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Abstract
This work explores the creation of ambiguous im-
ages, i.e., images that may induce multistable per-
ception, by evolutionary means. Ambiguous im-
ages are created using a general purpose approach,
composed of an expression-based evolutionary en-
gine and a set of object detectors, which are trained
in advance using Machine Learning techniques.
Images are evolved using Genetic Programming
and object detectors are used to classify them. The
information gathered during classification is used
to assign fitness. In a first stage, the system is used
to evolve images that resemble a single object. In a
second stage, the discovery of ambiguous images
is promoted by combining pairs of object detec-
tors. The analysis of the results highlights the abil-
ity of the system to evolve ambiguous images and
the differences between computational and human
ambiguous images.

1 Introduction
In the field of Evolutionary Art (EA), expression-based sys-
tems are, in theory, capable of generating any image of
any kind [Machado and Cardoso, 2002; McCormack, 2007].
From a practical point of view, the evolved images depend
on the representation scheme in use. Consequently, the re-
sults of expression-based EA systems tend to be abstract im-
ages. However, since the start of EA, there has been a desire
to evolve figurative images. One of the first attempts can be
found in the work of Rooke [World, 1996].

Machado and Correia [2012a; 2013] proposed and ex-
plored the combination of a general-purpose expression-
based GP image generation engine with off-the-shelf object
detectors, as well as their own ones, for the purpose of evolv-
ing figurative images. The results showed the ability of the
system to evolve images containing the desired objects. More
precisely, the system was able to evolve images that were
classified by the object detector as containing the desired ob-
ject, although in some cases this object was not clearly rec-
ognizable by a human viewer.

This work builds upon the findings of Machado and Cor-
reia [2012a; 2013] expanding their approach in order to
evolve ambiguous images. In other words, our goal is to

evolve images that induce multistable perception, which oc-
curs when the brain (or the computer in our case) is con-
fronted with visual stimulus that can be interpreted in multi-
ple ways. Some famous examples of ambiguous images are:
duck/rabbit; Rubin’s vase, which can be perceived as a vase
or two opposing faces; “My Wife and My Mother-in-Law”,
which may be interpreted as a young or an old woman (see
Figure 1).

We consider ambiguous images and multistable perception
fascinating phenomena, worth studying for both scientific and
artistic purposes. Some of the questions that motivate the re-
search reported here are: (i) Can ambiguous images be cre-
ated by fully automated computational means? (ii) Can this
be done from scratch (i.e. without resorting to collages or
morphing of pre-existent images)? (iii) How do computa-
tional ambiguous images look like? (iv) How do they relate
to human ambiguous images? (v) How can the dichotomy be-
tween human and computational ambiguity be explored for
artistic purposes? (vi) Can one explore computer vs. hu-
man creativity and perception scientifically via ambiguous
images?

To evolve ambiguous images, an incremental approach is
followed. First we evolve images containing a single object.
Following in the footsteps of Machado and Correia [2012a;
2013] we use an object detector to guide evolution, assign-
ing fitness based on the internal values of the object detection
process. Then, using object detectors trained to identify dif-
ferent types of objects, we evolve images containing two dis-
tinct objects. Finally, we focus on the evolution of ambiguous
images, which is achieved by evolving images containing two
distinct objects in the same window of the image.

Figure 1: Some well-known examples of ambiguous images,
from left to right: duck/rabbit; Rubin’s vase; “My Wife and
My Mother-in-Law”.
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The paper is structured as follows: In the next section a brief
overview of related work is presented; Section 3 describes our
approach for the evolution of ambiguous images, including an
overview of the approach, the Genetic Programming (GP) en-
gine, the object detection system, and the fitness assignment
scheme. The experimental setup, the results attained and their
analysis are presented in section 4. Finally, in section 5 we
draw overall conclusions and indicate future research.

2 State of the Art
The evolution of figurative images has been an ambitious
challenge pursued by several researchers since the early days
of Evolutionary Art. Although many efforts have been made
in this direction, most of the known approaches found in the
literature focus on evolving specific types of objects, namely
human faces. Baker [1993] evolved line drawings using a Ge-
netic Algorithm (GA), where each line could have different
characteristics. Johnston and Caldwell [1997] made use of
GAs to evolve human faces using different portions of them,
in a trial to create an artist capable of constructing criminal
sketches. Frowd et al. [2004] also employ a GA to evolve
human faces, using Principal Component Analysis and eigen-
faces.

While some authors tried to evolve photographic human
faces, others tried to evolve cartoon faces [Nishio et al., 1997]
and cartoon faces animations [Lewis, 2007] using GAs. In the
latter, the evolution of human figures was also explored.

In contrast to the works described above, Ventrella [2010]
and DiPaola and Gabora [2009] built a general purpose evo-
lutionary art tool. They addressed the problem of evolving
images towards a given goal image, as suggested by Sims
[1991]. This problem can be interpreted as a symbolic regres-
sion problem where the fitness function is a similarity degree
between the evolved images and the target image. For Di-
Paola and Gabora [2009], the final goal was to evolve abstract
portraits of Darwin. Despite taking into account expressive-
ness in their fitness function, which gave sense to their work
from an artistic point of view, the results were disappointing
in terms of resemblance to the goal object, considering figu-
rative art.

In interactive evolutionary art, Rooke [1996] evolved sev-
eral images reminiscent of African masks, Machado and Car-
doso [2002] evolved images that are evocative of female bod-
ies, faces, etc. More recently, Secretan et al. [2008] cre-
ated an user-guided collaborative evolutionary engine, named
picbreeder. Some of the images evolved by the users resem-
ble figurative images such as cars, butterflies and flowers.

3 Overview of the Approach
The approach is based on the framework of Machado and
Correia [Machado et al., 2012a; Correia et al., 2013]. Fig-
ure 2 presents an overview of the framework, which is com-
posed of two main modules, an evolutionary engine and a
classifier. The execution of the framework proceeds as fol-
lows:

1. Randomly initialize the population;
2. Render the individuals, i.e., genotype-phenotype map-

ping;
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Figure 2: Overview of the system.

3. Apply the classifier to each phenotype;

4. Use the results of the classification to assign fitness; This
requires assessing internal values and intermediate re-
sults of the classification, to assign fitness;

5. Select progenitors; Apply genetic operators, create de-
scendants; Use the replacement operator to update the
current population;

6. Repeat from step 2 until some stopping criterion is met.

For the purpose of this paper, the framework was instantiated
with a general-purpose GP-based image generation engine –
described in section 3.1 – and with a cascade classifier as an
object detector – described in section 3.2. To create a fitness
function able to guide evolution it is necessary to convert the
binary classification output of the object detector to one that
can provide a suitable fitness landscape. This is achieved by
accessing internal results of the classification task that pro-
vide an indication of the degree of certainty in the classifica-
tion. This process is described in section 3.3.

3.1 Genetic Programming Engine
The GP-based image generation engine used in this experi-
ment is inspired by the work of Sims [1991], and is similar
to the work of Machado [2007]. It was built upon ECJ,1 a
java-based Evolutionary Computation research system, that
contains several evolutionary algorithms and primitives. It is
a general purpose, expression-based, Genetic Programming
image generation engine that allows the evolution of popula-
tions of images. The genotypes are expression trees where the
functions include mathematical and logical operations and the
terminal set is composed of two variables, x and y, and ran-
dom constant values. The phenotypes are images, rendered
by evaluating the expression trees for different values of x
and y, which serve both as terminal values and image coor-
dinates. In other words, the value of the pixel of coordinates
(i, j) is calculated by assigning i to x and j to y and evaluat-
ing the expression tree.

1ECJ – http://cs.gmu.edu/ eclab/projects/ecj/
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3.2 Object Detection
The object detector used in the framework is based on the
work of Viola and Jones [2001]. Two object detectors were
trained, by building datasets of faces and flowers. This train-
ing procedure was attained using OpenCV API.2 For the
datasets for each classifier we specified a negative dataset,
composed of images that did not contain any of the objects
being evolved and was common for the trained object detec-
tors. Additionally, a positive dataset was used according to
the desired object detector that we wanted to produce, where
each image had an annotation regarding the object location.
The process was similar to the one used by Correia et al.
[2013] where more insight about building the datasets can
be found. After the training phase, the object detector can be
used to detect whether an image contains an object. The de-
tection algorithm can be summarized in the following steps:

Figure 3: Cascade of classifiers with N stages.

1. Define a window of size w (e.g. 20× 20).
2. Define a scale factor s greater than 1. For instance 1.2

means that the window will be enlarged by 20%.
3. Define W and H as the width and height, respectively,

of the input image.
4. From (0, 0) to (W,H) define a window of the image

with a starting size of w for calculation.
5. For each window apply the cascade classifier. The cas-

cade has a group of weak stage classifiers, as presented
in Figure 3. Each stage is composed, at its lower level,
of a group of low level features (Haar features). Apply
each feature of each stage to the window. If the over-
all resulting value is lower than the stage threshold the
window does not have an object and the search termi-
nates for the window. If it is higher, the search continues
to the next stage. If all stages are passed, the window
contains an object.

6. Apply the scale factor s to the window size w and repeat
step 5 until window size exceeds the image in at least
one dimension.

This algorithm has key aspects that have impact on the evolu-
tionary process: (i) the whole process is a summation of mul-
tiple binary classifications on windows of the input image; (ii)

2OpenCV – http://opencv.org/

for each window, the detection involves multiple stage clas-
sifiers and feature extraction. Aspect (i) allows us to explore
different parts of the individual and evaluate its potential. As-
pect (ii) provides us with access to several internal values of
the classifier that can be used to assign fitness. Both aspects
allow the design of an appropriate fitness function to guide
evolution which is described in the following section.

3.3 Fitness Assignment
An important aspect of the framework, as for any Evo-
lutionary Computation algorithm, is the fitness assignment
scheme. The fitness assignment process determines the rank
given to each evolved solution, determining which individu-
als should survive for the next generation. Thus, one must
design a fitness function able to guide evolution. In our par-
ticular case, it is necessary to convert the binary output of
the object detector(s) to one that can provide a suitable fit-
ness landscape. This is achieved by accessing internal re-
sults of the classification task. As such, images that are im-
mediately rejected by the classifier will have lower fitness
values than those that are close to the detection of the ob-
ject. Based on the work of Machado and Correia [2012a;
2013], we applied the following fitness function:

f(x) =
∑cstagesx

i (stagedifx(i) ∗ i) + cstagesx ∗ 10. (1)

Variables cstagesx and stagedifx(i) are extracted from the
object detection algorithm. The rationale is that an image that
passes several stages has a higher cstages value and is likely
to be closer to being recognized as having a object than one
that passes fewer stages. Images that are clearly above the
thresholds associated with each stage have higher stagedif
values. As such, these images are preferred over ones that are
only slightly above the threshold. More details regarding the
fitness function are available in [Machado et al., 2012a].

Since we are interested in the evolution of images that are
evaluated by several object detectors, the combined fitness
function described in Equation 2 was used:

combined(x) =
∏

log2(fi(x) + 2), (2)

where fi(x) is the ith single fitness function (1), per classifier
of the combination.

4 Experimentation
The experimentation was divided into three steps. First we re-
produced the previous work of [Correia et al., 2013], by per-
forming evolutionary runs with a single object detector. Next,
we combined the two detectors to test the ability of our ap-
proach to evolve images that simultaneously depict both ob-
jects. Finally, we combined the detectors enforcing an over-
lap between the objects, hoping to achieve ambiguous im-
ages.

4.1 Experimental Setup
Table 1 describes the parameters used in the GP engine while
Table 2 contains the parameters of the object detection algo-
rithm.
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Table 1: Parameters of the GP engine.
Parameter Setting
Population size 100
Number of generations 1000
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap,

sub-tree replacement,
node insertion, node deletion
and mutation

Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, −, × , /, min, max, abs,

neg, warp, sign, sqrt, pow,
mdist, sin, cos, if

Terminal set x, y, random constants

Table 2: Detection parameters used.
Parameter Setting
Min. window width 90
Min. window height 90
Image Width 128
Image Height 128
Scale Factor 1.1
Image pre-processing Otsu’s Binarization

Regarding the general object detection parameters, there are
some differences from the approach of Machado and Correia
[2012a; 2013]. The size of the individuals rendering, in pix-
els, for evaluation is substantially increased from 64 × 64
to 128 × 128. This forces the evolved individuals to con-
tain larger objects, and be more robust and less noisy. The
minimum size window, or minimum object size, was also in-
creased to promote the appearance of objects at the center of
the image. Another relevant difference is that the images are
all pre-processed, for training or detection, with a binarization
algorithm. We used Otsu’s binarization algorithm [1979] to
transform the images. This way, we highlight the difference
between the object and everything around it. We conducted
tests with and without binarization of the output of the GP
system.3 Overall, we found that binarized images tended to
be clearer to humans. This is likely to be related to the im-
age equalization and “normalization” operations performed
by the object detectors before classification, which may high-
light features that are hard to see in the original images.

Three different experimental environments were prepared
for this work. In the first one we used the two classifiers –
faces and flowers – individually to guide evolution. We then
focused on the evolution of images that could simultaneously
evoke faces and flowers. In the second experimental setting,
we assigned fitness based on the results of the face and flower
detectors and we reduced the minimum window size param-
eter to (40 × 40). This promoted the evolution of images

3We are binarizing the output of a floating point GP system. Us-
ing a binary GP approach would avoid this intermediate step.

Figure 4: Evolution of the fitness of the best individual across
generations and of the percentage of best individuals where a
flower was detected. The results are averages of 30 runs.

Figure 5: Some examples of evolved images containing flow-
ers (top row) and faces (bottom row).

containing both objects, but it did not require the faces and
the flowers to overlap. Finally, in the third experimental set-
ting, we used both classifiers to assign fitness and a minimum
window size of (90 × 90), which forced an overlap between
the windows detecting both objects. For each combination of
parameters, we performed 30 independent evolutionary runs
using different random seeds. To promote readability we nor-
malised all fitness values by dividing the raw value by the
maximum value found in the course of the experiments. This
also means that the values used for the plots are averages of
30 runs.

4.2 Experimental Results
The results obtained when evolving images containing single
objects confirm previous work in this field [Machado et al.,
2012a; Correia et al., 2013]. In all runs and for all classifiers,
evolution was able to produce images where the object was
detected. In most situations this was accomplished in fewer
than 50 generations.
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Figure 6: Examples of images containing non overlapping
faces and flowers.

Figure 4 depicts the evolution of the fitness of the best indi-
vidual when evolving flowers, as well as the percentage of
those individuals where a flower was detected. As can be ob-
served, by the 70th generation all runs had already produced
individuals containing flowers. Also confirming previous re-
sults in the area, although all runs evolved images where the
object in question was detected, the visibility of these objects
to a human observer is questionable in some of the cases. Fig-
ure 5 presents some examples of the evolved images. As can
be observed, while the flowers are easy to identify, seeing the
faces is not obvious in all the cases. This can be explained
by the fact that the detection of flowers relies heavily on the
contour of the shape, while the detection of faces relies on the
presence of a combination of features that can be identified as
eyes, eyebrows, lips, nose, chin, face contour,4 which may be
obfuscated by other image artifacts.

We then focused on the evolution of images containing
faces and flowers simultaneously, without enforcing the over-
lap between the regions where these objects were identified.
Figure 6 depicts examples of the results obtained in this set-
ting. In all of the examples presented, the system was able
to evolve images where the object detectors found faces and
flowers. Interestingly, some of the evolved images (e.g. the
two rightmost images of Figure 6) depict the same type of
optical illusion as Rubin’s vase (see Figure 1). In this case,
although we do not promote the overlap between the detec-
tion windows and although these could be completely non-
overlapping, the solutions found by the EC engine often take
advantage of the similarities between visual features of the
objects. This is particularly evident in the rightmost image of
Figure 6 where the eyes of the faces serve as petals for the
flowers, and vice-versa. As such, we can state that in some of
the evolutionary runs the algorithm evolved images that are
ambiguous both from a computational and human perspec-
tive, in the sense that both computer and human are able to
recognize simultaneously a face and a flower in the same re-
gion. As a side-note, it is also interesting to note that some
of these images constitute tiling patterns, which is an unex-
pected outcome.

In our third experimental setting the overlap between the
regions where faces and flowers are detected becomes a re-
quirement. Figure 7 shows the evolution of the fitness of the
best individual. In addition to the combined fitness value, we
also present the fitness scores according to each classifier. As
previously, these results have been normalized by dividing by
the highest corresponding value found in the course of all the
experiments. The percentage of the best individuals where

4Simultaneous presence of all of these features is not necessary.

Figure 7: Fitness of the best individual and percentage of the
best individuals containing an overlap between a face and a
flower. In addition to the overall fitness and detection ratios,
the partial fitness and the ratios of each of the detectors is also
presented. The results are averages of 30 runs’ objects.

faces and flowers were simultaneously detected in overlap-
ping regions is also depicted, as well as the percentage of the
best individuals where faces and flowers were detected. All
results are averages of 30 runs.

As can be observed, although there is an abrupt increase of
fitness during the first generations, improving fitness beyond
that point is extremely difficult. Moreover, maximizing the
response of the face detector is harder than maximizing the
response of the flower detector. This outcome was expected
since the same behaviour was observed when evolving im-
ages containing a single object. In 76.6% of the runs, the
algorithm was able to evolve images where overlapping faces
and flowers were detected. However, when we compare the
fitness values obtained by each of the two object detectors
with those obtained when evolving single objects, we arrive
at the conclusion that the components of the combined fitness
are far from their maximum values. This can be observed
by contrasting the value reached by the fitness component
regarding flowers of Figure 7, with the value attained when
evolving flowers only, which is depicted in Figure 4. There-
fore, although overlapping faces and flowers were detected in
76.6% of the runs, the difficulties found in maximizing the
individual fitness components indicate that these detections
are probably not robust.

An analysis of the resulting images reveals that although
the majority of the runs evolved images where both objects
were detected in the same window, which can, as such, be
considered computationally ambiguous, most of the images
found are not evocative of both objects (see Figure 8). Thus,
in most cases they do not induce a multistable interpretation.
Nevertheless, in some cases, images that are also ambiguous
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Figure 8: Example evolved images that are computationally
ambiguous, but fail to induce, in our opinion, multistable in-
terpretation in humans.

Figure 9: Examples of evolved images considered ambiguous
by both humans and computers.

from a human perspective were evolved. Figure 9 depicts
some of these exceptions to the norm. For instance, looking
at the leftmost image of Figure 9 we can identify eyebrows,
the white oval shapes create the illusion of eyes, while the
remaining symmetrical black shapes create the illusion of a
face contour. Simultaneously, the white regions can be inter-
preted as petals of flowers. Looking at the rightmost image,
one can recognize a flowery pattern, but one can also inter-
pret the top two “petals” as eyebrows and the middle shapes
as eyes, which immediately evoke a face, and then one will
probably interpret the bottom petals as a beard or mustache.

Humans have evolved to quickly recognize faces, which
is simultaneously advantageous and problematic in this con-
text. On the one hand, our ability to recognize faces even
when only a subset of the features is present makes the task
more feasible. On the other hand, the same ability makes
the analysis of the experimental results more subjective. The
shared left-right symmetry of faces and flowers also plays an
important role in the evolution of ambiguous images. We are
currently conducting experiments using other objects, some
of which are not symmetric (e.g. profile faces). Although
we are able to evolve computational ambiguous images, it
is hard for humans to see both objects, particularly the non-
symmetric one. Our tentative explanation is that since de-
tection of symmetry plays an important role in human image
perception, humans tend to be drawn towards the symmetric
object overlooking the non-symmetric one.

5 Conclusions
In this paper we explored the generation of ambiguous im-
ages by evolutionary means. We used a general purpose
expression-based GP image generation engine and several
object detectors. The fitness is assigned by utilizing values
from the detection phase. We used a framework presented
in previous work and further explored it, while addressing
some challenges of this research. The experimental results
also highlight the differences between human ambiguous and

computational ambiguous images.
At first, several object detectors were used to assign fitness

and evolve images that resemble faces and flowers. The re-
sults from 30 runs per classifier showed that it is possible to
evolve images that are detected and resemble, from a human
perspective, the object. Next, we focused on the combination
of flower and face detectors, and evolved images that con-
tained both objects. The results showed the ability of the sys-
tem to evolve images where both object detectors found their
respective object. Some of the evolved images depicted opti-
cal illusions, with shared visual features and tiling patterns. In
the final experiment, the object detectors were parameterized
to detect larger objects, forcing the overlapping of the objects
in the evolved images. In several runs the system was able
to evolve images where the two objects are detected by the
respective object detectors. Although the evolution of com-
putational ambiguous images was frequent, only a portion of
these images are evocative of both objects to humans. These
evolved images can be considered ambiguous to humans, ca-
pable of inducing multistable perception.

Although the results obtained so far are not of the same
level as human-designed ambiguous images, we consider
them inspiring. They also demonstrate the feasibility of the
approach and open new avenues for research.

The next steps will be the following: perform experiments
considering a wider set of classes of objects; further explore
the evolution of images with partial and total overlap of ob-
ject detectors and explore the generation and evolution of am-
biguous tiling patterns. As previously mentioned, the exper-
imental results contain many false positives. In a different
line of research (see, e.g., [Machado et al., 2012b]) we are
exploring the ability of the GP approach to find false posi-
tives to improve the quality of the training sets, and hence the
robustness of the object detectors.
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