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ABSTRACT
In the past few years the use of semantic aware crossover
and mutation has become a hot topic of research within
the Genetic Programming community. Unlike traditional
genetic operators that perform syntactic manipulations of
programs regardless of their behavior, semantic driven op-
erators promote direct search on the underlying behavioral
space. Based on previous work on semantic Genetic Pro-
gramming and Genetic Morphing, we propose and imple-
ment semantic driven crossover and mutation operators for
evolutionary art. The experimental results focus on assess-
ing how these operators compare with traditional ones.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;
I.2.m [Artificial Intelligence]: Miscellaneous

Keywords
Semantic Operators, Evolutionary Art, Genetic Program-
ming, Computational Creativity

1. INTRODUCTION
The use of geometric semantic genetic operators [14] in the

context of Genetic Programming (GP) is a recent field of re-
search. While conventional GP perform syntactic changes to
programs ignoring their behaviour, geometric semantic op-
erators consider behaviour, thus allowing the direct search
of the behavioral space. The theoretical advantages of such
operators are huge: they induce a unimodal fitness land-
scape for all the problems consisting in matching input data
with known outputs.

We revisit the early works of Sims [18] and Hart [7] con-
cerning the generation of short animations through “genetic
morphing” between individuals. We adapt their approaches,
developing several semantic-inspired crossover and mutation
operators. We use these operators in the context of evolu-
tionary art and study their properties.
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In Section 2 we make a short overview of geometric seman-
tic operators proposed in GP literature, introducing several
important concepts. Section 3 makes a short introduction
to expression based evolutionary art and an overview of our
evolutionary art system. The semantic-inspired genetic op-
erators proposed in this paper are described in Section 4
and the results obtained through their use are summarized
on Section 5. Finally we draw conclusions.

2. GEOMETRIC SEMANTIC OPERATORS
Traditional GP crossover and mutation operators perform

syntactic manipulations of programs – e.g. sub-tree swap-
ping – ignoring the semantics of the programs that they ma-
nipulate [14]. While semantic-blind operators have shown
their merit, as it is demonstrated by the extensive list of
valuable results and breakthroughs obtained by GP
approaches, the definition of operators that are aware of the
semantics of candidate solutions [2] is becoming an impor-
tant area of research within the GP community.

The exact meaning of semantics in the context of GP is
debatable, with several researchers adopting the definition
proposed by Uy et al. [20] and Moraglio et al. [14] who
consider semantics as the function computed by the pro-
gram, more precisely, as the behavior of a program over a
set of data, i.e., “input-output pairs making up the computed
function”. In simple terms, adopting this definition, where
semantics equates behavior and applying it to expression-
based evolutionary art, implies that the semantics/behavior
of an individual is the image produced by the individual
when executed over a set of x,y coordinate values.

Since traditional GP crossover and mutation ignore se-
mantics, the consequences of the syntactic modifications per-
formed by these operators on the behavior of the programs
are difficult to predict. Moraglio et al. [14] recently in-
troduced a new type of genetic operators, called geometric
semantic genetic operators, that manipulate directly the be-
havior of the programs, ignoring their syntactic information.
The ability to directly manipulate semantic information con-
fers them several interesting properties, most notably: they
induce a unimodal fitness landscape for all the problems con-
sisting in matching input data with known target outputs.
In other words, under these operators problems such as sym-
bolic regression become trivial, in the sense that a program
that reproduces the training data is found with little effort.

Unfortunately, they also possess a major disadvantage:
these operators always produce offspring that are larger than
their parents, which causes an exponential growth in pro-
gram size. Thus, while it is trivial to solve problems such



as symbolic regression, the size of the evolved programs is
so large that, for most applications, it defeats the purpose.
Although it is common to define symbolic regression as the
problem of finding a mathematical expression that approx-
imates or matches the training data, this definition is in-
complete. Matching the training data is only a part of the
problem and it can be solved trivially by a variety of meth-
ods, e.g. considering that your training data consists of n
(x, y) pairs, with x, y ∈ R you can always use polynomial
regression to derive polynomial of order n − 1 that fits the
data perfectly. Thus, the goal of symbolic regression is bet-
ter defined as the problem of finding a compact expression
that approximates the training data and that general-
izes well. Analogously, in the context of evolutionary art,
as demonstrated by Machado and Cardoso [12] finding the
symbolic expression for the Mona Lisa, or any other given
image, is both a trivial problem and a fruitless endeavor per
se. However, finding a compact representation is a difficult
and valuable problem, perhaps even central for evolutionary
art [13], opening the door for a wide range of applications.

Considering the potential and the limitations of seman-
tic operators their contribution to the field of evolutionary
art is unclear, and should be scrutinized. Next we describe
the semantic geometric crossover and mutation operators for
real functions presented by Moraglio et al. [14].
Geometric Semantic Crossover: Given two parent func-
tions T1, T2 : Rn → R, the recombination returns the real
function TX = T1.TR + T2.(1 − TR), where TR is a random
real function with codomain [0, 1].

In simple terms, this geometric semantic crossover opera-
tor creates a program, T3, that returns as output a weighted
sum of the outputs of its parents T1, T2. This ensures that
the operator is semantically driven and also that it is a ge-
ometric crossover on the semantic space, in the sense that
when the parents and descendant are mapped onto the se-
mantic space the descendant is bound to be between the
parents and. Therefore, assuming that a target point in the
semantic space exists the Euclidean distance between the
descendant and that point is never larger than the distance
of the farthest parent. Figure 1 illustrates this property.
A formal demonstration and additional semantic geometric
operators can be found in Moraglio et al. [14]
Geometric Semantic Mutation: Given a parent function
T : Rn → R, the mutation returns the real function TM =
T + ms.(TR1 − TR2), where TR1 and TR2 are random real
functions and ms is the mutation step.

The use of two random real functions, TR1, TR2 ensures
that the semantic perturbation is centered around zero while
the mutation step, ms, allows one to control the degree of
the perturbations. Moraglio et al. [14] formally prove that
this operator induces a unimodal fitness landscape, corre-
sponding to a box mutation on the semantic space.

3. EVOLUTIONARY ART
The seminal work of Sims [18] created what is now the

most popular approach to evolutionary art, the expression-
based approach. Each genotype is a tree that encodes a
symbolic expression. The rendering of the expression results
in a phenotype, i.e., an image. The genotype-phenotype
mapping process varies, but, in general, the phenotype can
be seen as a visualization of the output of the s−expression
over a set of variable values. Typically, evolution is user-
guided although noteworthy exceptions exist [10, 17]. Some

Figure 1: An illustration of geometric semantic
crossover. The output of the descendant, O(TX), is
bound to be between the outputs of the parents,
O(T1), O(T2), and, therefore, it is never farther from
to the target, T , than the worst parent, T2 in this
case. Adapted from Vanneschi et al. [21].

examples of this expression-based approach can be found in
[18, 19, 22, 12, 7]. A thorough survey of EA systems beyond
the scope of this paper (see, e.g., [10] for a survey).

As Machado and Cardoso [12] point out, most expression-
based EA systems are theoretically able to create any im-
age. Nevertheless, in practice, the image space that is ac-
tually explored depends heavily on the particularities of the
system (primitives, genetic operators, genotype-phenotype
mapping, etc.). McCormack [13] identified the problem of
finding a symbolic-expression that corresponds to a known
“target” image as one of the open problems of evolution-
ary art. More exactly, the issue is not finding a symbolic-
expression, since this can be done trivially [12], the issue
is finding a compact expression that provides a good ap-
proximation of the “target” image taking advantage of its
structure.

In spite of the importance of this specific open problem,
it is important to mention that in most evolutionary art
applications there is no “target” image to obtain. The goals
can be as varied as satisfying the user, as is the case of
interactive evolutionary art, satisfy a hard-wired or learned
aesthetic criteria [1, 5, 12, 4, 11], create novel images [9, 3],
respond to the “infections” of parasites in a co-evolutionary
scheme [6], etc.

Nevertheless, the use of semantic operators, may result
in increased evolvability, thus promoting the fruitful explo-
ration of the search space and potentially lead to better re-
sults, independently of the criteria used to judge the quality
of those results.

Those familiar with Sims [18] influential work may re-
call that in addition to the evolution of static images Sims
also evolved short animations. These animations were pro-
duced by a process called genetic cross dissolve, given two
symbolic expressions, corresponding to two images, this pro-
cess creates an animation by generating intermediate frames
through the “interpolation” between the symbolic expres-
sions over time. As we will see in Section 4, in its simplest
form, this process is analogous to the geometric semantic
operator presented in the previous Section. Additionally,
Sims also mentions using this approach to mate individu-
als. Thus, evolutionary art adopted semantic methods since
its early beginning, in fact, as far as we know, Sims [18]
was the first to use semantic methods in GP. However, due
to the limitations of the method, this contribution is often
overlooked.



Figure 2: Representation scheme with examples of
functions and the corresponding images.

3.1 Evolutionary Art Engine
The engine used in these experiments is inspired by the

works of Sims [18]. It is a general purpose, expression-based,
GP image generation engine that allows the evolution of
populations of images. The genotypes are trees composed
of a lexicon of functions and terminals. The function set
is composed of simple functions such as arithmetic, trigono-
metric and logic operations. The terminal set is composed of
two variables, x and y, and randomly initialized constants,
these can be scalars or 3d vectors. The 3d vectors introduce
color by specifying different values for the RGB color chan-
nels, e.g. #(0.1, 0.2, 0.1). Although a single tree is used for
the 3 color channels, this tree can be decomposed into three
different trees, one for each color channel, operating and
returning real numbers. The phenotypes are images that
are rendered by evaluating the expression-trees for different
values of x and y, which serve both as terminal values and
image coordinates. In other words, to determine the value
of the pixel in the (0,0) coordinates, one assigns zero to x
and y and evaluates the expression-tree (see figure 2). A
thorough description of the GP engine can be found in [12].
Figure 3 displays typical imagery produced via interactive
evolution using this system.

4. SEMANTIC METHODS FOR
EVOLUTIONARY ART

In Section 2 we described geometric semantic crossover
and mutation operators. Here, we describe our implementa-
tion of such operators and introduce novel semantic-inspired
operators. These are based on the early work of Sims [18]
and Hart [7] on the creation of short animations depicting
smooth transitions between two evolved images.

The production of such animations relies on the use of the
lerp function, which can be defined as follows:

lerp(A,B) = A.t+B.(t− 1),

with A,B : Rn → R and t ∈ [0, 1].
To generate a video one creates a new individual

lerp(A,B) and calculates its output for different values of

Figure 3: Examples of images generated by the evo-
lutionary engine using interactive evolution.

t, starting with t = 0 and increasing t by a fixed step un-
til t = 1, which produces a “fade” between A and B. In
most cases, this results in rather uninteresting videos since
it is simply a static morph between two images. Sims [18]
proposes an approach based on first-differences alignment
which allows him to obtain swift transitions between pairs
of images while introducing the illusion of movement and
change over time. Later Hart [7] refined this early approach
introducing novel alignment schemes which extend the range
of results producible through genetic cross dissolve.

The similarity between the lerp function and the geomet-
ric semantic crossover defined in Section 2 are striking. In
fact, the only difference is the following: lerp uses the vari-
able t to control the influence A and B on the outcome while
the geometric semantic crossover uses a random function,
TR, with codomain [0, 1] for the same effect.

To make them equivalent we redefine lerp as follows:

lerp(T1, T2, TR) = T1.sig(TR) + T2.(1− sig(TR)),

with T1, T2, TR : Rn → R, and sig(x) = 1
1+e−x .

Following the work of Vanneschi et al. [21], we use sig to
map R into [0, 1], thus removing the constraint of using as
third argument a function with codomain [0, 1].

In the next sections we describe several genotype align-
ment techniques and the corresponding genetic operators.

4.1 Crossover and Tree-Alignment
The first crossover operator described herein is similar to

the semantic crossover operator presented in Section 2. The
second results, directly, from the work of Sims [18], who used
a similar technique for creating animations and performing
crossover between parents with similar structures. The last
two crossover operators are inspired on the work of Hart
[7]. The difference between the four operators lies on the
algorithm for aligning the genotypes, i.e. finding matches
between pairs of genotypes [15, 16].

4.1.1 Root Alignment
This is the simplest alignment technique, the roots of

both parents, A and B are aligned and no further align-
ments are made. Considering this technique the result of
the crossover operator between any pair of individuals A
and B is lerp(A,B, TR), where TR is a randomly generated
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Figure 4: Alignments of A and B according to dif-
ferent algorithms.

tree. Thus, the crossover between the individuals depicted
in figure 4 would result in: lerp(+(y,−(x, 1)),+(x, 2), TR).
As previously mentioned, this operator is equivalent to the
one presented in Section 2, sharing the exact same proper-
ties, and can, therefore, be classified as a geometric semantic
operator.

4.1.2 First Differences Alignment
The first difference alignment algorithm can be described

as follows: If the roots of the trees are equal call the align-
ment algorithm for each of their arguments (unless they are
leafs); if the roots are different align both roots.

Running this algorithm for the example presented in fig-
ure 4 produces the following alignments: (A2, B2) and
(A3, B3). Like previously, to produce the descendant one
lerp node is introduced for each alignment, resulting in:
+(lerp(x, y, TR1), lerp(−(x, 1), 2, TR2).

Although the operator is semantic-inspired, it can no
longer be classified as a geometric semantic operator since
the descendant is no longer necessarily “between” the two
parents. In other words, considering a target image T and
Euclidean distance, while root alignment crossover returns
a descendant that is at least as close to T as the farthest of
its parents, first difference alignment crossover may return a
descendant that is farther from T than the farthest parent.

This approach was used by Sims [18] for creating his fa-
mous genetic cross dissolves between images. If the two
expressions have different root nodes first differences and
root alignment produce the same outcome. In Sims work,
the resulting video would be a “traditional”, and rather un-
interesting, fade between the images. However, when the
trees share a common structure (i.e., when they have at
least the root node in common) interesting movements and
unexpected, yet smooth, transitions tend to occur.

Since Sims [18] and Hart [7] where primarily focused on
the production of videos, they control the influence of each
parent on the outcome through the variable t. We use a
random function for the same purpose, which introduces a
subtle, but important, difference between the approaches.
In the original version the relative influence of the parents
is homogeneous across the image since it only depends on t,
however, when a random function – which can use variables
x and y, and as such return different outputs for different
x, y coordinates – is used this is no longer true, e.g. the
upper part of the image may be strongly influenced by the
first parent while the bottom part is mainly influenced by
the second.

4.1.3 Constraint Alignment
As noted by Hart [7], two genotypes are likely to have

different root nodes, and the result of the previously de-
scribed operators is likely to be a rather uninteresting blend
of the two images. Thus, although root alignment may be a
valuable operator for“conventional”GP applications such as
symbolic regression, its interest in the context of evolution-
ary art appears rather limited. To some extent, the same
applies to first differences alignment since, in most cases,
it will give the same output as root alignment. Consider-
ing that it may be desirable to “continue matching nodes
after encountering a difference between the trees, since the
result of the blend will often move rather than fade” [7],
Hart proposes two additional alignment techniques. Like
first differences alignment, the resulting crossover operators
are semantic-inspired, but cannot be classified as geometric
semantic operators under Euclidean distance.

The first technique is constraint alignment which can be
informally described as follows: Considering two trees, A
and B, we begin by establishing a correspondence between
the levels of the trees; since the trees may have different
heights, we will randomly discard levels of the larger tree,
so that the number of levels to be considered is the same
(the root level is never discarded); the remaining levels are
then matched in top to bottom fashion (and hence there
is always a match between the two root levels); we then
proceed in level by level fashion, randomly discarding nodes



so that the number of nodes at each level coincides; the
remaining nodes are aligned in left to right order.

In figure 4 we present a possible outcome of the constraint
alignment crossover between two individuals. Parent A has
a height of 3, B has a height of 2. Therefore, for align-
ment purposes, it is necessary to randomly discard a level
of parent A (either level 2 or 3, since the root is never dis-
carded). In this case level 2 was discarded, thus the first
level A is matched with the first of B and the third level of
A is matched with the second of B. Since the number of
nodes per considered level is the same for both parents, it is
unnecessary to discard further nodes. Finally the nodes are
aligned per level from left to right resulting in the following
alignments: (A1, B1), (A4, B2), (A5, B3).

As previously, each alignment results in the introduction
of lerp operators. Therefore the crossover of A and B results
in: lerp(+(y,−(lerp(x, x, TR1), lerp(1, 2, TR2))),+(lerp(x,
x, TR3), lerp(1, 2, TR4)), TR5).

4.1.4 Optimal Alignment
Based on the work of Jiang et al. [8] on the alignment

of ordered phylogenetic trees, Hart [7] proposes an optimal
alignment scheme. This algorithm calculates all possible
alignments between pairs of nodes and forests of children,
that is every node of the first parent is compared against ev-
ery node of the second parent and every forest of children of
a node of the first parent is compared against every forest of
children of every node of the second. As is demonstrated by
Jiang et al. [8], the algorithm they propose has a quadratic
temporal complexity. The quality of each alignment between
a pair of nodes, n1, n2 is determined by a function, µ, which
penalizes alignments between nodes of different types. Hart
[7] adapted µ to a GP context, proposing the following func-
tion: µ(a, b) = 0 when a = b; µ(a, b) = 1 when a 6= b but
a and b are of the same type (i.e., both are variables, con-
stants, or functions); µ(a, λ) = mu(λ, a) = 1 that is not
aligning a node gives a penalty of 1; µ(a, b) = 2 when a 6= b
and a and b are of different types. The quality of an align-
ment between two trees is given by the sum of the µ values
of all alignments between nodes. The algorithm efficiently
calculates an alignment that minimizes µ. There is always
an alignment between the root nodes of the parents.

A thorough description of the optimal alignment algo-
rithm is beyond the scope of this paper, so we redirect the
reader to the original works of Jiang et al. [8] and Hart [7].

For the example presented in figure 4 the optimal align-
ment between parent A and B is (A1, B1) and (A5, B3). As
such the result of the optimal alignment crossover operation
is: lerp(+(y,−(x, lerp(1, 2, TR1))),+(x, (1, 2, TR2)), TR3).

4.2 Mutation
Our mutation operators take full advantage of the tree

alignment methods that were previously described. There-
fore we have root, first differences, constraint and optimal
alignment mutations. All of these operators can be de-
scribed as follows: mutation(A) = crossover(A,B.ms),
with A,B : Rn → R, where B is a random function and
ms is the mutation step. In other words to mutate an indi-
vidual we perform a crossover between this individual and a
random tree, using a specific alignment scheme.

For root alignment, this mutation operator is similar to
the geometric mutation operator described in Section 2,
since the use of the sig function ensures a codomain of

[0, 1] and since the outputs of our random trees are naturally
centered around zero. Therefore, root alignment mutation
is also a geometric semantic operator under Euclidean dis-
tance. However the same cannot be stated for the remaining
mutation operators.

5. EXPERIMENTATION
The use of semantic genetic operators raises a practical

problem, the growth of program size is so accentuated that,
after a few generations, the individuals become so large that
it becomes impossible to calculate their output by transvers-
ing the program tree. In some scenarios, it is possible to
calculate the output of a program from the outputs of its
parents [21], which circumvents this specific problem. How-
ever, this is only possible for the root alignment operators.
When other types of alignment are used it would be nec-
essary to use dynamic programing techniques to calculate
and store intermediate results. Although these techniques
postpone the problem for a while, they do not solve it. The
same applies to the simplification of the symbolic expres-
sions proposed by Moraglio et al. [14].

For these reasons performing long evolutionary runs is not
feasible. As such we consider that, at least in the context of
evolutionary art, the most promising applications of these
semantic-inspired operators are the following:

1. Short evolutionary runs with large populations;

2. Long evolutionary runs using conventional operators
by default and semantic operators on rare occasions;

3. Semantic recombination of highly fit individuals
evolved using conventional operators;

4. Semantic mutation of highly fit individuals evolved us-
ing conventional operators;

5.1 Runs With Semantic-Inspired Operators
We conducted a series of interactive evolutionary runs us-

ing the proposed semantic-inspired mutation and crossover
operators. In each run we selected one alignment scheme
– root, first differences, constraint, optimal – and used the
associated crossover and mutation operators. The experi-
mental settings were the following: population size = 100;
number of generations 10; crossover probability = 0.8; mu-
tation probability = 0.2; tournament selection, with tourna-
ment size = 5; elitist strategy, with elite size = 1.

When we compare the results obtained using semantic-
inspired operators with those obtained using conventional
operators one can observe a striking difference: the use of
semantic operators results in a dramatic reduction of pop-
ulation diversity. This is somewhat expected since geomet-
ric semantic crossover ensures that the descendants are “be-
tween” both parents (see Section 2). Therefore, in the ab-
sence of mutation, search is constrained to the regions be-
tween parents. After a few populations selection pressure
guides evolution towards an even smaller sub-region of the
space. Geometric semantic mutation may introduce novelty
in the population. However, in the experimental conditions,
the mutations are unable to introduce enough novelty to
keep the runs sufficiently interesting, even when mutation
steps, ms, as high as 1 are considered. The loss of diver-
sity is particularly visible when using root, which is a ge-
ometric semantic operator, and first differences alignment,



Figure 5: Partial screenshots of populations from
runs using root (top two rows) and constraint (bot-
tom two rows) alignment.

which behaves similarly to root alignment when the roots
of the parents are different. Conversely, constraint and op-
timal alignment, which although semantic-inspired are not
geometric operators, are able to sustain diversity for longer
periods of time. In terms of user experience the runs using
semantic-inspired operators can be considered largely disap-
pointing, due to the lack of diversity, and also because the
users feel, and to some extent are, committed to the choices
made in the first few generations and unable to steer evolu-
tion in a different direction. In figure 5 we present partial
snapshots of the 15th population of two runs using root and
constraint alignment, highlighting the differences in diver-
sity between the results.

We also conducted several runs using a hardwired fitness
function similar to the one presented by Machado and Car-
doso [12]. In terms of population diversity the results are
comparable to those reported for interactive evolution runs.
However, looking at these runs exclusively from an opti-
mization point of view the differences between standard and
semantic-inspired operators become less visible. That is, fit-
ness increases along the evolutionary process and the differ-
ences of performance among operators are not statistically
significant. Our explanation for this result is the following:
although the theoretical properties of geometric semantic
operators should give them an edge in optimization tasks,
the runs are short and so these advantages are not visible.

5.2 Semantic Manipulation of Fit Individuals
The nature of semantic-inspired genetic operators and the

quality of the genetic cross dissolves presented by Sims [18]
and Hart [7] indicate that they can be particularly well-
suited for recombining and mutating fit individuals. We
conducted a series of tests using fit individuals evolved pre-
viously through interactive evolution using conventional ge-
netic operators. These individuals were then recombined
and mutated using semantic-inspired operators.

Figure 6 depicts typical examples of the recombination
of individuals with similar structures, in particular with
the same root node. As it can be observed, conventional

Parents

Conventional Crossover

Root Alignment

First Differences Alignment

Constraint Alignment

Optimal Alignment

Figure 6: Examples of the recombination of individ-
uals with similar structures.

crossover produces a wide variety of outputs that may show
strong deviations from the parents, while root alignment
produces fades between the two parents and, therefore, pre-
dictable results. First differences alignment produced a wide
range of interesting results that, in our subjective opinion,
appear to be a good compromise between diversity and in-
heritance of visual characteristics from the parents. The
same can be stated regarding optimal alignment, although
the results tend to be less varied. Constraint alignment pro-
duced unexpected results, it often produces descendants that
close matches to one of the parents, fades between parents
and totally unexpected images that bare little resemblance
to any of the parents. Our explanation for this behaviour
is the following: the alignments made using the constraint
technique are largely arbitrary and so are the results. Con-
sidering the overall results, we find that semantic-inspired
operators are valuable for the recombination of structurally
similar individuals, and that first differences and optimal
alignment tend to produce the best results.



Parents

Conventional Crossover

Root and First Differences Alignment

Constraint Alignment

Optimal Alignment

Figure 7: Examples of the recombination of individ-
uals with dissimilar structures.

Figure 7 presents varied examples of the recombination of
individuals with dissimilar structures. Since the root nodes
are different root and first differences alignment are equiva-
lent. As previously, conventional crossover produces a wide
range of outputs and strong deviations from the parents are,
apparently, more common than when the individuals have
similar structures. Root alignment disregards the structure
of the individuals and, as such, we obtain the same type of
fades between parents that can be observed when recombin-
ing structurally similar individuals. The erratic behaviour
of constraint alignment is accentuated and the individuals
tend to fall on one of two extremes: a fade between the par-
ents, an image that is apparently unrelated to any of them.
Optimal alignment shows, by far, the highest percentage of
recombinations that simultaneously inherit visual character-
istics from both parents and depict some novelty. For this
reason we considered it the most useful operator for the re-
combination of structurally dissimilar parents.

Figure 8 shows typical examples of the mutation opera-
tor. In general, the statements made regarding the crossover
of individuals with different structures also apply to mu-
tation. This is an expected result since, in essence, the
semantic-inspired mutation operators perform the crossover
of an individual with a randomly generated tree. The differ-
ences among semantic-inspired operators tend to less visible.

Parent

Conventional Mutation

Root Alignment

First Differences Alignment

Constraint Alignment

Optimal Alignment

Figure 8: Examples of mutation operations.

Since the randomly generated trees are significantly smaller
than the individuals used for crossover, the opportunities
for alignment are scarcer, which dilutes the differences. Al-
though semantic-inspired mutations may be useful for in-
troducing subtle changes, in general, and in our subjective
opinion, they offered little or no advantage over conventional
mutation. In particular, they all tend to fail to systemati-
cally introduce novelty into the population and thus to keep
the users interested in the evolutionary process.

6. CONCLUSIONS
We presented several semantic-inspired genetic operators

using different genotype alignment techniques and applied
them in the context of evolutionary art. The analysis of the
experimental results indicates that, while these operators
have practical limitations due to the exponential increase of
program size, they are useful for specific tasks. In partic-



ular these semantic method are promising for the recombi-
nation of particularly fit individuals. On the other hand,
performing long evolutionary runs, particularly interactive
ones, appears to be unfeasible and tedious.

In the future we intend to conduct several interactive and
automated runs using a combination of conventional and
semantic operators. This combination may be useful for
avoiding the lack of population diversity and the exponen-
tial growth of program size induced by the use of semantic
operators, but still preserve their advantages. To achieve
this, the semantic operators should be used seldom, which
implies that identifying the occasions where their use is ad-
vantageous becomes an important research question.
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