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Abstract

With an ever increasing number of vehicles traveling the roads, traffic problems such as congestions and increased travel times
became a hot topic in the research community, and several approaches have been proposed to improve the performance of the
traffic networks.

This paper introduces the Inverted Ant Colony Optimization (IACO) algorithm, a variation of the classic Ant Colony algorithm
that inverts its logic by converting the attraction of ants towards pheromones into a repulsion effect. IACO is then used in a
decentralized traffic management system, where drivers become ants that deposit pheromones on the followed paths; they are then
repelled by the pheromone scent, thus avoiding congested roads, and distributing the traffic through the network.

Using SUMO (Simulation of Urban MObility), several experiments were conducted to compare the effects of using IACO with
a shortest time algorithm in artificial and real world scenarios — using the map of a real city, and corresponding traffic data.

The effect of the behavior caused by this algorithm is a decrease in traffic density in widely used roads, leading to improvements
on the traffic network at a local and global level, decreasing trip time for drivers that adhere to the suggestions made by IACO as
well as for those who don’t. Considering different degrees of adhesion to the algorithm, IACO has significant advantages over the
shortest time algorithm, improving overall network performance by decreasing trip times for both IACO-compliant vehicles (up
to 84%) and remaining vehicles (up to 71%). Thus, it benefits individual drivers, promoting the adoption of IACO, and also the
global road network. Furthermore, fuel consumption and CO, emissions from both vehicle types decrease significantly when using
IACO (up to 49%).

© 2013 Published by Elsevier Ltd.

Keywords: Inverted Ant Colony Optimization, Traffic Simulation

1. Introduction

The domain of Intelligent Traffic Systems comprises several areas of application and research, including vehicle
tracking, traffic load prediction and computation or real-time signal control, among others [1]. In particular, traffic
management systems, which includes many sub-problems [2], is one of the most active topics nowadays. It has severe
ecological implications and is considered vital to the sustainability of cities [3]. These concerns may become decisive
in the approach to some classical problems such as finding the optimal route to a destination. Traditional driver
behaviour tends to be a selfish one, searching for the shortest/fastest path to the destination, which ultimately causes
traffic jams in widely used arteries, which in turn causes the emission of large amounts of CO, and other polluting
chemicals [4, 5].

The main objective of this paper is to study how influencing the behavior of each individual driver, while main-
taining his selfishness, would improve a network efficiency — achieving maximum throughput in the road network and
minimizing road congestion. Therefore, and in order to perform the necessary simulations, we will look at the city
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as a complex system and each driver as an individual agent. This decentralized approach also respects the privacy
concerns of drivers, since no personal data is collected, and no unique identifiers are required.

By combining GPS systems with real-time traffic information, we have a means to distribute information about
traffic to virtually all drivers. However, in order to make everyone contribute to the greater good, there is a need to
constantly spread updated network information to the drivers and to actually use their selfishness in order to distribute
them more uniformly throughout the network. In this paper we will analyze different algorithms to try to achieve the
proposed goal, with special emphasis on the developed variation of the Ant Colony Optimization (ACO) algorithm —
Inverted Ant Colony Optimization (IACO). This inversion of the ACO algorithm consists in having the pheromones
causing repulsion instead of attraction, trying to simulate the drivers’ aversion over traffic congestions; IACO is
explained in more detail in section 3. The results, provided by a road traffic simulator that reproduces the individual
behavior of the agents, show that a network’s efficiency can be greatly improved by the use of this algorithm, reducing
CO, emissions by up to 49%, and also reducing average trip time by up to 84% (at the expense of increasing trip
length by up to 60%), which constitutes excellent results for further experiences. This is achieved by updating network
weights, which allows users to avoid congestions, thus promoting a better distribution of load throughout the network.

The remaining of this paper is structured as follows: Section 2 presents a brief description of related work; Section
3 describes the developed algorithm, IACO; Section 4 illustrates the literature review regarding traffic simulators, and
describing in more detail SUMO, the simulator used in this work. Section 5 describes the experimental setup used for
the simulation experiments, while section 6 presents the obtained results. Finally, section 7 presents the conclusions
and some lines of future work.

2. Literature Review

Ant Colony Optimization was proposed in the early nineties by Marco Dorigo [6] [7]. The ACO algorithms consist
of using a population of ants to collectively solve an optimization problem and can be used to discover minimum
cost paths through a certain graph, while respecting specific constraints. Informally, its implementation involves the
collaboration between a set of ants: a small set is responsible for laying down a pheromone trail and the other set
follows that trail, reinforcing it, avoiding random moves in a network. Through time, the intensity of the trail will be
reduced promoting also the reduction of the ant’s attraction.

Let G = (V, E) be the graph related to a certain optimization problem, where V represents the vertexes and E the
edges. The solutions to that optimization problem can be defined as feasible paths on the graph G. While searching
for the shortest path, ants deposit pheromones in the traversed route. This leaves pheromone trails that encode a long-
term memory regarding the search process. The arcs of the graph might also have a heuristic value that results from
a priori information or from run-time feedback. They define the properties that the ants of the colony should have
such as a memory (to evaluate the current solution or to retrace the path backward), termination conditions and being
able to move in its feasible neighborhood. The ants’ probabilistic decision rule depends on its memory, the problem’s
constraints and also the ant-routing table (a local data structure with pheromone trails and heuristic values). There
are two types of pheromone updates: online step-by-step update (deposit of pheromone by the ant when it moves
through an arc) and online delayed update (updating the pheromone trails after finding a solution and retracing the
path backwards) [8]. Additionally there are two other processes of updating pheromone trails: daemon actions and
pheromone evaporation. Daemon actions are optional and might be used to perform actions that individual ants cannot
do, such as centralized actions. Pheromone evaporation consists of decreasing the intensity of the pheromone trails
over time in order to avoid convergence to sub-optimal areas and to explore new areas of the graph.

Algorithm 1 illustrates the generic implementation of the ACO algorithm [9], where A is the set of ants, E is the
set of edges in the graph, and B € E is the set of edges that form the best solution.

ACO has been applied to numerous domains, to solve optimization problems. One of the most widely known
such problems is the Traveling Salesman Problem (TSP), which is tackled in [10]. Another application is in the
communications area, where the AntNet variation of the algorithm allows for adaptive routing in communication
networks [11]. Several approaches using ACO have also been made in the traffic area. Claes and Holvoet [12] use
a combination of ACO with link travel time prediction to find routes that reduce travel times, achieving at best an
improvement of 30% over the A* algorithm, used as a basis for comparison. This was accomplished using different
types of ants: primer ants first mark the path obtained from running a static analysis using A*, and afterwards
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Algorithm 1 Generic Ant Colony Optimization Algorithm

Initialize
while stop criteria are not met do
for all anta in A do
Position a in startNode
end for
repeat
for all anta in A do
Choose nextNode
Pheromone(currentNode,nextNode) += Update
end for
until every ant has a solution
for all edge ¢ in B do
Pheromone, + = Deposit

end for
for all edge e in E do
Pheromone, — = Evaporation
end for
end while

exploration ants attempt to balance exploration and exploitation of the network to determine the best path between
two points in a real city road network. This solution, however, and despite working well for the pre-determined pair
of origin-destination, assumes that ants and pheromones from different vehicles do not interact, while the solution
presented in this paper assumes a global pheromone network, available to all vehicles. Also, another major difference
is that in their work, only vehicles that control the ants use the information to optimize their route, not benefiting other
vehicles, while in our approach all vehicles benefit from using IACO, even if not directly using it to plan their route.

Gambardella, Taillard and Agazzi [13] apply ACO to the vehicle routing problem with time windows, using two
ant colonies: one that minimizes the number of vehicles, and one that minimizes total travel distance. These two
ant colonies optimize the two different objectives of this multi-objective optimization problem, having independent
pheromone trails, but collaborating by exchanging information. The focus of this work, however, is very different from
the one tackled in this paper, as the authors in [13] assume all vehicles belong to the same entity and the planning is
made having in mind a common goal, while in this paper the planning is made by each individual vehicle, having in
mind its own goals.

He and Hou [14] use ACO to manage signal setting parameters in signal timing optimization problems; the au-
thors compare the performance of the ACO implementation with that of other algorithms, improving performance by
decreasing total time delay by approximately 16,5% and number of stops by 60%. This work differs from the one
presented herein as it assumes no changes are made to the route of the vehicles but only to traffic flow on intersections.

Other approaches to traffic control and management exist, such as traffic signal control systems. These use his-
torical and real-time traffic information to fine-tune control variables for traffic signals, as to prevent traffic jams, and
increase network throughput. Systems like SCOOT! are used to improve traffic flow in several cities throughout the
world, reducing travel times and number of stops at traffic signals. Approaches to traffic signal control include Multi-
Agent based approaches [15], genetic algorithms [16], BDI [17] or predictive models [18], among others. Just as with
the previously mentioned approaches, these also propose changes to the network (by modifying the behavior of traffic
signals), while our approach doesn’t entail changes to the network.

Despite the fact that ACO has been used in several traffic management problems, the authors were unable to find
any work reporting an approach similar to the one presented herein, where the goal is to maximize overall network
efficiency attending to trip time, CO, emissions and avoidance of traffic congestions in the entire network using this
new variation of ACO.

I'Split Cycle Offset Optimization Technique. More information available online at http://www.scoot—-utc.com/
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3. Inverted Ant Colony Optimization

Having the goal of this research in mind, which is to develop an approach that avoids congestion in a city without
changing the drivers individual behaviors, a hybrid algorithm is proposed. Combining two algorithms, Dijkstra and
TIACO, this approach deals with the static (edge distance) and dynamic (car density) natures of a traffic network. In
this research, a criterium is used to calculate the cost of each edge by adding the distance of that edge as calculated by
the Dijkstra algorithm to the level of pheromones in that edge, as illustrated by Equation 1.

edgeCost (i, j) = distance (i, j) + edgePheromones (i, j) €))]

At the beginning of the network analysis (which can be translated into the early hours of the day, when the first
cars start to move through the city), there are no pheromones spread in the network. If only the IACO algorithm was
used in this stage, it would materialize in having the ants lost without any defined path (in this case, the cars would
have no idea of the path to follow to reach their destination). To avoid this cold start problem, Dijkstra’s algorithm,
illustrated in Algorithm 2, was used, allowing the ants to determine an optimal path to follow to their destination, but
considering a network without traffic.

Algorithm 2 Dijkstra Algorithm

D ={} # dictionary of final distances

P=1{} # dictionary of predecessors

Q = priorityDictionary()  # estimated distance of non-final vertexes
O [startVertex] =0

for all v in Q do

D[v] = Q[v]

if (v == endVertex) then
break

end if

for all win G [v] do
vwLength = D [v] + G [v] [w]
if (w not in Q or vwLength < Q [w]) then
QO [w] = vwLength
Plw]=v
end if
end for
end for
return(D, P)

After selecting the shortest path with Dijkstra’s algorithm, IACO is used. In an initial phase, this algorithm consists
in depositing pheromones through the network. The pheromone update process has a time complexity of O(N), where
N is the number of vehicles, thus becoming meaningless when compared to the computational effort of running the
Dijkstra algorithm for each vehicle — O ([(E + V) logV] # N), where E and V are the number of edges and vertexes
in the network. Differing from the classical ACO approaches, pheromone levels do not produce an attraction for the
other ants but rather a repulsion. This repulsion simulates the traffic congestion in the graph node and the aversion of
drivers to such problem. The increase of pheromone levels is therefore proportional to the number of vehicles present
in each edge, but inversely proportional to their speed. This point is crucial because if the number of vehicles in each
edge is high but speed is also high — as would be the case of a highway with high traffic levels yet fluent traffic —
this means that there is no traffic congestion. In the absence of significant traffic, IACO will behave similarly to ST.
As traffic conditions become more severe at a particular node, the weight of this node is gradually increased, through
the deposit of pheromone, promoting the distribution of traffic to other nodes of the network. When traffic conditions
become better, the weight will gradually decrease due to pheromone evaporation. Therefore, the responsiveness of
the system depends on the pheromone deposit and evaporation rates. For instance, if the deposit rate is too low
the weight adjustment will be too slow, making IACO inefficient. On the other hand, if the evaporation rate is too
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low, circumstantial congestions will have a prolonged effect on the behaviour of IACO, also causing inefficiency.
Additionally, there is an interaction between evaporation and deposit rates. The values for both were established
empirically in the course of preliminary experiments and used throughout all experiments presented in this paper. A
local evaporation function has been used, based on how many vehicles are leaving a certain edge. This evaporation
corresponds to the minimum amount that a vehicle would deposit if traveling that edge at full speed based on the
previously explained principle:

edgeLength

inT Teage = . 2
S L edg edgeMaximumAllowedS peed @

Which means that the minimum travel time is directly proportional to the edge maximum allowed speed.
Pheromone evaporation is calculated based on the travel time and or the deposit pheromone constant:

phereqee + DEP_PHER

3
Pheregge — minT Tegge * DEP_PHER 3

pher edge = {

Finally, it is important to note that, in each time step, each vehicle receives the updated pheromone levels and

adjusts its route accordingly. The route recalculation is only made in the node intersections due to the lack of benefit

in other scenarios (e.g. if a driver following a straight line were to recalculate its path, there would be no benefit and

it would increase the computational costs). Also, the pheromone variation is stored through a historical mechanism,

which allows for an analysis of traffic congestion over time. Equation 4 illustrates this concept (C controls the impact
factor of recent past variations):

edgeCost (i, j) = distance (i, j) + edgeCongestion (i, j)
edgeCongestion (i, j) = edgePheromones (i, j) + @)
C * edgePheromoneVariation (i, j)

4. Simulation Environment

In order to test different methodologies and strategies to solve the problems associated with traffic, the use of a
simulator becomes necessary, as real-world testing is unfeasible. The following section presents a brief description of
some simulation solutions.

4.1. Traffic Simulation

Two major traffic simulator categories can be identified: macroscopic and microscopic. Macroscopic traffic sim-
ulators often use statistical approaches to model a road network as a whole, while microscopic traffic simulators
simulate individual driver behaviour. The simulation type that is the most adequate for this project is microscopic
simulation, as each driver has his own origin and destination, and needs to be able to autonomously make his own
decisions. This type of simulator allows for this descentralized approach to be tested, and considering different
percentages of drivers following the suggestions provided by the proposed algorithm, observe the effects on global
network performance.

Chen and Cheng [19] analyzed a wide range of agent-based traffic simulation systems and divided them into
five different categories: agent-based traffic control and management system architecture and platforms; agent-based
systems for roadway transportation; agent-based systems for air-traffic control and management; agent-based systems
for railway transportation; and multi-agent traffic modeling and simulation.

Given the characteristics of this project, the adequate category is the multi-agent traffic modeling and simulation.
In the mentioned paper the authors refer two open source agent-based traffic simulators:

e Multi-Agent Transport Simulation Toolkit (MATSIM) [20], a toolbox for the implementation of large-scale
agent-based transport simulations, composed of several individual modules that can be combined or used stand-
alone. It allows demand-modeling, traffic flow simulation and running simulations iteratively.

e Simulation of Urban Mobility (SUMO) [21], a portable microscopic road traffic-simulation package that offers
the possibility to simulate how a given traffic demand moves through large road networks.
5
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In addition to these two simulators, other solutions exist, e.g. Vissim [22] or Transims [23]. Some comparison studies
have been performed between two or more of these simulation platforms [24, 25, 26]. Based on the conclusions
of these studies, taking into consideration the commercial nature of Vissim (which presented a good performance)
and the recent developments made to each of the simulation platforms, which eliminated some of the most pressing
drawbacks of SUMO that were present in earlier version, the authors have decided to adopt SUMO.

4.2. Simulation of Urban MObility (SUMO)

SUMO is an open source tool and a microscopic road traffic simulation package that supports different types
of transportation vehicles. Every vehicle has its own route and moves individually through the network. This tool
supports traffic lights and is space continuous and time discrete (the default duration of each time step is one second).
There are three main modules in the SUMO package: SUMO (which reads the input information, processes the
simulation, gathers results and produces output files, with an optional graphical interface called SUMO-GUI — see
Fig. 1); NETCONVERT (a tool to simplify the creation of SUMO networks from a list of edges, and also responsible
for creating traffic light phases); and DUAROUTER (a command line application that, given the departure time, origin
and destination, computes the routes through the network itself using the Dijkstra routing algorithm).

EET I | . IR | o o[ 1o00 3] |
P AR @ P custom.:

Figure 1: Snapshot of the SUMO environment

As input data, SUMO needs three main files, representing routes, nodes and edges. The nodes and edges files
represent the vertexes and edges in the road graph, respectively. The routes file represents the traffic demand and in-
cludes information about all the agents involved in this simulation and their characteristics (departing time, maximum
acceleration, maximum deceleration, driving skill, vehicle length and color) and route (list of edges). In terms of
outputs, there are different types available, such as a raw output that contains all the edges and all the lanes along with
the vehicles driving on them for every time step (which results in a considerable large amount of data) or log-files
created by simulated detectors.

Finally, this simulator offers a way to collect metrics such as fuel consumption or pollutant emission, based on
the Handbook of Emission Factors for Road Transport (HBEFA) database. According to HBEFA’s website?, it was
“originally developed on behalf of the Environmental Protection Agencies of Germany, Switzerland and Austria” and
is now also supported by Sweden, Norway, France and the JRC (Joint Research Centre, of the European Commission).
It provides emission factors per traffic activity, i.e., it offers a way of measuring CO, emissions and fuel consumption,
among other pollutant factors, for various vehicle categories (such as passenger cars, light duty vehicles, heavy duty
vehicles, buses, coaches and motorcycles), being suitable for a wide variety of traffic situations.

2More information available online at www.hbefa.net
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5. Experimental Setup

Experiments were conducted considering different percentages of vehicles adhering to the IACO algorithm: 10%,
25%, 75% and 100% of the vehicles adhering to IACO and the remaining ones following their standard shortest-path
behavior. These variations were tested in three distinct scenarios: two artificial ones using Lattice and Radial and
Ring networks, as illustrated in Fig. 2, and a real scenario using the city of Coimbra road network. For the artificial
scenarios, two configurations were used: 5.000 vehicles and 10.000 vehicles. For the real scenario, 10.000 vehicles
were used as to provide an experimental scenario simulating average traffic conditions. This paper reports the findings
on the experiments performed with 10.000 vehicles for both scenarios (results for the 5.000 vehicle configuration
didn’t present significant differences when compared to the 10.000 configuration).

Shortest-path algorithms are usually intuitively used by drivers and several route planning tools, and then modified
by the drivers daily experience to a shortest-time variation. Although most sophisticated algorithms exist, these are
the most widely available and more frequently adopted by real drivers; as such, similar configurations were also used
to compare the performance of IACO against a shortest-time algorithm (ST) and results were measured for both the
vehicles adopting the algorithm (be it IACO or ST) and for vehicles that do not use these algorithms (these vehicles
use the standard shortest-path algorithm implemented in SUMO).

(a) Lattice Network (b) Radial and Ring Network
Figure 2: Artificial Networks

Experiments were repeated 40 times for each of the eight different configuration for each scenario, as to attenuate
the effect of any outliers that may appear.

Data regarding time (trip duration) and space (traveled length) were collected, as well as information regarding
fuel consumption and CO, emissions.

5.1. Coimbra City Map as a Real Test Scenario

In order to assess the performance of the algorithm in a real world context, an actual city road network was used.
In this case, the chosen city was Coimbra, a medium-sized city with a traffic network that is akin to many cities
throughout the world, as can be seen in Fig. 3.

The road network was obtained from OpenStreetMap?®, and then converted into a format that could be used by
SUMO, using its Netconvert tool. In order to have a realistic view on the impact of the algorithm in the city traffic,
real data was used, in the form of an origin-destination (OD) matrix [27]. To create the traffic demand based on this
matrix, we first needed to analyze its data. The city area was divided into several zones, as can be seen in Fig. 4, both
for the inner and outer city areas (colored and white zones, respectively).

The data in this OD matrix contains real data regarding the origin and destination of about 60000 trips from the
morning period (7:30 to 10:30, including the rush hour of 8:15 to 8:45), and also includes information regarding the
reason for the trip (work, school, shopping, health, ...) and vehicle class. From this OD matrix, 10000 trips were
selected as to provide a sample to be used for an one-hour simulation period.

3More information available at http://www.openstreetmap.org/
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Figure 4: Coimbra OD matrix zones

5.2. Artificial Scenarios

The two artificial scenarios (see Fig. 2) were chosen as representative types of road networks. The Lattice Network
represents classical grid pattern road networks, as can be observed in many cities, as is the case of Manhattan, New
York. The Radial and Ring Network is representative of classical radial road networks, which can be found in several
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cities where a central focus is given to certain city locations (as is the case of some places in Paris, France).
In the artificial scenarios (both Lattice and Radial and Ring networks), the OD matrix was artificially generated,
based on a random process with uniform distribution that generates origins and destinations within the networks.

6. Results

The results are divided into two parts: artificial maps and real map. In each of the two contexts, an analysis is
performed regarding the impact of the use of IACO in terms of average trip time and length, when compared to a
shortest-time algorithm; also, an analysis regarding the impact on fuel consumption and CO, emissions is given.

6.1. Artificial Maps

Experiments were first conducted using artificial maps, as to observe the behavior of the algorithms in a controlled
and known environment. Two traditional network topologies were used — a radial and ring network and a lattice
network.

6.1.1. Radial and Ring Network

The results of the radial and ring network experiments regarding trip length and duration are summed in Table 1.
The “IACO Compliant” and “ST Compliant” columns refer to the subset of vehicles using the respective algorithm,
while the “IACO Free” and “ST Free” columns refer to the subset of vehicles not using the algorithm (and still using
the default SUMO routing algorithm, a shortest-path routing based on the traffic conditions found in the network at
the time of departure). Finally, the “Total” columns refer to all the vehicles (both the ones adhering to the algorithm
and the “Free” ones), so as to provide a global perspective of the impact of the introduction of IACO or ST.

Table 1: Trip Length (m) and Duration (s) Average and Standard Deviation for Radial and Ring Network

IACO ST
Compliant | Free | Total | Compliant | Free | Total
Trip Time Average - | 3497 | 3497 - | 3497 | 3497
0% I Iraveled Length | Average ~ 1860 | 1860 ~ 71860 | 1860
o Average 3129 | 3352 | 3330 2544 | 2833 | 2804
Trip Time
10% Standard Dev 358 | 407 | 402 233 282 274
’ Average 2714 | 1859 | 1941 3995 | 1861 | 2074
Traveled Length
Standard Dev 56 2 5 89 3 9
o Average 2415 | 2646 | 2583 2741 | 2986 | 2798
Trip Time
259 Standard Dev 245 | 261 250 888 | 1095 | 1039
’ Average 2675 | 1857 | 2061 3825 | 1859 | 2350
Traveled Length
Standard Dev 46 4 12 78 5 15
o Average 1993 | 2164 | 2045 2456 | 2473 | 2460
Trip Time
755 Standard Dev 433 478 450 174 | 200 180
’ Average 2593 | 1791 | 2392 3265 | 1855 | 2913
Traveled Length
Standard Dev 52 35 48 122 14 68
o Average 1920 -1 1920 2120 - 2120
Trip Time
Standard Dev 156 - 156 55 - 55
100%
Average 2835 - | 2835 3805 - | 3805
Traveled Length
Standard Dev 25 - 25 40 - 40
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The results depicted in Fig. 5 are related to trip length, presenting the results obtained in scenarios using IACO and
ST. The percentage of vehicles adhering to IACO or ST varies from 0% to 100%, and their performance is depicted
by the “TACO Compliant” and “ST Compliant” lines, while the remaining vehicles use the standard shortest path
algorithm. Their performance is depicted by the “IACO Free” and “ST Free” lines, and is influenced by the adhesion
of other vehicles to IACO or ST. Finally we also present the average trip length for all vehicles (Total Vehicles).

As can be observed IACO achieves a better performance, when compared to ST. While vehicles using the ST
algorithm increase their trip length from 75,5% to 114%, vehicles using IACO increase trip length by 39% to 52%.
Free vehicles have similar trip lengths in all configurations.

The increased trip length is, however, compensated by smaller trip durations, as can be seen in Fig. 6. Vehicles
using IACO have a trip time reduced by 11% to 46%, depending on the percentage of vehicles using the algorithm.
Vehicles using ST see their trip times reduced by 22% to 40%, depending on the percentage of vehicles using the
algorithm. It is interesting to note that for a small percentage of vehicles adhering to these algorithms, ST outper-
forms TACO. However, considering a percentage of adhering vehicles equal or above 25%, IACO achieves a better
performance. It is also important to highlight the fact that free vehicles also have reduced trip times. In the case of
ST, these vehicles see their trip times reduced by 15% to 30%; for IACO, their trip times are reduced by 5% to 39%.

In spite of the fact that trip length using either ST or IACO is higher than when using shortest path, this is balanced
by reduced trip time values, both for vehicles using ST and IACO as for vehicles using shortest path. In both cases,
TACO seems to be the better choice, since it presents much lower trip length values than ST, for similar reduced trip
times, and allows for shorter trip times when the percentage of vehicles adhering to the algorithm increases.

With higher user percentages, IACO’s performance in terms of trip duration seems to tend to a limit beyond which
improvement appears to be impossible.

4100
3600
3100

2600 .\‘\\/\

2100

Trip Length (m)

e e
1600
0 10 25 75 100

Vehicles Using Algorithm (%)

=4=|ACO Compliant =#=]ACO Free IACO Total

=>¢=ST Compliant  ==¢=ST Free ST Total

Figure 5: Effects of Percentage of Users in Trip Length by Algorithm and Type of Vehicle in a Radial and Ring Network

Regarding motor vehicle emissions (Fig. 7), we can observe that for low user percentages IACO produces a
higher volume of emitted CO, than ST, even though both produce considerably less than when using shortest path
(19% and 29% less, in the case of IACO and ST, respectively). For larger percentages of users adhering to ST or
TACO, emissions become even smaller, reducing them by up to 38% in the case of ST (considering all vehicles using
this algorithm) and 43% in the case of IACO (considering 75% vehicles using this algorithm).
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Figure 6: Effects of Percentage of Users in Trip Duration by Algorithm and Type of Vehicle in a Radial and Ring Network
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Figure 7: Effects of Percentage of Users in Average CO; emissions by Algorithm in a Radial and Ring Network

Similar results were obtained in terms of fuel consumption — see Fig. 8. Having the CO, emissions and fuel

11



J.C. Dias et al | Engineering Applications of Artificial Intelligence 00 (2014) 1-20 12

consumption results in mind, we can conclude that in this map, significant average travel time reduction can be
achieved using the IACO algorithm, being an adequate alternative for this map’s topology.

6.1.2. Lattice Network
The results of the lattice network experiments in terms of trip length and duration are summarized in Table 2.

Table 2: Trip Length (m) and Duration (s) Average and Standard Deviation for Lattice Network

IACO ST
Compliant | Free | Total | Compliant | Free | Total
0% Trip Time Average - 3761 | 3761 - 3761 | 3761
’ Traveled Length | Average - 2325 | 2325 - 2325 | 2325
Lo Average 3085 | 3807 | 3735 1847 | 3023 | 2913
Trip Time
10% Standard Dev 415 | 497 | 485 246 | 420 | 402
‘ Average 2992 | 2325 | 2392 4810 | 2333 | 2581
Traveled Length
Standard Dev 77 8 7 80 3 7
o Average 2092 | 2573 | 2453 1309 | 1857 | 1720
Trip Time
259 Standard Dev 453 623 577 123 116 112
’ Average 2962 | 2322 | 2482 4890 | 2320 | 2963
Traveled Length
Standard Dev 103 11 26 108 5 42
o Average 1121 | 1535 | 1225 1381 | 1754 | 1474
Trip Time
7500 Standard Dev 227 | 310 | 243 217 | 298 237
’ Average 2945 | 2271 | 2777 4995 | 2318 | 4326
Traveled Length
Standard Dev 240 | 358 323 159 18 82
Trip Time Average 1119 - | 1119 1238 - | 1238
Standard Dev 46 - 46 34 - 34
100%
Average 3157 - | 3157 4983 - | 4983
Traveled Length
Standard Dev 222 - 222 177 - 159

In terms of trip length, the results illustrated in Fig. 9 show that IACO achieves a better performance, when
compared to ST. While vehicles using the ST algorithm increase their trip length from 106% to 114%, vehicles using
IACO increase trip length by 26% to 35%. Free vehicles have similar trip lengths in all configurations.

Figure 10 shows the effect of the algorithms in trip duration. Vehicles using IACO have a trip time reduced by
18% to 70% depending on the percentage of vehicles using this algorithm. Vehicles using ST see their trip times
reduced by 51% to 68%, depending on the percentage of vehicles using this algorithm. As with the radial and ring
network, for small adhesion percentages, ST outperforms IACO. However, considering adhesion percentage equal or
above 75%, IACO achieves a better performance. It is also important to highlight the fact that free vehicles also have
reduced trip times. In the case of ST, these vehicles see their trip times reduced by 20% to 54%; for IACO, their trip
times are reduced by up to 60%.

Regarding CO, emissions (Fig. 11) and fuel consumption (Fig. 12), the results are similar to the ones for the
radial and ring network. IACO reduces emissions by 29% to 69%, depending on the percentage of vehicles using the
algorithm, while ST reduces emissions by 36% to 62%

12



J.C. Dias et al | Engineering Applications of Artificial Intelligence 00 (2014) 1-20

13000

12000

11000 \
10000
9000 \
8000
7000 \}

6000

Fuel Consumption (ml)

5000

4000 T T T T |
0 10 25 75 100
Vehicles Using Algorithm (%)

==|ACO ==ST

Figure 8: Effects of Percentage of Users in Average Fuel Consumption by Algorithm in a Radial and Ring Network
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Figure 9: Effects of Percentage of Users in Trip Length by Algorithm and Type of Vehicle in a Lattice Network

6.2. Trip Length and Time in Coimbra

The results of the experiments in terms of trip length and duration are summarized in Table 3.
13
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Figure 11: Effects of Percentage of Users in CO; emission by Algorithm in a Lattice Network

The columns show the two used algorithms (IACO and ST), and the impact in terms of different vehicle types:
Compliant and Free. The rows show the impact of an increase in the percentage of vehicles using either IACO
or ST to make route decisions. For each of the configurations (as mentioned before, 10%, 25%, 75% an 100% of
vehicles), the average trip duration and length are shown, as well as the standard deviation for the experiments for
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each configuration.

Table 3: Trip Length (m) and Duration (s) Average and Standard Deviation for the Coimbra Network

IACO ST
Compliant | Free | Total | Compliant | Free | Total
09 Trip Time Average - 4709 | 4709 - 4709 | 4709
’ Traveled Length | Average - 3992 | 3992 - 3992 | 3992
o Average 2554 | 4276 | 4099 2087 | 4283 | 4064
Trip Time
10% Standard Dev 278 | 716 | 670 247 | 506 | 469
’ Average 6029 | 3990 | 4194 7134 | 3996 | 4309
Traveled Length
Standard Dev 144 7 12 210 6,8 21
o Average 1952 | 3156 | 2856 1867 | 3354 | 2982
Trip Time
550 Standard Dev 231 384 | 342 115 | 338 279
’ Average 6398 | 3978 | 4583 7365 | 3991 | 4834
Traveled Length
Standard Dev 58 19 22 272 13 64
Lo Average 1005 | 1356 | 1093 1230 | 1979 | 1416
Trip Time
5% Standard Dev 133 234 158 44 159 65
’ Average 6145 | 3983 | 5604 6713 | 3985 | 6031
Traveled Length
Standard Dev 81 38 56 197 58 145
o Average 727 - 727 1074 - 1074
Trip Time
Standard Dev 34 - 34 68 - 68
100%
Average 6066 - 6066 6568 - 6568
Traveled Length
Standard Dev 47 - 47 36 - 36

The results regarding trip length are depicted in Fig. 13, and show that the introduction of both ST and TACO
lead to lengthier trips for the vehicles using those algorithms (free vehicles maintain the same route and therefore
also maintain an almost constant trip length). IACO, however, produces shorter trips than ST, when using similar
configurations — while IACO increases trip length by an average of 55%, ST increases trip length by an average of
77%, which means that ST produces trips that are, in average, 14% lengthier than those produced by IACO.

The results regarding trip duration are depicted in Fig. 14, and show that the introduction of both algorithms not
only lead to shorter trip times for the vehicles using the algorithms but also for the other ones. For a small percentage
of vehicles using the algorithm, ST performs better than IACO for compliant vehicles (ST decreases trip time by
about 55%, while IACO reduces it by about 45%, when considering 10% compliant vehicles) and produces similar
results for free vehicles (both methods result in a decrease of 9% for free vehicles); however, when the percentage of
vehicles that use the algorithm increases, the use of IACO reveals itself to be advantageous for both compliant and
free vehicles — for 75% compliant vehicles, ST reduces trip time of compliant vehicles by over 73%, while IACO
reduces trip time by over 78%; the impact in free vehicles is also noticeable: ST decreases trip time by almost 58%,
while IACO reduces trip time by over 71%. When all vehicles adhere to the algorithm being used, IACO provides a
84% reduction in trip time, while ST allows for a reduction of about 77%.

It is also noticeable that it is extremely beneficial for vehicles to comply with an algorithm (be it IACO or ST),
as it drastically reduces trip time for those vehicles — even when considering an adoption ratio of 10%, IACO reduces
trip times by over 45% and ST by over 55%, when comparing to the baseline values.
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Figure 12: Effects of Percentage of Users in Fuel Consumption by Algorithm in a Lattice Network
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Figure 13: Effects of Percentage of Users in Trip Length by Algorithm and Type of Vehicle

6.3. Fuel Consumption and CO, Emissions in Coimbra

16

The results of the experiments in terms of CO, emission and fuel consumption are summarized in Table 4 below.

Table 4: Results for CO, emission (mg) and Fuel Consumption (ml)

16
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IACO ST
0% CO2 Emission Average 33227 | 33227
(2
Fuel Consumption | Average 13253 | 13253
o Average 30473 | 30478
CO2 Emission
Standard Dev | 11092 | 10928
10%
) Average 12155 | 12143
Fuel Consumption
Standard Dev 1088 928
o Average 25252 | 25887
CO2 Emission
Standard Dev | 9711 9149
25%
) Average 10050 | 10382
Fuel Consumption
Standard Dev 601 490
o Average 18369 | 20550
CO2 Emission
Standard Dev | 6551 7762
75%
. Average 7316 8147
Fuel Consumption
Standard Dev 341 103
o Average 16782 | 19209
CO2 Emission
Standard Dev 309 315
100%
) Average 6676 | 7796
Fuel Consumption
Standard Dev 121 114

The columns show the two used algorithms (JACO and ST), while the rows show the impact of an increase in
the percentage of vehicles using either IACO or ST to make route decisions. For each of the configurations, average
values for CO, emissions and fuel consumption are shown, as well as the standard deviation for the experiments for
each configuration.

The results regarding CO, emissions are depicted in Fig. 15, and show that the introduction of either algorithm
(IACO or ST) leads to a significative decrease of CO, emissions. Even for a small ratio of compliant vehicles (10%),
CO, emissions decrease by a little over 8%. That reduction of emissions becomes even more visible with higher
ratios of compliant vehicles — for a 75% compliance ratio, ST and TACO reduce emissions by about 38% and 44%,
respectively. It is also noticeable that with the increase in percentage of compliant vehicles, the difference between
IACO and ST also expands, with IACO presenting a performance over 12% better than ST when considering a 100%
compliance ratio.

The results regarding fuel consumption are depicted in Fig. 16, and, as expected, show similar results to the ones
shown above for CO, emissions. IACO presents a performance over 14% better than ST when considering a 100%
compliance ratio, which is similar to the 12% stated above for emissions.

7. Conclusion and Future Work

In this work, the Inverted Ant Colony Optimization algorithm was introduced, inverting the logic of pheromone
attraction of the standard ACO algorithm into a repulsion effect, abstracting the repulsion of drivers from traffic jams
or dense traffic patterns. The effect of this behaviour, when considering drivers to be the ’ants’, is a better load
distribution over the traffic network, decreasing traffic density in widely used roads, and leading to improvements
on the traffic network at a global level, decreasing trip time and CO, emissions for both vehicles adhering to the
suggestions provided by the algorithm and those who still behave in the usual manner.
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Figure 15: Effects of Percentage of Users in CO; emission by Algorithm

To validate the approach, two artificial scenarios (lattice and radial and ring) and a real one were used. For the
real scenario, a road network model from a real city was used, along with real traffic data obtained from an origin-
destination matrix. The achieved simulation results show that this kind of approach can reach the desired goals,
reducing trip durations as well as CO, emissions. The use of IACO allows for a reduction of trip times by 45% to
84%, considering increasing percentages of vehicles using this algorithm to make decisions, when compared to a
decrease in trip times of 55% to 77% for ST. These are also considered to be good results, when compared to the ones
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Figure 16: Effects of Percentage of Users in Fuel Consumption by Algorithm

obtained by other research works (see section 2).

Nowadays, there is a great concern regarding the ecological impact of city traffic. In any city, politicians take
several measures to decrease levels of CO, and other polluting gas emissons, increasing the quality of the air. In this
project, this issue is correlated to the avoidance of traffic congestions, and in this particular the use of IACO allows
for a decrease of 8% to 49% in CO, emissions.

In terms of future work, there are several areas that will be explored. At the algorithmic level, there are some
tweaks that can be done to the IACO algorithm, exploring different values for the C parameter present in Equation
4, as to find the best value for each city road network model, as well as different pheromone deposit and evaporation
methods. Also, the adoption of this algorithm to a different context can constitute another future direction. At the
experimental level, it would also be useful to compare the baseline data obtained from simulation with actual data from
the real world. Another direction is the use of the algorithm with other city road networks, with different complexity
and traffic levels, as to understand further strengths and weaknesses of this approach.
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