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Abstract

Genetic Vehicle Representation (GVR) is a
two level representational scheme, designed
to deal in an effective way with all the in-
formation needed by candidate solutions, for
the Vehicle Routing Problem (VRP). In this
paper, we present an analysis on the influ-
ence of two crossover operators in the algo-
rithm performance. A first study on diver-
sity is also presented, regarding the issues
of diversity measurement and possible rela-
tions to the algorithm performance. Results
show that for GVR one type of crossover is
more suited for solving VRP instances, and
both operators may not avoid the loss of di-
versity. Nevertheless, solutions discovered by
GVR are competitive and are the best ones
found by an evolutionary algorithm.

1 Introduction

The Vehicle Routing Problem (VRP) is a complex
combinatorial optimization problem, which can be
seen as a merge of two well-known problems: the Trav-
elling Salesperson (TSP) and the Bin Packing (BPP).
We can describe it as follows: given a fleet of vehicles
with uniform capacity, a common depot, and several
customer demands, find the set of routes with over-
all minimum route cost which service all the demands.
All the itineraries start and end at the depot, and they
must be designed in such a way that each customer is
served only once and just by one vehicle. The VRP
is NP-hard. The fact that VRP is both of theoreti-
cal and practical interest (e.g. distribution, which is a
major part of logistics and a substancial cost for many
companies), explains the amount of research made in
the past years.

Due to the nature of the problem it is not viable to
use exact methods for large instances of the VRP. For
instances with few nodes, the branch and bound tech-
nique is well suited and gives the best possible so-
lution [Kohl et al., 1999]. For larger instances most
approaches rely on heuristics that provide approx-
imate solutions [Cordeau et al., 2000]. Another al-
ternative is to apply optimization techniques, such
as tabu search [Duncan, 1995], simulated annealing
[Bent and Hentenryck, 2001], or ant colony optimiza-
tion [Gambardella et al., 1999].

Applications of evolutionary computation (EC) tech-
niques to the VRP are also used (see [Bräysy, 2001] for
a brief overview). Most researchers rely on hybrid ap-
proaches that combine the power of an EC algorithm
with the use of specific heuristics [Thangiah, 1995],
[Tan et al., 2001], [Jung and Moon, 2002], or use sim-
plified versions of the problem. One common sim-
plification is to pre-set the number of vehicles that
is going to be used in the solution [Zhu, 2000]. The
first attempts to apply standard EC algorithms to the
most generic version of VRP attained a limited success
[Duncan, 1995], [Machado et al., 2002].

Our previous research shows that the represen-
tation is a key issue in the application of EC
techniques to the VRP. This lead to the pro-
posal of a new representational scheme, Genetic
Vehicle Representation (GVR) [Pereira et al., 2002],
[Tavares et al., 2002], which deals efficiently with the
two levels of information that a candidate solution
must encode: clustering of the demands (i.e., alloca-
tion of all the demands to different vehicles) and spec-
ification of the delivery ordering for each one of the
routes. GVR also enables an easy adjustment of the
number of vehicles required. It is important to notice
that our methodology does not use any specific heuris-
tic. We performed a comprehensive set of experiments
with some well-known benchmarks and confirmed that
GVR enabled the discovery of several new best solu-



tions. The efficiency of the GVR approach was ver-
ified in a systematic study, where GVR performance
is compared with standard EC models, based on Path
Representation [Tavares et al., 2003].

In this paper, we present a study involving the anal-
ysis of the performance of two crossover operators de-
veloped for GVR. An important issue that is part of
this study is the maintenance of population diversity.
Diversity measurements are elaborated and tested to
access its relations with the operators used.

The paper has the following structure: in section 2
we give a formal definition of the problem variants
used. In section 3 we present a description of GVR and
the diversity measures used. Section 4 comprises the
presentation of the experimental results with a brief
analysis. Finally, in section 5, we draw some overall
conclusions.

2 The Vehicle Routing Problem

2.1 Capacitated Vehicle Routing Problem

The simplest version of the VRP is the Capacitated
Vehicle Routing Problem (CVRP), which can be for-
mally described in the following way: there is one cen-
tral depot 0, which uses k independent delivery vehi-
cles, with identical delivery capacity C, to service de-
mands di from n customers, i = 1,...,n. The vehicles
must accomplish the delivery with a minimum total
length cost, where the cost cij is the distance from
customer i to customer j, with i,j ∈ [1, n]. The dis-
tance between customers is symmetric, i.e., cij = cji

and also cii = 0. A solution for the CVRP would be a
partition {R1,...,Rq} of the n demands into k routes,
each route Rq satisfying

∑

p∈Rq

dq ≤ C. (1)

Associated with each partition is a permutation of the
demands belonging to it, specifying the delivery order
of the vehicles. In figure 1 we present an illustration
of the problem, viewed as a graph, where the nodes
represent the customers.

2.2 Vehicle Routing Problem with Time
Windows

An important extension to the problem is the Vehi-
cle Routing Problem with Time Windows (VRPTW)
which adds several time constraints to the previous
definition. Associated with each customer i there is a
time window [ei, li] during which it has to be served.

Figure 1: Vehicle Routing Problem.

Figure 2: An example of a GVR chromossome.

This way, a vehicle must arrive to i no sooner than
ei (the earliest arrival time) and no later than li (the
latest arrival time). Additionally, there is a service
time fi for each customer and a limit T, defining the
maximum travel time permitted for any vehicle. The
travel time from customer i to customer j is tij = cij .

Like in the CVRP, a candidate solution would be a
partition R1,...,Rk of the n demands into k routes,
each route Rq satisfying both the delivery capacity and
the time constraints.

3 Evolutionary Model

3.1 Genetic Vehicle Representation

A candidate solution to an instance of the CVRP or
VRPTW must specify the number of vehicles, the par-
tition of the demands through all these vehicles and
also the delivery order for each route. In GVR, the ge-
netic material of an individual contains several routes,
each of them is composed by an ordered subset of the
customers. All demands belonging to the problem be-
ing solved must be present in one of the routes. As an
example, the chromosome from figure 2 represents the
solution presented in figure 1.

The information encoded in the chromosome must be
interpreted in such a way that it yields a legal solu-
tion. When a vehicle exceeds its capacity, the accord-
ing route is split in several ones. An example illus-
trates this adjustment: assume that the original route



Figure 3: Example of the generic crossover.

{a, b, c, d, e, f} causes the vehicle to exceed its capac-
ity at node d. When this situation occurs, the itinerary
is divided in two sections: {a, b, c} and {d, e, f}, and
a new vehicle is added to the solution. If necessary,
further divisions can be made in the second section.

For the VRPTW, another specific situation arises,
when time constraints are not satisfied. In this case,
three different types of violation may occur: early ar-
rival at a customer, late arrival at a customer or late
arrival at the depot. The first situation is easily solved,
since it’s only required that the vehicle waits until it
meets the earliest arrival time of the window. To re-
solve the other two cases, a new section is created on
the itinerary, providing a valid route by adding a new
vehicle to the solution. Notice that all these changes
only occur at the interpretation level and, therefore,
the information codified in the chromosome is not al-
tered.

3.2 Genetic Operators

The EC algorithm processes the individuals in a
straightforward way. Assuming that the population
size is N, in each generation, N parents are chosen
and N descendants are obtained through the applica-
tion of genetic operators to the elements of the selected
set.

Two categories of operators are considered: crossover
and mutation. They must be able to deal with the
two levels of the representation. Thus, they should
be capable to change the delivery order within a spe-
cific route and to modify the allocation of demands
to vehicles. In this last situation, they cannot only
switch customers from one route to another, but also
modify the number of vehicles belonging to a solution

(adding and removing routes). Another important re-
quirement is that the genetic operators must always
generate legal solutions.

The crossover operator used in our approach does not
promote a mutual exchange of genetic material be-
tween two parents. The crossover operates in the fol-
lowing way: when an individual from the selected set
is submitted to this kind of operation, it receives a
fragment of genetic material (more precisely, a route)
from another parent and inserts it as its first route.
After insertion, a repair process checks the original
routes from the receiving individual and removes all
customers that also appear in the inherited itinerary.
This ensures that the new chromosome is legal, since
there will be no repeated points. The donor is not
modified. The example from figure 3 illustrates how
crossover acts.

As an alternative to the generic crossover, we devel-
oped a more specific operator, sensitive to the geo-
graphical locations of customers. When accepting the
fragment {a1,...,an} from the parent, the receiving in-
dividual determines which customer c is geographi-
cally closer to a1. Then it inserts {a1,...,an} imme-
diately after c. The example from figure 4 helps to
illustrate how this kind of crossover acts.

Descendants resulting from crossover can be subject to
mutation. We consider four operators, based on pro-
posals usually applied to order based representations:

• Swap: selects two customers and swaps them.
Selected points can belong to the same or to dif-
ferent routes.

• Inversion: selects a sub-route and reverses the
visiting order of the customers belonging to it.

• Insertion: selects a customer and inserts it in
another place. The route where it is inserted is
selected randomly. It is possible to create a new
itinerary with this single customer, with probabil-
ity 1

2×V (V represents the number of vehicles of
the current solution).

• Displacement: selects a sub-route and inserts it
in another place. This operator can perform intra
or inter displacement. Just like in the previous
operator, it is also possible to create a new route
with the subsequence.

All genetic operators described have a specific proba-
bility of application to a single individual.



Figure 4: Example of the specific crossover.

3.3 Diversity Measures

An important factor on evolution is the diversity of
the population. Prior empirical analysis of the results
achieved by GVR has lead us to believe that this ap-
proach is prone to premature convergence. In the be-
ginning of the simulation, GVR quickly identifies some
local optimal solutions. Then there is a high evolu-
tionary pressure towards these areas and it is almost
impossible to escape premature convergence. This loss
of genetic diversity could partially explain the short-
comings of GVR in dealing with the VRPTW vari-
ant [Tavares et al., 2002]. In order to gather evidence
to give further support to these empirical conclusions,
several measures were developed, so that a better com-
prehension of the population diversity evolution could
be observed.

Since GVR isn’t a binary representation,
standard diversity measures cannot be used
[Louis and Rawlins, 1993]. In fact, for individu-
als in GVR representation it is difficult to determine
which factors are relevant to assess similarity. The
number of clusters for the demands, the sequence
order of the customers or just the fitness value?
[Burke et al., 2002a] and [Burke et al., 2002b] provide
a good overview and discussion on the topic of mea-
suring genetic diversity. Since some of these measures
are related to structural factors of the solution – and
thus the phenotype – while others are more concerned
with the genotype, we decided to develop a set of
measures concerning these issues:

• Routes Similarity: it gives us a weighted per-
centage of individuals that have the same number
of routes.It allows us to verify structural similar-
ity.

• Fitness Similarity: measures the percentage of
individuals whose fitness is within a 1% range of
the best individual.

• Lost Links: a link is established between a
pair of consecutive genes belonging to one of the
routes. A lost link is a link formed in a genera-
tion and lost in the next one. This measure is the
percentage of lost links.

4 Experimental Results

4.1 Settings

To evaluate our approach we performed a collection
of tests with instances from some well-known bench-
marks. For the CVRP we used 3 instances from
Augerat Set A (instances A54k7 and A80k10) and
Augerat Set B (instance B78k10). For each instance of
the datasets, the number of customers is given by the
first number on the instance name. The main difer-
ence between these sets of problems is their tightness
(the ratio between demand and capacity) and the lo-
cation of customers. For the VRPTW we used 4 in-
stances from Solomon’s benchmarks, from the R col-
lection, random customer distribution, usually consid-
ered the most difficult. All instances consist of 100 cus-
tomers plus the depot and are characterized by a short
scheduling horizon, allowing only a few customers per
route.

The settings of the EC algorithm are the following:
Number of generations: 50000; Population size: 200;
Tournament selection with tourney size: 5; Elitist
strategy; Crossover rate: {0.6, 0.75}; Mutation rates:
swap: 0.05; inversion: 0.15; insertion: 0.05; displace-
ment: 0.2. We performed an extended set of tests,
which are not shown in this paper due to lack of space,
with different probabilities of application for the ge-
netic operators. For every set of parameters we per-
formed 30 runs with the same initial conditions. All
initial populations were randomly generated. Statisti-
cal analysis was performed with a level of significance
α = 0.05.



Table 1: Summary of GVR results.

Generic CX Specific CX
CX = 0.6 CX = 0.75 CX = 0.6 CX = 0.75

Instances Previous Best Avg. Best Avg. Best Avg. Best Avg.
a54k7 1167.0 1178.0 1258.53 1197.0 1267.83 1167.0 1191.27 1167.0 1191.33
a80k10 1763.0 1868.0 1964.63 1892.0 1971.03 1785.0 1831.10 1789.0 1812.63
b78k10 1221.0 1283.0 1319.47 1274.0 1318.03 1221.0 1266.60 1224.0 1247.67
R101 1637.7 1675.8 1726.01 1681.6 1722.08 1684.0 1724.40 1775.0 1878.22
R102 1466.6 1512.6 1561.57 1504.4 1547.00 1502.5 1549.07 1580.3 1649.24
R103 1208.7 1252.3 1314.84 1259.0 1323.43 1246.6 1295.45 1297.2 1341.84
R104 982.0 1008.5 1088.30 1041.9 1089.70 1013.2 1070.39 1022.8 1074.25

4.2 Performance

In table 1, we present, for all instances, the results
achieved by GVR. The table shows the best solutions
found by the two types of crossover, as well as the aver-
ages of the best solution found in each of the 30 runs.
The Column “Previous” indicates the best solutions
known in the literature when our research started. A
brief perusal of the results reveals that GVR was able
to find, with both crossovers, good solutions. A closer
inspection of the best results column, indicates that
the specific crossover performed better, achieving not
only overall better solutions, but was also capable of
finding some of the previous best known solutions (in-
stances a54k7 and b78k10).

Examining the column with the averages, the values
for specific crossover are also consistently better than
the averages of the generic one. The distances between
the average of the best solutions to the best known
solution range between 2% and 14% with an average
of 6%, whilst for the generic crossover, these distances
are ranging between 5% and 12% with an average of
9%. These diferences are statistical significant for all
instances with only three exceptions: instances R101,
R102 (both with crossover probability of 0.6) and R104
(with crossover probability of 0.75).

By looking into table 2, it can also be confirmed
that statistical significant differences exist between the
application of crossover probabilities. For the spe-
cific crossover these differences are all significant with
the exception of instances a54k7 and R104. For the
generic crossover, the opposite situation occurs : only
instances b78k10 and R102 have significant differences.
This analysis strengthens the observations found in
table 1, where a lower crossover probability has per-
formed better than a higher one. The best results were
all discovered with a probability of 0.6, regardless of
the type of operator chosen. This brief analysis shows
that the usage of a different crossover, even if similar in

concept, introduces differences on the results attained
by the evolutionary approach to the VRP.

Table 2: Summary of the statistical analysis (α = 0.05,
G = Generic CX, S = Specific CX, 1 means there is a
statistical significance diference).

0.6 0.75 G S
Instances G/S G/S 0.6/0.75 0.6/0.75

a54k7 1 1 0 0
a80k10 1 1 0 1
b78k10 1 1 1 1
R101 0 1 0 1
R102 0 1 1 1
R103 1 1 0 1
R104 1 0 0 0

4.3 Diversity

So far we have only observed the practical effects of
both crossover operators in the process of finding good
candidate solutions. Our previous work shows that
the GVR approach is well-suited in solving the CVRP,
consistently finding the best known solutions to several
instances of the problem, and even discovering new
lower bounds. However, when applying GVR to the
time windows variant, there was a significant decrease
of performance.

The evolution of the fitness of the best individual
seems to indicate that it reaches local optima very fast
and is not able to escape it. The reasons for this kind
of behavior are not clear, but empirical data has shown
that it might be related to the diversity of the popula-
tion. In this regard, crossover operators may have an
influence in maintaining or promoting diversity among
the populations.

During the evolution process, we collected data that
enable us to measure the diversity of the populations.



Table 3: Generic CX diversity measures.

CX = 0.6 CX = 0.75
Instances Route Fitness Links Route Fitness Links

a54k7 62.90 56.73 82.40 62.45 57.46 82.27
a80k10 61.30 59.11 84.88 61.97 60.33 84.99
b78k10 61.82 56.70 83.86 62.28 57.82 85.13
R101 44.25 62.60 67.31 44.57 62.64 69.42
R102 45.84 60.86 77.71 43.88 60.43 73.96
R103 47.05 58.81 80.09 47.40 59.41 79.70
R104 47.08 53.83 80.77 49.18 55.70 82.50

Table 4: Specific CX diversity measures.

CX = 0.6 CX = 0.75
Instances Route Fitness Links Route Fitness Links

a54k7 46.26 26.30 74.47 46.81 22.83 73.15
a80k10 46.08 29.62 75.47 46.83 29.23 76.09
b78k10 47.14 29.55 77.62 46.65 27.42 75.10
R101 8.75 33.64 69.42 7.32 36.48 70.27
R102 8.73 29.18 73.57 7.12 30.43 69.14
R103 9.73 26.50 73.37 7.04 23.71 68.65
R104 11.82 24.77 73.76 8.90 21.88 73.12

In table 3 and table 4, we show the summary of the
three different measures used. As we can observe in
the columns “Routes” in table 3, the structural sim-
ilarity of the individuals is extremely high. For both
versions of the problem, approximately half of the pop-
ulation has the same number of routes. In fact, for the
CVRP these values are always above 60%, while for the
VRPTW, they range between 44% and 50%. Fitness
similarity shows a similar behavior: for all instances,
regardless of probability, fitness similarity possesses
values between 53% and 62%. These values indicate
a high loss of population diversity. This lack of diver-
sity indicates, that the generic crossover is unable to
explore the search space, producing new genetic ma-
terial with good quality. This can be explained by the
third diversity measure. The percentage of new links
lost from the previous generation is very high, around
80%. This loss is possibly a result of crossover break-
ing good links, making it more difficult to individuals
with lower fitness to transmit quality links.

For the specific crossover, the situation is not entirely
different when considering the premature convergence
of the algorithm, but the magnitude of values for the
diversity measures is different. From table 4 it is
possible to observe that the loss of links follows the
same previously described pattern. The percentage is
a bit lower, around 70% in average, but still a high
value. But when we take a closer examination, we can

verify that route similarity is lower, specially for the
VRPTW instances. For this variant, the number of
individuals with equal number of routes is below 10%,
while for CVRP, it is higher (45%). The fitness mea-
sure has an average of 30% for all instances. These val-
ues allow to verify the previous arguments in favor of
the specific crossover against generic crossover regard-
ing the algorithm performance. Nevertheless, even
with lower structural similarity, specific crossover is
not able to discover solutions with a significant higher
quality than those produced by generic crossover and
is also unable to keep a lower destructive effect on
individuals. Results attained with both crossover op-
erators show that GVR is an effective representation
for this problem. Nevertheless, a better understanding
of its operators is still required. Moreover, the design
of a new crossover operator may be necessary in order
to achieve the best known solutions for the VRPTW
problem variant.

5 Conclusion

In this paper we presented a study which com-
pares the performance of two crossover operators de-
signed for GVR. Results show that the choice of
operators is important when using GVR for the
CVRP or time windows variant. In CVRP, specific
crossover is an efficient operator, able to discover the



best known solutions and, finding new lower bounds
[Pereira et al., 2002]. In what concerns the VRPTW,
both operators are unable to achieve the previous per-
formance [Tavares et al., 2002].

We propose several diversity measures for individu-
als in GVR representation. These measures try to as-
sess genotopic and phenotopic similarity factors. The
analysis of the experimental results indicates that,
crossover operators capable of preserving diversity and
linkage in GVR individuals, might produce better re-
sults in the VRPTW variant. This is possibly due to
the fact, that a less destructive operator may be more
well-suited, because of the additional constraints.

Adopting a good representational scheme and genetic
operators is essential. The choice of a representation
that is sensitive to the structure of the solutions pro-
vides an important advantage. For the VRP this is an
important and essential factor [Tavares et al., 2003].
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