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Abstract. Fitness assignment is one of the biggest challenges in evo-
lutionary art. Interactive evolutionary computation approaches put a
significant burden on the user, leading to human fatigue. On the other
hand, autonomous evolutionary art systems usually fail to give the users
the opportunity to express and convey their artistic goals and prefer-
ences. Our approach empowers the users by allowing them to express
their intentions through the design of fitness functions. We present a
novel responsive interface for designing fitness function in the scope of
evolutionary ant paintings. Once the evolutionary runs are concluded,
further control is given to the users by allowing them to specify the
rendering details of selected pieces. The analysis of the experimental re-
sults highlights how fitness function design influences the outcomes of
the evolutionary runs, conveying the intentions of the user and enabling
the evolution of a wide variety of images.
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1 Introduction

According to McCormack [13] evolutionary aesthetic search implies two main
considerations: (i) The design of a generative system that creates individuals;
(ii) The evaluation of the fitness of such individuals. Furthermore, there are two
basic approaches to fitness evaluation: (i) Interactive Evolutionary Computation
(IEC); (ii) Some form of automated fitness assignment. Although some systems
use a combination of these two approaches, the majority focuses on one of them.

IEC allows the users to express their preferences and directly influence the
course of evolution, allowing them, in theory, to guide it towards regions of the
space that match their goals. However, this comes with a burden: the need to
evaluate a vast number of individuals. In practice, more often than not, human
fatigue prevents the prolific exploration of the search space. The study of auto-
mated fitness assignment may bring insights towards a better understanding of
aesthetics, and while it is an effective way of fighting human fatigue. However,
to some extent, the solution defeats the purpose since the users are no longer
able to express their preferences. Thus, automated aesthetic fitness assignment is
vital for the development of an autonomous evolutionary artist. However, it falls
short when the goal is to design a creativity support tool that allows the users
to express their artistic preferences and intentions. Machine learning techniques



have been used to capture the aesthetic preferences of users with some degree of
success (see e.g. [3]). We argue that although such techniques have a role in the
development of creativity support tools, the state of the art hasn’t reached the
level where these techniques would suffice on their own.

Machado and Pereira [12] presented a non-photorealistic rendering (NPR)
algorithm inspired by ant colony approaches, where the trails of artificial ants
were used to produce a rendering of an original input image. The large number of
parameters controlling the behavior of the ants, and the dependencies among pa-
rameters, prevented their tuning by hand. As such, an IEC approach was adopted
[12]. Instead of being forced to perform low-level changes, users become breeders
of species of ants that produce results that they find valuable. The experimental
results showed that human fatigue was taking its toll: only the disciplined and
patient users were able to guide the algorithm towards non-trivial combinations
of parameters. Most users adopted an opportunistic approach, valuing novelty
over quality. Additionally, when the users started the process with a specific type
of image in mind, e.g. a rendering consisting exclusively of straight lines, they
failed to reach their goal.

In this paper a novel interface for the design of fitness functions is described.
This frees the users from the need to perform individual assessments allowing
them to express their aesthetic and artistic goals by specifying the characteristics
they desire or which to avoid. While the ants paint, statistics describing their
behavior are gathered, and when the painting is completed, image features are
calculated. These behavioral and image features are the basis for the creation
of the fitness functions. The exact meaning of each of these features and the
interdependencies among them may be difficult to grasp by the common user. To
tackle this problem, the interface is responsive, allowing the user to perceive the
semantics associated with each feature. Once the evolutionary runs are concluded
we further empower the users by letting them to select their favorite phenotypes,
apply the associated genotypes to different input images, and control the details
of the final rendering.

2 State of the Art

Tzafestas [22] presents a system where artificial ants pick-up and deposit food,
which is represented by paint, studying the self-regulation properties of the sys-
tem and complexity of the resulting images. Ramos and Almeida [18] explore
the use of ant systems for pattern recognition purposes. The artificial ants suc-
cessfully detect the edges of the images producing stylized renderings of the
originals. The artistic potential of the approach is explored in later work [17].
Urbano [23] describes a multi-agent system based on artificial ants, presenting
the first artificial ant paintings produced using a faithful biological model in [24].

Aupetit et al. [1] introduce an interactive Genetic Algorithm (GA) for the
creation of ant paintings. The algorithm evolves parameters of the rules that
govern the behavior of the ants. The artificial ants deposit paint on the can-
vas as they move, thus producing a painting. In a later study, Monmarché et
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Fig. 1: The pipeline.

al. [14] refine this approach exploring different rendering modes. Semet et al.
[21] applied ant colony simulation to produce NPRs of input images. For the
same purpose, Fernandes et al. [4] use an approach akin to Ramos and Almeida
[18]. Greenfield [5] presents an evolutionary approach to the production of ant
paintings and explores the use of behavioral statistics of the artificial ants to au-
tomatically assign fitness. Later he adopted a multiple pheromone model where
ants’ movements and behaviors are influenced (attracted or repelled) by both an
environmentally generated pheromone and an ant generated pheromone [6].

The use of evolutionary algorithms to create image filters and NPRs of source
images has been explored by several researchers. Focusing on works where there
was an artistic goal: Ross et al. [19,15] use Genetic Programming, multi-objective
optimization techniques, and an empirical model of aesthetics to automatically
evolve image filters; Lewis [9], evolves live-video processing filters through inter-
active evolution; Machado et al. [10], use GP to evolve image coloring filters from
a set of examples; Yip [25] employs GAs to evolve filters that produce images
that match certain features of a target image; Collomosse [2] uses image salience
metrics to determine the level of detail for portions of the image, and GAs to
search for painterly renderings that match the desired salience maps; Hewgill and
Ross [7] use GP to evolve procedural textures for 3D objects. Schlechtweg et al.
[20] adopt a, non-evolutionary, multi-agent approach for stroke-based rendering.

3 The Framework

Figure 1 describes our pipeline. The users begin by setting up the experiment
establishing parameters such as: input image, population size, number of gener-
ations, number of runs, crossover and mutation rate. Then, using the responsive
interface, they design a fitness function that will be used to guide evolution.
Control is then passed to the evolutionary engine. Each genotype of the GA
population encodes the parameters of a species of ants. These parameters de-
termine how that ant species reacts to the input image. Each painting, i.e. each
phenotype, is produced by simulating the behavior of ants of a given species
while they travel across the canvas, leaving a trail of varying width and trans-
parency. When the evolutionary runs are finished, the users select individuals
that match their artistic intentions. This can be done by browsing through the
populations, but it is usually more effective to consult the “summary” windows
that depict the fittest individuals of a run and the fittest individuals of each
generation. The chosen individuals are then passed to the final rendering inter-
face, which allows to apply their genotypes to different input images and control
several aspects of the final rendering.



3.1 Ants’ simulation

Our ants live on a 2D environment initialized with the input image and they
paint on a painting canvas that is initially empty (i.e., black). The painting
canvas is used exclusively for depositing ink. The luminance of an area of the
environment is the available energy at that point. During simulation, ants gain
energy traveling through bright areas, and this energy is removed from the envi-
ronment. If the energy of an ant is below a given threshold it dies, if it is above a
given threshold it generates offspring. The ants’ movement is determined by how
they react to light. Each ant has 10 sensory vectors, each with a given direction
and length. These sensory organs return the luminance value of the area where
each vector ends. To update the position of an ant one performs a weighted sum,
calculating the sum of the sensory vectors divided by their norms, multiplied by
the luminance of their end point and by the weight the ant gives to each sensor.
The result of this operation is multiplied by a scaling factor that represents the
ant’s base speed. Subsequently, to represent inaccuracy of movement and sen-
sory organs, the direction is perturbed by the addition of Perlin [16] noise to its
angle. Each ant has a position, color, deposit transparency and energy; all the
remaining parameters are shared by the entire species. Color is determined at
birth, each ant assumes the color of the area of the environment where it was
born, and does not change throughout its life. Thus, the ants may carry this
color to areas of the canvas that possess different colors in the original image.
A detailed description of the ants’ simulation can be found in [12]. The video
cdv.dei.uc.pt/2014/sim.mov depicts this simulation showing the environment
and painting canvas.

3.2 Extracted Features

During the simulation of each ant species, i.e. the rendering of each phenotype, a
series of behavioral statistics is collected, namely: avg(ants) – average number of
living ants; depositedink – total amount of “ink” deposited by the ants; coverage
– percentage of the environment visited by the ants; avg(distance) – average eu-
clidean distance between the position where the ant was born and the one where
it died; avg(trail), std(trail) – average trail length and the standard deviation
of the trail lengths; avg(life), std(life) – average life span of the ants and its
standard deviation; avg(avg(width)), std(avg(width)) – determined by calculat-
ing for each trail the average width, and then the average width of all trails,
avg(avg(width)), and the standard deviation of the averages, std(avg(width));
avg(std(width)), std(std(width)) – determined by calculating for each trail the
standard deviation of its width, then their average, avg(std(width)), and their
standard deviation std(std(width)); avg(avg(av)), std(avg(av)), avg(std(av)),
std(std(av)) which are analogous to the features regarding trail width, but per-
taining to the angular velocity of the ants;

When the simulation of each ant species ends, the following image fea-
tures are collected: complexity – the image produced by the ants, I, is en-
coded in jpeg format, and its complexity estimated using the following formula:

http://cdv.dei.uc.pt/2014/sim.mov


Table 1: Parameters encoded by the genotype
Name # Comments
gain 1 scaling for energy gains
decay 1 scaling for energy decay

consrate 1 scaling for size of circles drawn on the environment
constrans 1 transparency of circles drawn on the environment
depositrate 1 scaling for size of circles drawn on the painting canvas

deposittransp 1 base transparency of circles drawn on the painting canvas
dtranspmin 1 limits for perturbation of deposit transparency when

offsprings are generateddtranspmax 1
initialenergy 1 initial energy of the starting ants
deaththreshold 1 death energy threshold
birththreshold 1 generate offspring energy threshold
descvelmin 1 limits for perturbation of angular velocity when

offsprings are generateddescvelmax 1
vel 1 base speed of the ants

noisemin 1 limits for the perlin noise
generator functionnoisemax 1

initialpositions 2 ∗ n initial coordinates of the n ants placed on the canvas
sensoryvectors 2 ∗m direction and length of the m sensory vectors
sensoryweights m weights of the m sensory vectors

complexity(I) = rmse(I, jpeg(I)) × s(jpeg(I))
s(I) , where rmse stands for the root

mean square error, jpeg(I) is the image resulting from the jpeg compression of I,
and s is the file size function; fractdim, lac – fractal dimension of the ant painting
estimated by the box-counting method and its λ lacunarity value estimated by
the sliding box method [8], respectively; similarity – similarity between the ant
painting and the original image estimated as follows: similarity = 1

1+rmse(I,O) ,

where I is the ant painting and O is the original image.

3.3 Evolutionary Engine

A GA is used to evolve the ant species’ parameters. The genotypes are tuples of
floating point numbers which encode the parameters of the ant species. Table 1
presents an overview of the encoded parameters. We use a two point crossover
operator for recombination purposes and a Gaussian mutation operator. We em-
ploy tournament selection and an elitist strategy, the highest ranked individual
proceeds – unchanged – to the next population.

4 The Anatomy of a Fitness Function

The fitness functions assume the form of a weighted sum. For each feature the
user may indicate a weight, wi, and the intention to minimize, maximize or
make the feature match a target value. Specifying a target value implies that
the fitness component associated with that feature is:

fi =
1

1 + |targetvaluei − featurevaluei |

When the goal is to maximize a given feature, we use:

fi = abs

(
featurei

offlinemax (featurei)

)
,



where offlinemax returns the maximum possible value found for that feature.
This value can be established analytically for certain features, e.g. fractal di-
mension never exceeds 2, and it was found empirically for the remaining ones.
To prevent the evolutionary algorithm from focusing exclusively on a given fea-
ture we employ a logarithmic scale so that the evolutionary advantage decreases
as the feature value becomes higher, promoting the discovery of individuals that
use all features employed in the fitness function. This is accomplished using:
f ′i = log(1 + fi). For minimization we use the same formulas as for maximiza-
tion, but f ′i returns a negative value: f ′i = −log(1 + fi). Considering all of the

above the fitness functions are given by:
∑features

i=1 wi × f ′i , where wi is a value
in the [−1, 1] interval.

5 Fitness Function Design Interface

The interface is composed of a set of responsive “icons”, one for each of the fea-
tures. The vertical slider on the right of each icon specifies the weight associated
with each feature. Pressing the rightmost button beneath each icon indicates
maximization of the corresponding feature, while pressing the leftmost button
indicates minimization. Specifying a target value for a feature is accomplished
using the plus and minus buttons. for most user indicating a specific value for
something as the complexity of an image would be meaningless. To circumvent
this problem all values are specified in the [0, 1] interval and then mapped to
[offlinemin(featurei), offlinemax (featurei)]. Thus, specifying a target value of,
e.g., 0.8 for a given feature and a positive weight indicates the wish to reach a
value close to its maximum; conversely, indicating a value of 0.2 indicates the
wish to reach a value close to its minimum. Specifying a negative weight indicates
the wish to deviate from the target value.

To give the user a better grasp of the semantics associated with each feature
the icons are responsive, in the sense that the displayed image changes in ac-
cordance with the changes of value for that feature. For instance, increasing the
average number of ants increases the number of points displayed in the corre-
sponding icon, increasing the avg(distance) increases the distance between the
start and end points of each trail, etc. Furthermore, since the features are not
independent, the changes on one value may affect the appearance of other icons;
e.g. increasing the number of ants while leaving the coverage and amount of de-
posited ink unchanged implies that each ant visits a smaller area of the canvas
and deposits a smaller amount of ink. The interface reflects these dependencies
by decreasing the radius and opacity of the circles of the icons corresponding to
deposited ink and coverage.

Figure 2 depicts the interface. The rationale behind the fitness function being
specified can be described as follows: maximizing coverage and similarity pro-
motes paintings where the ants visit the entire canvas and that closely match the
original image; in what concerns line width, maximizing, avg(std(width)) and
std(avg(width)) promotes high variations of width and heterogeneous widths
among lines, respectively, minimizing avg(avg(width)) promotes thin lines; Line



Fig. 2: The interface for fitness function design.

direction is controlled by maximizing avg(avg(av)) while minimizing avg(std(av)),
which promotes the appearance of circular motifs (high angular velocity and low
variation of angular velocity). The video cdv.dei.uc.pt/2014/int.mov illus-
trates the responsiveness of the icons.

6 Final Rendering Interface

One of the novel characteristics of our approach is the adoption of scalable vector
graphics, which contrasts with the pixel based approaches used in most ant
painting algorithms, and allows us to create resolution independent paintings.
For this purpose, during simulation the trails of the ants are created by drawing
circles of a given color and transparency as the ants move. The resulting image
is then saved in bitmap format and scalable vector graphics, in this case as PNG
and PDF files, respectively. This approach has two major drawbacks: (i) the
PDF files may become rather large; (ii) the individual circles become visible at
high zoom levels (see figure 3, left).

http://cdv.dei.uc.pt/2014/int.mov


Fig. 3: On the left, the default rendering mode used during simulation. On the
right, a more elaborated rendering mode.

To overcome this problem we developed a rendering algorithm that con-
verts the set of circles of each trail into a line of variable width. The algorithm
deals with self intersecting lines and enables the specification of additional ren-
dering options: rendering mode – default, line, line with increased opacity on
self-intersections; trail width – which can be set to a given value or based on
the simulation, in this case the user may specify a multiplier to increase or de-
crease line width; trail opacity – which has an analogous behavior to trail width;
and trail color, which can be based on the simulation or set to a specific color;
The user may also indicate an outline for the lines, specifying the width of the
outline, its opacity and its color, which can all be specified by assigning a fixed
value or by inheriting the values from the simulation (see figure 3). Finally, the
invert option reverses the logic of the painting algorithm, making ants react to
darkness instead of luminance.

Since the process is computationally intensive, the final rendering is typically
an independent process. Once the evolutionary runs are over the users select their
favorite individuals for final rendering, using the final rendering interface to set
the rendering options. To further empower users and give them a finer degree
of control, during final rendering, we allow them to add ants to points of the
canvas by pointing and clicking with the mouse. Adding ants to certain regions
may increase the rendering detail of that area, or introduce ants in areas of the
canvas that were not being visited.

7 Experimentation

The design of our interfaces was guided by user feedback. The appearance of the
icons was validated individually. For each icon we performed evolutionary runs:
maximizing the value of the associated feature, minimizing it, and setting as
target an intermediate value. We confronted the users with the visual outcomes
of these runs and adjusted or re-designed the icons accordingly. This process was



Fig. 4: Examples of phenotypes resulting from each of the 15 fitness functions.

repeated interactively eventually leading to the interface described in section
5. Once developed, the fitness design interface was given to eleven users that
performed multiple evolutionary runs providing additional feedback. A detailed
analysis of user friendliness and user experience is beyond the scope of the paper.
Nevertheless, it is worthwhile mentioning the most common complaints: (i) users
are puzzled by the meaning of the negative weights; (ii) they have difficulties in
grasping the meaning of the fractal dimension and lacunarity icons; (iii) they
dislike the similarity icon. By analyzing the fitness functions created by the
users, it becomes obvious that negative weights and specific target values were
rarely used. When questioning the users we realized that when they use these
options their motivation was to “see what it does” rather than a specific outcome.
The same applies to the use of fractal dimension and lacunarity. Considering this
feedback we are likely to redefine the intervals for the weights setting them to
[0,1]. The implication is that the users will no longer be able to indicate the
intention to deviate from a given target value.

Giving an accurate portrayal of the results obtained by all users is close to
impossible due to space limitations, therefore we focus on the results obtained
by one of them: a graphic designer that was not familiar either with the inner
working of the system or with the interface. After a short explanation of the
workflow we asked him to create five different fitness functions and conducted
ten evolutionary runs for each of these functions. Population size was set to 25



Fig. 5: The same genotype applied to different input images.

Fig. 6: The same genotype rendered with different final rendering options.

and the number of generations to 50, the other GA parameters are similar to
the ones used in [11]. The input image was selected by the user, a photo of
Angelina Jolie taken by Annie Leibovitz. Once these runs were finalized the user
reviewed the results, selected his favorite individuals, and was asked to design
an additional set of five fitness functions. This process was repeated iteratively
resulting in a total of 15 fitness functions and 150 evolutionary runs. Figure 4
summarizes the results of these experiments by showing one individual per fitness
function, with each row corresponding to one iteration. The results highlight not
only the diversity of the results, but also the progress of the user through time.

One of the key aspects of our approach is the ability to apply selected geno-
types to different input images. Thus, over time the users compile ant species
that match their preferences and intentions, then applying these species to cre-
ate NPRs of several images. In figure 5 we show the results of applying the
genotype corresponding to the rightmost image of the bottom row of figure 4 to
different input images. These results indicate that although the ant species are
sensitive to the environment, i.e. input image, the characteristics of the painting,
e.g. curviness of the lines, are inherent to the ant species. Therefore, applying
the same ant species to different input images tends to result in ant paintings
with similar aesthetic qualities.

The final rendering interface gives an additional degree of control to the users,
allowing them to fine tune rendering options and explore alternative rendering
modes. Figure 6 illustrates how different combinations of parameters affect the
visual outcome. Since the details of the rendering are difficult to perceive in small
format the video cdv.dei.uc.pt/2014/ren.mov illustrates the final rendering
process.

http://cdv.dei.uc.pt/2014/ren.mov


8 Conclusions and Future Work

An interface for fitness function design in the scope of evolutionary ant painting
system was presented. This interface allows the users to operate at a higher level
of abstraction than in IEC and circumvents the user-fatigue problem. Neverthe-
less, unlike other automated fitness assignment schemes, the users are able to
express their artistic and aesthetic preferences.

Although the system serves the user intents, different runs converge to differ-
ent, and sometimes highly dissimilar, images. As such, we argue that the system
opens the realm of possibilities that are consistent with the intents expressed
by the users, often surprising them in the process. Moreover, while browsing
the outcomes of evolutionary runs users often find images that they consider
appealing due to their novelty and/or aesthetic properties, but which do not
maximize the fitness function they specified. In future work we will use machine
learning techniques to automatically define fitness functions from a set of such
images. The automatic discovery of fitness functions may be a complement to
the user interface and bring insights to understand the preferences of the users.
The further refinement of the interface and the inclusion of additional features
based on image analysis, more specifically related with color analysis, will also
be addressed.
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