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ABSTRACT 
 
Genetic Vehicle Representation (GVR) is a new two-level 
representational scheme designed to encode all the 
information required by potential solutions for the vehicle 
routing problem. In a previous paper we described a set of 
experiments performed with several instances from the 
Capacitated Vehicle Routing Problem (CVRP). In this 
preliminary investigation, GVR proved to be both 
effective and robust. 
In this work we extend the application of this new genetic 
representation to the vehicle routing problem with time 
windows, a variant that adds additional time constraints to 
the original definition. We present the results of a 
comprehensive set of tests that show that GVR is also 
efficient with this alternative, allowing the evolutionary 
computation algorithm to reach optimal solutions for some 
well know benchmarks. 

 

1. INTRODUCTION 
 
The Vehicle Routing Problem (VRP) is a complex 
combinatorial optimization problem, which can be 
described as follows: given a fleet of vehicles with 
uniform capacity, a common depot, and several customer 
demands (represented as a collection of geographical 
scattered points), find the set of routes with overall 
minimum route cost which service all the demands. All the 
itineraries start and end at the depot and they must be 
designed in such a way that each customer is served only 
once and just by one vehicle. VRP is NP-hard, and 
therefore difficult to solve.  

Due to the nature of the problem it is not viable to use 
exact methods for large instances of the VRP (for 
instances with few nodes, the branch and bound technique 
[1] is well suited and gives the best possible solution). 
Therefore, most approaches rely on heuristics that provide 
approximate solutions. Some specific methods have been 
developed to this problem (see, e. g., [2], [3]). Another 
option is to apply standard optimization techniques, such 

as tabu search [4], simulated annealing [4], [5], constraint 
programming [6], or ant colony optimization [7].  

In the past few years there have also been some 
applications of evolutionary computation (EC) techniques 
to the VRP (see [8] for a good overview). Most 
researchers rely on hybrid approaches that combine the 
power of an EC algorithm with the use of specific 
heuristics (see, e.g., [9], [10]) or use simplified versions of 
the problem. One common simplification is to pre-set the 
number of vehicles that is going to be used in the solution 
[11], [12]. When applied alone, the success of EC 
techniques has been limited  [13], [14]. 

Considering that the representation adopted for 
individuals plays a crucial role in the performance of an 
EC algorithm, in a previous paper we proposed a new 
representational scheme, Genetic Vehicle Representation 
(GVR) [15]. It was designed to deal efficiently with the 
two levels of information that a solution must encode: 
clustering of the demands (i.e., allocation of all the 
demands to different vehicles) and specification of the 
delivery ordering for each one of the routes. This 
representation also enables an easy adjustment of the 
number of vehicles required for one possible solution. The 
search process relies on standard EC techniques. It is 
important to notice that specific heuristics are not used, as 
well as any kind of simplification to the problem. 
Experiments performed with several CVRP instances from 
some well-known benchmarks showed that this approach 
is both effective and robust, since it allowed the discovery 
of new best solutions [15]. 

In this paper we apply GVR to one of the most 
important extensions to the VRP, the Vehicle Routing 
Problem with Time Windows (VRPTW). This variant 
introduces additional constraints to the original definition, 
since each customer must be served within a specific time 
window (i.e., for each node there is both an earliest and a 
latest time allowed for delivery). 

The paper has the following structure: in section 2 we 
give a formal definition of the VRPTW. Section 3 
comprises a description of the proposed EC model. In 
section 4 we present and examine the most important 
experimental results achieved. As a final point, in section 



5, we illustrate some overall conclusions and propose 
directions for future work. 
 

2. THE VEHICLE ROUTING PROBLEM WITH 
TIME WINDOWS 

 
The VRPTW can be formally described in the following 
way: there is one central depot 0, which uses k 
independent delivery vehicles, with identical delivery 
capacity C, to service demands di from n customers, i = 1, 
…, n. The vehicles must accomplish the delivery with a 
minimum total length cost, where the cost cij is the 
distance from customer i to customer j, with i, j ∈ [1, n]. 
The distance between customers is symmetric, i.e., cij=cji 
and also cii=0. The travel time from customer i to customer 
j is tij = cij. Time constraints specify that associated with 
each customer i there is a time window [ei, l i] during which 
this customer has to be served. This way, a vehicle must 
arrive to i no sooner than ei (the earliest arrival time) and 
no later than l i (the latest arrival time). Additionally, there 
is a service time f i for each customer and a limit T, 
defining the maximum travel time permitted for any 
vehicle.    

A solution for the VRPTW would be a partition 
{ R1,…,Rk}  of the n demands into k routes, each route Rq 
satisfying both Cd

qRp p ≤∑ ∈
 and the time constraints.  

Associated with each Rq is a permutation of the demands 
belonging to it, specifying the delivery order of the 
vehicles. In figure 1 we present an illustration of the 
problem, viewed as a graph, where the nodes represent the 
customers. 

 

 
 

Figure 1: Vehicle Routing Problem. 
 
3. EVOLUTIONARY COMPUTATION MODEL 

 
3.1. Genetic Vehicle Representation 
 
A candidate solution to an instance of the VRPTW must 
specify the number of necessary vehicles, the partition of 
the demands through all these vehicles and also the 

delivery order for each route. We adopted a representation 
where the genetic material of an individual contains 
several routes, each one of them composed by an ordered 
subset of the customers. All demands belonging to the 
problem being solved must be present in one of the routes. 
As an example, the chromosome from figure 2 represents 
the solution presented in figure 1. 

 

 
 

Figure 2: An example of a GVR chromosome. 
 

The information encoded in the chromosome must be 
interpreted in such a way that it yields a legal solution. 
Two specific situations must be considered:  

A vehicle exceeds its capacity: when this happens we 
split the route that exceeds capacity in several ones. An 
example illustrates this adjustment: assume that the 
original route { a, b, c, d, e, f}  causes the vehicle to exceed 
its capacity at node d. When this situation occurs, the 
itinerary is divided in two sections: { a, b, c}  and { d, e, f} , 
and a new vehicle is added to the solution. If necessary, 
further divisions can be made in the second section.  

Time constraints are not satisfied: in this case, three 
different types of violation may occur: early arrival at a 
customer, late arrival at a customer or late arrival at the 
depot. The first situation is easily solved, since it’s only 
required that the vehicle waits until it meets the earliest 
arrival time of the window. To resolve the other two cases, 
a new section is created on the itinerary, providing a valid 
route by adding a new vehicle to the solution. 

Notice that these changes only occur at the 
interpretation level and, therefore, the information codified 
in the chromosome is not altered. 
 
3.2. Genetic Operators 
 
The EC algorithm processes the individuals in a 
straightforward way. Assuming that the population size is 
N, in each generation N parents are chosen and N 
descendants are obtained through the application of 
genetic operators to the elements of the selected set.  

We consider two categories of operators: crossover 
and mutation. They must be able to deal with the two 
levels of the representation. Thus, they should be capable 
to change the delivery order within a specific route and to 
modify the allocation of demands to vehicles. In this last 
situation, they can, not only switch customers from one 
route to another, but also modify the number of vehicles 
belonging to a solution (adding and removing routes). 



Another important requirement is that the genetic 
operators must always generate legal solutions.  

The crossover operator used in our approach does not 
promote a mutual exchange of genetic material between 
two parents. Instead, when an individual from the selected 
set is submitted to this kind of operation, it receives a 
fragment of genetic material (more precisely, a route) from 
another parent and inserts it as the first route. After 
insertion, a repair process checks the original routes from 
the receiving individual and removes all customers that 
also appear in the inherited itinerary. This ensures that the 
new chromosome is legal, since there will be no repeated 
points. During the operation, the donor is not modified. 
The example from figure 3 illustrates how crossover acts. 
As you can see, it can, not only add a new route to a 
solution, but also remove some existing itineraries (in the 
example, original route 3 disappears).  
 

 
 

Figure 3: Example of crossover. 
 

Descendants resulting from crossover can be subject 
to mutation. We consider four operators, based on 
proposals usually applied to order-based representations: 

Swap: selects two customers and swaps them. 
Selected points can belong to the same or to different 
routes. 

Inversion: selects a sub-route and reverses the 
visiting order of the customers belonging to it. 

Insertion: selects a customer and inserts it in another 
place. The route where it is inserted is selected randomly. 
It is possible to create a new itinerary with this single 
customer. In all experiments reported in this paper, the 
probability of creating a new route is 1/(2×V), where V 
represents the number of vehicles of the current solution. 
This way, the probability of creating a new route is 
inversely proportional to the number of vehicles already 
used. In figure 4 we show an example of this operation.  

Displacement: selects a sub-route and inserts it in 
another place. This operator can perform intra or inter 
displacement (whether the selected fragment is inserted in 
the same or in another route). Just like in the previous 
operator, it is also possible to create a new route with the 
subsequence (the probability of this occurrence is 
calculated in the same way).  

Swap and inversion do not change the number of 
routes of an individual. On the contrary, insertion and 
displacement have the ability to remove and to add 
vehicles to a solution. All genetic operators described have 
a specific probability of application to a single individual, 
not genes as in standard EC models. 
 

 
 

Figure 4: Example of insertion mutation applied over 
customer 9. 

 
4. EXPERIMENTAL RESULTS 

 
To evaluate our approach we performed an extensive 
collection of tests with 12 instances from Solomon’s 
VRPTW benchmarks [16]. We choose four instances from 
each one of the three different sets of problems (C, R and 
RC) belonging to group 1 (this group contains instances 
with a short scheduling horizon, allowing only a few 
customers per route). All sets consist of 100 customers 
plus the depot, with different time windows width. 
Location of customers in instances from set R is randomly 
generated, whilst in set C, they are clustered. For instances 
of set RC, a mix of both distributions is used.  

The settings of the EC model are the following: 
Number of generations: 50000; Population size: 200; 
Tournament selection with tourney size 5; Elitist strategy; 
Crossover rate: { 0.25, 0.5} ; Mutation rates: swap: 0.1; 
inversion: 0.1; insertion: { 0.25, 0.5} ; displacement: { 0.25, 
0.5} . For every set of parameters we performed 30 runs 
with the same initial conditions and with different random 
seeds. All initial populations were randomly generated, 
according to the algorithm in [15]. The values for different 
parameters were set heuristically. 



 

Instances NV Dist NV Dist NV Dist NV Dist
C101 10 827.3 10 827.3 10 828.94 10 828.94
C102 10 827.3 10 827.3 10 828.94 10 868.80
C103 10 826.3 10 826.3 10 828.06 11 939.46
C104 10 834.7 10 822.9 10 824.78 10 963.72
R101 21 1666.3 20 1637.7 19 1645.79 20 1676.86
R102 19 1486.1 18 1466.6 17 1486.12 17 1549.00
R103 15 1244.2 14 1208.7 13 1292.68 15 1311.81
R104 12 1024.8 n/a n/a 10 982.01 10 1090.00

RC101 18 1671.2 15 1619.8 14 1696.94 17 1728.30
RC102 15 1502.5 14 1457.4 12 1554.75 14 1569.00
RC103 13 1353.8 11 1258.0 11 1261.67 14 1519.83
RC104 11 1179.9 n/a n/a 10 1135.48 11 1263.00

GVR Best Optimal Heuristics Best Previous EC Best

 
Table 1: Summary of best solutions found. NV is the number of vehicles. Dist is the distance. 

 
In table 1, we present, for all instances, the best 

solutions discovered by our approach and compare them 
with the optimal known values, the best solutions found 
by other heuristics and by previous EC models. (these 
values were collected from [1], [2], [4], and [16]). From 
the observation of table 1, it can be seen that GVR is an 
efficient representation:  

Outperformed previous EC approaches: in all 
instances tested, GVR discovered solutions with better 
quality than those found by any other EC model. 

Competitive against specific heuristics: in the 
majority of the instances (seven in twelve) it achieved 
better solutions than those obtained by specific heuristic 
algorithms. In the other situations, results found by GRV 
are less than 5% worst (the only exception is instance 
RC103, with 7%). 

Reached optimal solutions: in most of the 
instances of the clustered set, namely C101, C102 and 
C103, the optimal solution was discovered. 

In table 2 we show, for all settings tested, the value 
of the best solution, as well as the average of best 
solutions found in each of the 30 runs. A brief perusal of 
the results show that GVR is a robust approach. For 
instances belonging to different groups, our EC model 
was able to find good solutions. Moreover, the quality of 
the results achieved with different settings is similar. 
These results suggest that the GVR approach is not very 
sensitive to tuning details, such as the application rates of 
genetic operators. 

The influence of crossover is not clear. In the 
experiments performed with CVRP, we verified that this 
operator was crucial to the discovery of good solutions 
[15]. On the contrary, in this variant with time windows, 
the importance of exchanging information between 
individuals is vague. A more carefully and thorough 
analysis of the role of crossover is required and will be 
carried out in a future publication. 

 

Instances NV Best Avg NV Best Avg NV Best Avg NV Best Avg
C101 10 827.3 847.14 10 827.3 876.58 10 827.3 832.63 10 827.3 845.18
C102 10 827.3 872.03 10 827.3 896.15 10 827.3 866.24 10 827.3 869.44
C103 10 826.3 885.58 10 827.3 896.47 10 826.3 900.49 10 826.3 909.42
C104 10 850.9 914.31 10 860.7 939.07 10 854.8 916.82 10 834.7 941.96
R101 21 1677.8 1720.41 22 1695.1 1726.28 21 1683.4 1722.08 21 1666.3 1723.70
R102 18 1508.1 1541.52 19 1508.2 1550.24 18 1477.8 1538.89 19 1486.1 1536.98
R103 15 1244.2 1302.77 15 1267.3 1310.07 15 1244.0 1300.86 15 1267.7 1321.56
R104 12 1024.8 1078.02 12 1031.4 1077.61 12 1014.3 1071.29 13 1044.3 1085.37

RC101 18 1708.4 1777.86 18 1689.9 1768.54 18 1671.2 1769.07 18 1686.5 1770.28
RC102 16 1527.9 1597.78 15 1502.5 1589.36 16 1519.6 1612.80 16 1536.3 1611.79
RC103 13 1358.2 1407.81 13 1361.4 1407.01 13 1379.4 1423.77 13 1353.8 1415.48
RC104 12 1215.9 1273.92 12 1207.9 1267.29 12 1205.5 1273.40 11 1179.9 1278.32

Displacement = 0.5 Displacement = 0.25
Insertion = 0.25 Insertion = 0.5 Crossover = 0.25 Crossover = 0.5

 
Table 2: Best and average of the best solutions, found in each of the 30 runs.  



5. CONCLUSIONS AND FUTURE WORK 
 
In this paper we applied GVR, a new generic 
evolutionary approach to the VRPTW. The two-level 
representational scheme proved to be effective and 
robust on this variant of the problem as shown by the 
experimental results. Even though results can be 
considered as preliminary, GVR enabled us to discovery 
competitive solutions for a set of instances from 
well-known benchmarks.  

As future work we intend to test GVR on all 
instances of Solomon’s VRPTW benchmarks, in order to 
perform a thorough study of its robustness and 
effectiveness. A detailed analysis on the importance of 
genetic operators, with special relevance to crossover is 
fundamental, since its role is unclear. 
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