effect of 

disturbance on shortest path costs (Tables 7 and 8). A discussion on how the algorithm reacts to 

varying graph structures as well as to very large graphs is then presented. 

  

 

The results shown on the aforementioned tables are based on the fitness values obtained on 

all repetition sets ran on the tested graphs. However, different graphs correspond to different desired 

shortest path sets which may present different challenges as they surely have different lengths and 

costs. Also, different setups and subsets use graphs with different characteristics, which also 

influence the difficulty of the problem. Therefore, different experiments can’t be properly compared 

using the fitness values. In this case, the Mean Best Fitness (MBF) and Mean Average Fitness 

(MAF) values shown in each table are obtained by Equations 1 and 2 respectively, where   

                       and   is the number of paths. A Wilcoxon Mann Whitney test with a 

significance level of 0.01 was conducted, comparing the results obtained on each scenario. The 

instances where the algorithm performed significantly better were presented in bold in all tables. 

    

∑
           

   (   )   
 
   

 
 

(1) 

    

∑
              

   (   )   
 
   

 
 

(2) 
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Table 3: Results obtained on both scenarios during the mutation probability study for setup 1. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained on all repetitions 

and graphs. 

Table 4: Results obtained on both scenarios during the mutation probability study for setup 2. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained onall repetitions 

and graphs. 

 

Tables 3 and 4 show the results obtained on both scenarios, on setups 1 and 2 respectively, 

using various mutation probabilities. While the results shown in Table 4 appear to be worse than 

those shown in Table 3 the reaction to increasing mutation probabilities are consistent for all 

subsets. Interestingly, when comparing both scenarios, the reactions are contrasting. On scenario 1, 

the algorithm gets advantages from using a larger mutation probability, while on scenario 2 it 

benefits from a decreasing probability. This contrasting reaction is most likely the result of using 

estimates on the second scenario. 

Scenario Mut. Prob. 
Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.01 0.3263 0.3111 0.2938 0.2782 0.5377 0.5155 

0.02 0.2622 0.2439 0.2212 0.2059 0.3984 0.3741 

0.05 0.2149 0.1892 0.1615 0.1431 0.2737 0.2439 

0.10 0.1961 0.1611 0.1480 0.1220 0.2416 0.2027 

2  

0.01 0.1185 0.1045 0.0580 0.0547 0.1001 0.0939 

0.02 0.1241 0.1055 0.0622 0.0554 0.1087 0.0963 

0.05 0.1291 0.1065 0.0813 0.0642 0.1416 0.1132 

0.10 0.1896 0.1439 0.1085 0.0790 0.1843 0.1383 

Scenario Mut. Prob. 
Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.01 0.3696 0.3538 0.3022 0.2881 0.5755 0.5537 

0.02 0.2899 0.2729 0.2323 0.2186 0.4375 0.4150 

0.05 0.2333 0.2111 0.1742 0.1579 0.3130 0.2872 

0.10 0.2251 0.1933 0.1612 0.1380 0.2780 0.2449 

2 

0.01 0.1291 0.1261 0.0721 0.0692 0.1359 0.1304 

0.02 0.1337 0.1273 0.0759 0.0701 0.1423 0.1315 

0.05 0.1525 0.1338 0.0932 0.0782 0.1737 0.1490 

0.10 0.1848 0.1491 0.1200 0.0932 0.2147 0.1740 
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Table 5:  Results obtained on both scenarios during the mutation standard deviation study for setup 

1. MBF stands for the mean best fitness and MAF for the mean average fitness obtained on all 

repetitions and graphs. 

  

On scenario 1, individuals are initialized through a uniform distribution and initial gene 

values are only blind estimates for arc costs, meaning that the algorithm will have to search through 

the entire search space of arc costs. For this reason, it is likely to benefit from a larger number of 

mutations in order to get closer to an optimal solution. On the other hand, on scenario 2, individuals 

are initialized through a gaussian distribution with     and        and each gene represents a 

cost disturbance to be added to estimated initial values. In this case, desired shortest path costs are 

disturbed using a gaussian distribution with     and        as it is the default value, meaning 

that the estimated costs are not likely to be too far away from optimal (or as close as possible) 

values. Therefore, even though this scenario results on a larger search space than on scenario 1, 

considering the above mentioned initialization and disturbance setups, the algorithm benefits from 

smaller number of mutations to attempt reaching an optimal solution on all subsets. 

Scenario 
Mut. St. 

Dev. 

Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.01 0.3110 0.3062 0.2742 0.2705 0.4231 0.4170 

0.05 0.2406 0.2249 0.2108 0.1986 0.3489 0.3285 

0.10 0.2149 0.1892 0.1615 0.1431 0.2737 0.2439 

0.15 0.1855 0.1554 0.1459 0.1215 0.2416 0.2050 

0.20 0.1887 0.1518 0.1493 0.1183 0.2362 0.1927 

0.25 0.1966 0.1536 0.1574 0.1204 0.2431 0.1930 

0.30 0.2050 0.1566 0.1668 0.1243 0.2526 0.1967 

2 

0.01 0.0987 0.0971 0.0622 0.0606 0.1091 0.1062 

0.05 0.1014 0.0929 0.0630 0.0551 0.1102 0.0963 

0.10 0.1291 0.1065 0.0813 0.0642 0.1416 0.1132 

0.15 0.1366 0.1069 0.1009 0.0746 0.1734 0.1313 

0.20 0.1532 0.1146 0.1185 0.0836 0.2006 0.1468 

0.25 0.1696 0.1226 0.1336 0.0913 0.2252 0.1604 

0.30 0.1833 0.1287 0.1477 0.0982 0.2455 0.1715 
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Table 6: Results obtained on both scenarios during the mutation standard deviation study for setup 

2. MBF stands for the mean best fitness and MAF for the mean average fitness obtained on all 

repetitions and graphs. 

  

Tables 5 and 6 correspond to the results obtained on both scenarios either on setup 1 or 

setup 2, using different standard deviation values for mutation. On scenario 1, the lowest MBF is 

obtained with a standard deviation of 0.20 for all subsets, on either setup. On scenario 2 the lowest 

MBF is achieved with a standard deviation of 0.01 on all subsets belonging to either setup. 

 The results obtained on scenario 1 seem to back up the assumptions from our previous 

analysis. A larger standard deviation will allow mutation to have a steeper effect on gene values and 

therefore a faster genetic drift through the search space, which seems relevant to finding better 

candidate solutions. However, the results show that above a certain bound, performance drops. This 

may be due to large standard deviations clashing with mutation constraints, which don’t allow 

genes to stand out of their predefined interval. Such events may disrupt the positive effects of 

mutation and therefore cause performance to drop. A question remains if, even though larger  

Scenario Mut. St. Dev. 
Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.01 0.3357 0.3313 0.2962 0.2927 0.4547 0.4489 

0.05 0.2706 0.2564 0.2280 0.2171 0.3920 0.3739 

0.10 0.2333 0.2111 0.1742 0.1579 0.3130 0.2872 

0.15 0.2071 0.1804 0.1626 0.1401 0.2805 0.2494 

0.20 0.2094 0.1767 0.1632 0.1346 0.2763 0.2386 

0.25 0.2159 0.1772 0.1632 0.1373 0.2812 0.2378 

0.30 0.2250 0.1808 0.1806 0.1411 0.2901 0.2411 

2 

0.01 0.1270 0.1256 0.0765 0.0752 0.1434 0.1411 

0.05 0.1293 0.1218 0.0758 0.0693 0.1427 0.1314 

0.10 0.1525 0.1338 0.0932 0.0782 0.1737 0.1490 

0.15 0.1656 0.1372 0.1124 0.0886 0.2054 0.1680 

0.20 0.1825 0.1446 0.1301 0.0980 0.2333 0.1846 

0.25 0.2002 0.1531 0.1458 0.1062 0.2580 0.1995 

0.30 0.2136 0.1586 0.1597 0.1132 0.2792 0.2111 
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Table 7: Results obtained on both scenarios during the (source,sink) disturb study for setup 1. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained on all repetitions 

and graphs. 

standard deviation values are disruptive, better results could be achieved by increasing even further 

the mutation probability while maintaining the standard deviation at an appropriate level. 

 The behaviour shown on scenario 2 also backs up the discussion regarding mutation 

probabilities. Not only does the algorithm seem to benefit from a smaller number of mutations on 

this scenario, Tables 5 and 6 show that smaller standard deviation values bring performance gains 

over larger values. As the algorithm only has to evolve disturbances added to estimated values, we 

expect these values to remain close to 0. Considering the initialization mechanism applied, using a 

small standard deviation for mutation will allow the search to remain focused on a small part of the 

search space, which given the characteristics of the scenario and the fact that individuals represent 

disturbance values, seems beneficial. Still, the tables show that when the standard deviation falls to 

the lowest value tested, the MBF slightly increases, suggesting that there is a lower bound, below 

which the performance of the search process is affected. 

Scenario Std. Dev. 
Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.00 0.2048 0.1342 0.1724 0.1209 0.2537 0.1871 

0.05 0.1852 0.1579 0.1516 0.1328 0.2580 0.2278 

0.10 0.2149 0.1892 0.1615 0.1431 0.2737 0.2439 

0.15 0.2499 0.2255 0.1734 0.1554 0.2958 0.2664 

0.20 0.2845 0.2609 0.1853 0.1679 0.3296 0.3006 

0.25 0.3240 0.3007 0.2004 0.1837 0.3612 0.3325 

0.30 0.3640 0.3408 0.2198 0.2032 0.3935 0.3651 

2 

0.00 0.0538 0.0523 0.0476 0.0466 0.0823 0.0806 

0.05 0.0871 0.0649 0.0763 0.0517 0.1229 0.0927 

0.10 0.1291 0.1065 0.0813 0.0642 0.1416 0.1132 

0.15 0.1511 0.1339 0.0962 0.0804 0.1667 0.1397 

0.20 0.1849 0.1687 0.1127 0.0977 0.1948 0.1692 

0.25 0.2167 0.2010 0.1311 0.1168 0.2258 0.2007 

0.30 0.2521 0.2367 0.1514 0.1377 0.2549 0.2302 
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Table 8: Results obtained on both scenarios during the (source,sink) disturb study for setup 2. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained on all repetitions 

and graphs. 

 Tables 7 and 8 show the results obtained on the two scenarios on each subset using different 

standard deviation values for the disturbance applied on the costs of the desired shortest paths. On 

both setups and consistently on all subsets, the performance of the algorithm decreases as the 

standard deviation rises. 

 As previously stated, increasing the standard deviation in this case will increase the chance 

that incompatible shortest path costs exist and therefore reduce the chances that an optimal solution 

can be found. The results obtained are therefore expected. As the costs are disrupted based on a 

higher standard deviation, the more difficult the problem will be, causing the algorithm to perform 

increasingly worse on either scenario. 

 Also, regarding scenario 2 where cost estimates are used, increasing the standard deviation 

will cause the arc costs of the desired shortest paths to distance themselves from initial values. In 

consequence, the larger the standard deviation is, the worst the initial estimates get and the larger 

Scenario Std. Dev. 
Subset 1  Subset 2  Subset 3  

MAF MBF MAF MBF MAF MBF  

1 

0.00 0.2044 0.1411 0.1831 0.1337 0.2826 0.2224 

0.05 0.2094 0.1821 0.1666 0.1493 0.2864 0.2603 

0.10 0.2333 0.2111 0.1742 0.1579 0.3130 0.2872 

0.15 0.2809 0.2600 0.1891 0.1735 0.3283 0.3041 

0.20 0.3232 0.3031 0.2065 0.1918 0.3616 0.3383 

0.25 0.3667 0.3477 0.2259 0.2120 0.3961 0.3733 

0.30 0.4136 0.3948 0.2493 0.2351 0.4362 0.4136 

2 

0.00 0.0467 0.0455 0.0471 0.0462 0.1025 0.1009 

0.05 0.1117 0.0874 0.0773 0.0559 0.1442 0.1164 

0.10 0.1525 0.1338 0.0932 0.0782 0.1737 0.1490 

0.15 0.2066 0.1902 0.1140 0.1007 0.2096 0.1871 

0.20 0.2565 0.2413 0.1366 0.1247 0.2489 0.2276 

0.25 0.3032 0.2889 0.1607 0.1497 0.2882 0.2679 

0.30 0.3466 0.3326 0.1856 0.1751 0.3303 0.3107 
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the effort from the algorithm will have to be. While the results obtained by the algorithm on both 

scenarios share characteristics, there are also some differences worth addressing. Firstly, we can 

observe that the results obtained on scenario 2 are consistently better than those obtained on 

scenario 1. More interestingly, we can also see that the results achieved on this scenario on the most 

difficult instances are comparable to those obtained on scenario 1 on the easiest instances. 

 These results show that the tasks proposed in scenarios 1 and 2 have quite different 

difficulty levels and that it may be often better to work with cost estimates, even if they are quite 

deteriorated, than starting from blind estimates. Scenario 1 appears to represent a more difficult task 

as the algorithm has to search the whole search space of arc costs. However, scenario 2 also seems 

challenging as the algorithm actually has a larger search space. However, the initial estimations 

allow it to use more appropriate initialization and mutation mechanisms, which give it a clear 

advantage. Finally, on both scenarios, but especially on scenario 2, the algorithm comes quite close 

to finding a valid solution on some instances of the experimental set. However, as seen by the 

relevant tables, the MBF is still higher than 0, showing that the problem is still quite challenging 

Figure 1: Mean Best Fitness (MBF) observed along the generations on scenario 1 with setup 1 
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even when the desired shortest path costs are not disturbed. This is particularly relevant on the 

second scenario since an optimal solution in this case would be a vector of costs with value 0.

 Apart from differences in behaviour obtained with different design options and scenarios, 

the overall results also show some differences on how the algorithm behaves when facing different 

subsets. These behaviours are observed in both scenarios over the entire parametric study and are 

worth addressing. 

On both scenarios, best results were obtained on subset 2. The graphs from this subset consisted of 

30 nodes and 100 arcs. Performance drops when the number of nodes is reduced to 15 (subset 1) but 

also when the number of arcs increases to 200 (subset 3). The subset where the algorithm achieves 

better results is therefore the one where the graphs are sparser, which may be an important 

characteristic. Having denser graphs means that there are more arcs connecting the nodes and 

therefore a higher number of alternative paths. While this may seem beneficial, especially 

considering that dealing with a high number of desired shortest paths means that there will be 

conflicts, it makes individuals more resilient to changes and therefore to adaptations. This may 

Figure 2: Mean Best Fitness (MBF) observed along the generations on scenario 2 with setup1 
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compromise the evolution process enough to account for the differences in performance. Also, 

when generating                pairs, having a smaller number of nodes may end up creating a 

larger number of conflicts between desired shortest path arc costs and therefore increasing the 

difficulty of the problem. This may be responsible for the drop in performance of subset 1. 

Regarding subset 2, the drop in performance is probably linked to a higher search space resulting 

from doubling the number of arcs. The higher density will also make the individuals more resilient 

to adaptation. 

 Furthermore, setup 2 doubles the number of paths used in setup 1, causing performance to 

drop on all subsets. This behaviour is consistent with the above discussion, as increasing the 

number of paths will result on a higher number of desired shortest path cost conflicts and thus a 

more difficult challenge. 

 Figures 1 through 4 show the evolution of the mean best fitness along the generations on 

each setup. Figures 1 and 2 regard scenario 1 and figures 3 and 4 regard scenario 2. In both cases, 

the figures are in-line with our previous discussion. Notice that in scenario 1, due to initialization 

Figure 3: Mean Best Fitness (MBF) observed along the generations on scenario 1 with setup2. 
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using a uniform distribution, the algorithm starts from a much higher level in setup 3 but in only a 

few generations is able to close up on setup 1. The same thing does not happen with scenario 2, 

where the algorithm already starts with very close MBF values do to relying on a gaussian 

distribution for initialization. On both scenarios, the algorithm starts with a better MBF value on 

setup 2 when compared with the other two, probably due to the sparsity of the graph. 

 Tables 9 and 10 show the results obtained on both scenarios on setups 3 and 4 respectively. 

So far, the largest graphs tested had 30 nodes and 200 arcs. Setups 3 and 4 aim to test the algorithm 

in much larger graphs, having either 50 or 100 nodes, and 500 or 1000 arcs. What distinguishes 

setup 3 from setup 4 is the number of desired shortest paths. Setup 4 tests 3000 paths, which makes 

it a much more difficult challenge than setup 3 that tests 1000 paths. 

 Graphs this large represent a much tougher challenge to the algorithm, implying a much 

larger search space and computational effort. Due to this aspect, only 3 graphs were tested and 10 

repetitions were run for each one. While a much larger number of experiments is needed to truly 

reach conclusions on the behaviour of the algorithm, the data obtained from these runs and 

Figure 4: Mean Best Fitness (MBF) observed along the generations on scenario 2 with setup2. 
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presented here is still worth addressing. 

Table 9: Results obtained on both scenarios using the best parameters found for setup 3. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained on all repetitions 

and graphs. 

Scenario 
Subset 1  Subset 2  Subset 3  Subset 4  

MAF MBF MAF MBF MAF MBF MAF MBF  

1 0.4710 0.4449 0.3899 0.3702 0.5829 0.5534 0.4903 0.4622 

2 0.2962 0.2716 0.1745 0.1604 0.4854 0.4507 0.2916 0.2714 

 

Table 10: Results obtained on both scenarios using the best parameters found for setup 4. MBF 

stands for the mean best fitness and MAF for the mean average fitness obtained on all repetitions 

and graphs. 

Scenario 

Subset 1  Subset 2  Subset 3  Subset 4  

MAF MBF MAF MBF MAF MBF MAF MBF  

1 0.4647 0.4424 0.3885 0.3696 0.5778 0.5531 0.5018 0.4773 

2 0.3076 0.2860 0.1795 0.1672 0.5109 0.4805 0.2968 0.2795 

 

 The results obtained on both scenarios were considerably worse than those observed on 

setups 1 and 2. While this may be expected, it raises questions regarding the scalability of the 

algorithm to larger and larger graphs. Depending on its application and the accuracy required for the 

arc costs, the algorithm may or may not be appropriate. Still, the algorithm was able to perform 

better on scenario 2 than on scenario 1 on all setups and subsets, similarly to what had been 

observed on smaller graphs. This data backs up that having arc cost estimates may produce clear 

advantages. 

 There are other similarities between the behaviour observed with setups 3 and 4 and that 

previously observed in setups 1 and 2. In both setup 3 and 4, subset 3 has the same number of nodes 

as subset 1 but a larger number of arcs. The increased density results on a unfavorable increase in 

MBF which can also be observed between subsets 2 and 4. On the other hand, when the number of 
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arcs is maintained and the number of nodes increased, such as from subset 1 to subset 2 or from 

subset 3 to subset 4, the algorithm improves its performance. 

 The fact that this behaviour is consistent both in small or large graphs reinforces our 

assumptions. However, when comparing setup 3 with setup 4, which triples the number of desired 

shortest paths, we can see a slight drop in performance on some subsets but also the opposite. 

Interestingly, this behaviour had not been observed on smaller graphs, where setup 1 consistently 

performed better than setup 2. This suggests that such large graphs can accommodate a very large 

number of desired shortest path costs before we can observe the same effects we did between setups 

1 and 2. 

Conclusions and Future Work 

 Inverse Combinatorial Optimization has become a relevant and attractive research subject 

over the past decades. Several approaches have been proposed and studied to tackle both Inverse 

Solution Optimization Problems and Inverse Objective Value Optimization Problems. This study 

focuses on the ISPL problem, which is relevant to graph theory and may have several real world 

applications. 

 We propose an unprecedented GA to tackle the problem and two possible scenarios are 

presented. On the first scenario we assume that no information is accessible about the arc costs of 

the graph except the cost of the desired shortest paths. On the second scenario, we have access to 

estimates about the arc costs of the graph and only adjustments to be made to those estimates are 

evolved. A disturbance method is also introduced which by disturbing the arc costs belonging to the 

desired shortest paths, makes the problem tougher to solve as incompatible combinations may arise 

and as cost estimates become more and more deteriorated. 

 Both scenarios are tested using graphs with different characteristics. Two setups use graphs 

with a small size, up to 30 nodes and 200 graphs, and two setups use graphs of a larger size, up to 

100 nodes and 1000 arcs. Different numbers of desired shortest paths costs are also tested, up to 200 
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on the smaller graphs and up to 3000 on the larger ones. A parametric study was conducted on the 

smaller graphs, where various parameter values were tested either regarding mutation probability, 

mutation standard deviation or shortest path disturbance’s standard deviation. The results and 

behaviour of the algorithm on both scenarios are addressed and discussed. It is noted that the 

scenarios result on very distinct behaviours and the algorithm obtains its best performance with very 

different mutation parameters. While on the first scenario the algorithm benefits from higher 

mutation probabilities and standard deviation, on the second scenario it performs better with lower 

mutation probabilities and standard deviation. On the first scenario it is also observed that too high 

values of standard deviation can reduce the algorithms performance. 

 The effect of different values for the standard deviation of the shortest path disturbance 

method is also tested. The algorithm achieved a worst performance as the standard deviation gets 

larger on both scenarios, which was to be expected. The relation between performance of the 

algorithm and the characteristics of the graphs is also explored on both scenarios. Results show that 

on both scenarios, the algorithm perform better on sparser graphs as well as on setups with less 

desired shortest paths. However, on larger graphs, the differences are reduced and the results are 

competitive with each other.  

 Future work may include expanding the study to include graphs with different 

characteristics, e.g. graphs with one source node and many sink nodes. Also, a larger parametric 

study which includes tournament sizes or specific mutation operators may be relevant. Other 

representations as well as problem specific operators may also be tested. Finally, a GA approach 

could be applied not only to ISPL problems but also to ISPP or other inverse combinatorial 

optimization problems 
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