Probabilistic Evolution and the Busy Beaver Problem

Roberto Santana
Alberto Ochoa-Rodriguez
Marta Soto
Center of Mathematics
and Theoretical Physics
ICIMAF. CP 10400. Habana. Cuba
{rsantana,ochoa,mrosa}@Qcidet.icmf.inf.cu

Abstract

We discuss the use of probabilistic evolution
in an important class of problems based on
Turing Machines, namely the famous Busy
Beaver. Despite the bad properties of this
problem for a probabilistic solution: non-
binary representation and variable associa-
tions with a strongly connected graph-like
structure, our algorithm seems to outper-
form previous evolutionary computation ap-
proaches.

1 INTRODUCTION

In this paper we use Probabilistic Evolution, which
means Evolutionary Computation plus the use of prob-
ability distributions, to approach the Busy Beaver
problem [1]. Our contribution is a preliminary step
toward a better understanding of the adequacy of Es-
timation Distribution Algorithms (EDA) [2], [3], [4] for
problems with a graph like structure and non-binary
representation. EDA proved to be very successful for
many binary functions with tree-like structures, where
Genetic Algorithms faced a lot of troubles. We be-
lieve that it is very important to investigate non-binary
problems with graph-like structures within this prob-
abilistic framework.

We present an evolutionary algorithm that uses prob-
ability distributions for the solution of a problem with
a non-binary representation. We analyze some diffi-
culties that arise in the design of EDA for this ap-
plication domain: the Busy Beaver (BB) problem [1].
The problem can be defined as follows, suppose a Tur-
ing Machine (TM) with a two way infinite tape and
a tape alphabet = {blank, 1}, the goal is to find the
N-state halting TM that writes the maximum number
of 1s when starting on a blank tape. This number,

Francisco B. Pereira
Penousal Machado
CISUC
{xico,machado}@dei.uc.pt

Ernesto Costa
Amilcar Cardoso
Centre for Informatics and Systems
University of Coimbra. CISUC.
Polo II - Pinhal de Marrocos
3030 Coimbra, Portugal
{ernesto,amilcar }@Qdei.uc.pt

which is function of the number of states, is denoted
by 3X(N). A machine that produces 3X(N) non-blank
cells is called a BB.

Although simple in their representation, Turing ma-
chines can exhibit a very complex behavior. These
characteristics make them a suitable application do-
main for the study of the performance of EA’s in the
optimization of difficult fitness landscapes. BB is an
interesting problem for the identification of those fea-
tures that can be considered as dominion of difficulty
for EAs, and for the conception of more efficient alter-
natives to cope with these challenges.

Some of the features that make the BB problem chal-
lenging for evolutionary optimization are:

1. graph-like structure of the associations among the
variables that encode the TMs.

2. non-binary representation.

3. the existence of possible interactions among any
subset of variables during the simulation.

4. expensive simulation of the TM.

In this contribution we pay attention to the first 3 fea-
tures, and leave the analysis of the cost of simulation
to a forthcoming paper.

The paper is organized as follows: In section 2 we
shortly introduce the class of evolutionary algorithms
that use distributions. In section 3, the BB prob-
lem is formally presented. Previous evolutionary ap-
proaches to the BB are reviewed in section 4. Section
5 presents our current probabilistic approach to the
problem. An evolutionary algorithm designed follow-
ing the developed ideas is presented in section 6 and
afterwards some seeding mechanisms that improve its
performance are discussed. Finally section 7 presents
our experimental results.

Table 1: EDA.

step 0: | t « 1.
Generate N points randomly.

step 1: | Get a selected set S with M points.
(M < N). Estimate p°(x,t).

step 2: | Generate N points according to:
Pt +1) = p* (1)

step 3: | t < t + 1. If the termination criteria
are not met, goto to step 1.

2 ESTIMATION DISTRIBUTION
ALGORITHMS

Generally, in an EDA (see table 1) the estimation of
the probability distribution of the best individuals is
used to sample the points of the next generation, there
are no mutation nor crossover operators. The term
EDA could be also used to group evolutionary com-
putation methods (like GP, GA, etc.) that have in
common the use of distribution estimation to model
promising solutions and guide the further search. EDA
can be classified by considering the complexity of the
models used to capture the interdependencies between
the variables, simple models consider a lesser number
of dependencies among the variables.

Other classification can be achieved by grouping EDA
according to the way learning is done in the prob-
ability graphical model used [7]. A first class cov-
ers the algorithms that make a parametric learning
of the probabilities, the second is composed by those
algorithms where a structural learning of the model
is done. Research on EDA has been mainly focused
on binary string representation. Binary problems al-
low the application of simple and less costly statistical
techniques. In [8] is presented a probabilistic evolu-
tionary algorithm not based on binary representation.

The computational cost of an EDA implementation
is determined by the memory needed to store, and
the time spent to update and sample the probabilistic
model. This time is often exponential in the maximum
number of variables that interact in the problem, or
which is the same, the size of the building blocks.

3 PROBLEM DEFINITION
A deterministic TM can be specified by a sextuple

(Q7H7 F) 5787 f)

where [9]: Q is a finite set of states, IT and T' are
alphabets of input and tape symbols, ¢ is the transition

function, whereas {s, f} denotes the start and final
states.

The original definition of the BB problem by Rado
[1], considered deterministic 5-tuple TMs with N+1
states (N states and an anonymous halting state). In
each transition, the machine writes a symbol to the
tape and moves its head either left or right, i.e., the
transition function has the following format:

§5:QxI—-QxTI x{L,R}

where L denotes move left and R move right. A com-
mon variation consists in considering 4-tuple TMs,
where the transition function has the following format:

6:QxT —Qx{TU{L,R}}

i.e., a 4-tuple TM either writes a new symbol on the
tape or moves its head before entering the new state.

The productivity of a deterministic 5-tuple TM can be
defined as the number of ones present on the (initially
blank) tape when the machine halts. Machines that do
not halt have productivity zero. The function X (N) is
defined to be the maximum productivity that can be
achieved by a N-state TM. This TM is what is called
a Busy Beaver [1].

In the 4-tuple variant, productivity is usually defined
as the length of the sequence of ones produced by a
TM when started on a blank tape, and halting when
scanning the leftmost one of the string, with the rest
of the tape blank. Machines that do not halt or do not
halt in this configuration have productivity zero [10].

We will denote a BB with N states as BB(N), 4-tuple
and 5-tuple BB are respectively denoted as BB-4 and
BB-5.

4 PREVIOUS RESEARCH

Early works on Evolutionary Computation [5] consid-
ered Finite State machines as an appropriate research
domain for the design and validation of more sophis-
ticated evolutionary techniques. A TM is essentially
a finite-state sequential machine that has the ability
to communicate with an external store of information

[6].

Previous research on the application of Evolutionary
techniques to the BB problem includes the work of
Terry Jones regarding the use of GA for attacking the
BB-5 problem. Although in [11] it is stated that their
results do not necessary imply that every GA would be
worse than a hillclimber on this problem, they support
evidence that hillclimber is finding peaks (for the BB-
5, N=4) four and a half times as fast as the GA. Their

results are achieved using a character string represen-
tation with two point crossover, tournament selection
of size 2 and a mutation rate of 0.01.

Pereira et al. [12] propose a GA for the BB-4 problem.
This GA uses a string based, two point crossover, sim-
ple point mutation, probabilistic selection and elitism.
Additionally a hillclimbing procedure is incorporated.
Experiments for BB(6), BB(7) and BB(8) were con-
ducted. For BB(7) a new contender (productivity
equal 102) was found (previous contender had a pro-
ductivity of 37) GA proved to be an effective way for
minimizing the number of TMs inspected.

Alternative ways of codifying and interpreting the
TMs have been also tried [13]. There are several TMs
that exhibit the same behavior, these machines can be
considered equivalent and can be grouped in equiva-
lence classes. The most important among the known
equivalent classes for TMs is the Tree Normal Form
(TNF) [14]. Experimental results show [13] that TNF
representation provides important improvement over
the standard genetic codification for the Genetic Al-
gorithms used. Recent applications of GA to the BB-
4 problems [15] have shown that X(6) >25, and X(7)
>164.

These results were achieved using TNF representation,
a graph based crossover operator, single point muta-
tion and Tournament selection. A detailed description
of the GA used can be found in [15].

5 OUR APPROACH

5.1 REPRESENTATION

In our representation for the BB(N) each potential so-
lution is an integer vector with 4*N variables . Each
state in the TM is expressed in 4 variables which rep-
resent:

1. The new state to be visited when a blank is read.

2. The action performed when a blank is read (write
a blank, write a 1, move left, move right).

3. The new state to be visited when a 1 is read.

4. The action performed when a 1 is read.

Variables that represent transitions to the new state
can have N+1 different values (N states plus the halt-
ing state). The values for the remaining variables
range between 0 and 3, corresponding to the 4 actions
that can be performed.

Additionally, we set a constraint in our representation
to reduce the dimension of the space of solutions. We
will allow each individual to have only one transition
to the halting state, this transition can be allocated
only in variables that represent transitions when a 1
is read. Our operators guarantee that all machines
satisfy this constraint.

Figure 1 shows a population of 5 TMs, all have pro-
ductivity equal or higher than 17. Column 2i-1 stores
the action and transition done by the state i when a
blank is read. Column 2i represents similar informa-
tion but when a 1 is read in state i. The upper row in
the machines stores variables representing transitions
to the new states; the lower row, variables represent-
ing actions. Note that each individual has only one
transition to the final state (F).

5651|4224 [6|F|1]3
R|{R|T|R|1T|R|T|L|J1|1|R|R
21516 |2 |2|F|5]|6]3|4(4]1
1{L|R[R|R|1I|[R|L|R|O|1]|L
6| F |54 |16 ([1[3]|4]|5|3]2
1{1|1|R|R|R|1T|R|[1T|L|R|R
S|IF|1]6|6[4 |52 25|13
111 LIL{L|{1T|JL|{1|R|L|L
S|IF|4[5]|4]2[6|4]6]6|1]3
11T R|R|1T|R|T1T|L|1T|R|1|[R

Figure 1: Population of five possible solutions with a
high fitness evaluation. The Blank symbol is repre-
sented by 0.

This representation faces what has been called per-
mutation or competing convention problem [16]. It is
caused by the many-to-one mapping from the repre-
sentation to the actual TM, since two TMs that order
their states differently in their chromosomes will still
have equivalent functionally.

The dilemma existing between the computational cost
and the expressiveness of the probability model is evi-
dent in the BB problem. In principle, during the sim-
ulation of the TM, there can arise interactions among
any subset of the variables. This fact indicates that
the building blocks for the BB problem are not short,
implying that a probability model able to express its
structure has to cope with higher order interactions
among the variables.

Unfortunately, the computational cost of an EDA (sec-
tion 2) is often exponential in the size of the build-
ing blocks. For example, the simplest probabilistic
model for the BB(N), which is based on the assump-

Table 2: Simplified Bivariate model

Cf. | Fq. | Cf. | Fq. | Cf. | Fq. | Cf. | Fq.
00 |0 10 |0 LO |0 RO |1
01 {0 11 |0 L1 |0 R1 | O
OL | 0 1L | 7 LL | 2 RL |1
OR | O 1R | 8 LR | O RR | 6

tion that the states of the machine are independent,
requires a table with N - [4 - (N + 1)]? entries to be
stored. Moreover, if we consider a model that stores
all first order interactions we obtain an amount of
N - %[4 - (N + 1)]*. The corresponding values of
this two models for the BB(6) are 4704 and 9219840
respectively.

There is a strong connection between the representa-
tion and the choice of the probabilistic model. How-
ever, for a given representation several models can be
chosen. In the next subsection we explore one of the
possible models.

5.2 THE ACTION MODEL

It is clear that the 4*N variables that represent a TM
can interact during the simulation. Nevertheless there
are differences in the role played by the set of vari-
ables representing states and variables that represent
actions. BBs with a high fitness are characterized by
a highly interconnected structure (determined in our
coding by variables that represent states). On the
other hand BBs exhibit a non uniform distribution of
the values for variables representing actions.

The approach introduced in this paper considers a
model that uses probabilistic information of variables
representing actions. Thus, just 2*N variables are
considered in the probabilistic model. Other kind of
dependencies that arise during the evolution, are re-
spected in some way by our sampling algorithm that
applies by partially modifying the existing solutions.

Our probabilistic model groups variables representing
actions, trying to capture the dependencies existing
between them in the selected set. Variables can be
grouped in different ways, for example we can define
a bivariate model by keeping the N tables of bivari-
ate marginals corresponding to the pair of actions in
each state. We find this choice useful in a representa-
tion for which the order of states is relevant, however
in our case the permutation problem determines that
equivalent solutions can have a different ordering of
their states. We make a simplification of the previous
model by having just one table of 16 entries that keeps
the frequencies of all possible states’ actions regardless

their position in the chromosome.

Table 2 shows the simplified bivariate model corre-
sponding to machines in figure 1. A table with 16
entries is enough to describe the model. In the table
we present the frequencies (Fq.) for each possible con-
figuration (Cf.) of the pairs of actions variables. Each
pair is composed by actions that belong to the same
state. Of the 12 variables in the lowest row of each
machine, only 10 are considered for the probabilistic
model (the state that includes transitions to the halt-
ing state is not computed).

It is evident that the way states are connected in the
TM is not independent of the actions taken, and that
the simplification implicit in the model can affect the
quality of the search. One strong argument supporting
the simplification is the fact that the probabilistic rep-
resentation of the topology of the TM is hard, due to
the permutation problem. Besides, these variables are
precisely the ones with a highest number of configura-
tions, by excluding them from the model we drastically
reduce the memory requirements.

Evidence from a statistical analysis of good solutions
supports the idea that the use of probabilistic infor-
mation of the transition values can bias the search to
promising regions of the solution space. By measur-
ing the frequency of the 4 different transitions in good
solutions it is clear that exists an unequal distribu-
tion of these values. This can be expected from the
fact that BBs must have for example more states that
write ones that those writing blanks. The bivariate
model can store these differences in the frequencies of
single transitions. Additionally, it can capture the de-
pendencies between the actions the TMs do when they
read a blank and the action done by the states when
reading a 1.

Two extensions of the action model that consider re-
spectively less and more interactions were tested, but
best results were achieved with the bivariate model.
In this paper we will present only results with the bi-
variate action model. The other two variants were:

Univariate Model - The state transitions are also con-
sidered but variables representing transitions where a
blank is read are considered independently of variables
representing transitions where a 1 is read. Instead of
tables of 16 entries we keep the whole model in two
tables, each of 4 entries.

Trivariate Model - More dependencies are represented.
We measure the frequency of subsets of 3 variables.
For each state, the two variables that represent actions
when respectively reading a blank and a 1 are consid-
ered in separation. Each action in the state is linked to

Table 3: POSATM.

step 0: | t « 1.
Generate T points randomly or using
a seeding procedure.

step 1: | Get a selected set S with M points.

(M < T). Estimate the model
Sy (Z,1).

step 2: | Generate T points making a partial
modification of the selected points
using p3, to update V, variables.

step 3: | mutate variables

step 4: | t < t + 1. If the termination criteria

are not met, goto to step 1.

the actions of the new state their corresponding transi-
tion variable points out. Two tables of 64 entries each
keep the statistics of the population.

6 THE POSATM

Having in mind the ideas presented above, we have
developed a simple algorithm (see table 3). We have
called it Probabilistic Oriented Search Algorithm for
Turing Machines (POSATM). Besides the use of a
probabilistic model that does not consider all the vari-
ables (note that we use ¥ instead of z), the POSATM
has other characteristic that distinguishes it from clas-
sical EDA.

Perhaps the most important difference is the way new
solutions are generated (step 2). This process should
guarantee a proper mixing of building blocks. How-
ever, according to our experience, it is very difficult
to form good solutions by just joining sub-solutions of
shorter size. This situation seems to remain the same
for problems defined on TMs, as far as they are strong
connected. Our alternative to this situation is to mod-
ify the current candidate using the probabilistic distri-
bution. For the bivariate model we select V variables
that represent transitions used during the simulations
and alter them. Modification is done using the table
with the bivariate marginal distributions. Let a; be
the value of variable x; to be modified, a; is changed
to ag with probability p (x; = as | #2 = ¢) where x4 is
the other variable that defines the states configuration
and c is its current value. This process is repeated for
the V variables.

Figure 2 shows an example of how step 2 of POSATM
is applied. Figure 2a) presents the actions variables of
the first TM in figure 1. The last variable is selected
to be modified, its current value is a; = R. Following
the bivariate model represented in Table 2 only two

changes are possible, these are shown in figure 2b) and
2¢). In Table 2 it can be seen that these two changes
have the same probability.

A)[RIR[IJR|I[R[IJL|I[I|R|R]

DIRIRJI[R[IIR|IJL]LIJI[R]O]

O RIRJI[R]IJR|IJL]IJI[R]L]

Figure 2: An initial solution and two alternative out-
puts for the application of step 2 of POSATM.

Best results were achieved with the parameter V set
to 1. In this way we get a new point that does not
radically differ from the previous one, as is the case in
Hillclimbing algorithms. Nevertheless, the change is
determined by the probabilistic model of the selected
solutions. The number of variables that are changed
is determined by the parameter V.

As far as the variables representing the topology are
not considered for the model, they do not change in
this step of the algorithm.

In opposition to classical EDA a mutation step is in-
troduced in POSATM that allows to change those
variables representing the connections to new states.
Also transitions can be modified. Although in the
case of transitions variables the mutation effect can
be achieved by perturbing the probabilistic model, we
separate these two steps to make easier the tuning of
the algorithm.

In terms of the building blocks theory the above modi-
fications can be seen as alternatives to cope with prob-
lems where there are interactions between many vari-
ables. We avoid the disruption of higher order building
blocks by partially modifying the solutions and achieve
the supply of new building blocks by direct infusion of
them through the mutation step.

Another important problem that has been addressed in
POSATM is the initial supply of building blocks. Indi-
viduals of the initial population are not randomly gen-
erated, instead heuristic methods that produce better
although suboptimal individuals are applied to create
them. Seeding has shown to be useful in GA for prob-
lems defined on graphs [17]. More recently seeding has
been used in the framework of EDA by generating the
initial population using information about the problem
represented in a probabilistic scheme.

Several seeding mechanisms are possible. We have ex-
plored two of them. In the first approach we filled
transition values from an initial empirical distribution.
The topology of the TMs is built in two ways: ran-
domly, and trying to connect all the states through

a cycle. In the second approach we seed subsolutions
found from the analysis of the set of TMs that stop for
BB(3) problem using a TNF representation. Although
in all the experiments with POSATM reported in the
next section we seed the initial population, we let the
discussion on this issue to a forthcoming paper.

7 EXPERIMENTS

In our experiments we will use POSATM to seek for
the 4-tuple 6 state BB. Due to the existence of the
Halting Problem it is necessary to set a limit for the
number of transitions. Machines that do not halt be-
fore this limit are considered non-halting TMs.

An initial set of experiments was oriented to compare
the behavior of our approach with the results presented
in [15] obtained with a genetic algorithm with two
point and graph based crossover (GBC). The main
idea of GBC is the exchange of subgraphs between
the individuals. Behind its conception is the assump-
tion that subgraphs or submachines are the building
blocks of the problem. In the 6 state BB, best results
obtained with GBC [15] have been achieved using a
maximum graph crossover size (maximum number of
exchanged subgraphs) equal to 3.

The first experiments concern how efficient is the
search for the 4-tuple BB(6). We set the maximum
number of allowed transitions to 250. This was the
same limit imposed in [15] and was motivated by the
fact that the previously best known candidate wrote
21 1s in 125 transitions.

Both algorithms have as a common set of parameters
the following:

e Maximum number of Evaluations = 40 000 000;

e Population Size = {100, 500};

Generation Gap = 1;

Single Point mutation rate = {1%, 5%, 10%};

Elitism strategy + Tournament Selection. Tour-
nament size = {2, 5}.

For the GA, two point crossover was restricted to gene
boundaries and the maximum graph crossover size was
set to 3. The parameter V in the POSATM was set to
1, and in all cases POSATM was run using seeding of
the initial generation.

Despite its simplicity, our bivariate model has been
shown to be superior to both, one point crossover and

Table 4: Results for the 4-tuple BB(6). Number of
runs in which the maximum was reached. Blanks
cells indicates that none of the 30 runs reached the
maximum. N- popsize; T- tournament size; AO- GA
with 2 point crossover; A1-Graph based crossover; A2-
POSATM. Mutation is given in %.

N | T|1% | 5% | 10% | Total

AO || 100 | 2

AO || 100 | 5 1 1
A0 || 500 | 2

A0 || 500 | 5

Al || 100 | 2 1 1
Al || 100 | 5 1 1 2
Al || 500 | 2 1 1
A1 || 500 | 5 2 2
A2 || 100 | 2 4 5 0 9
A2 || 100 | 5 2 6 5 13
A2 || 500 | 2 1 2 1 4
A2] 500 | 5 0 14 2 16

graph based crossover GAs for the experiments con-
ducted. The results are impressive: POSATM was
able to find 42 times the maximum value, whereas the
best GA only 6 times (see table 4). On the other hand,
the average productivity of the best individual in the
last generation was clearly superior for the probabilis-
tic algorithm (see table 5).

Results confirm that the bivariate model is able to cap-
ture relevant information about variables represent-
ing actions, and that POSAMT efficiently incorporates
this information to the search for solutions. Here, it
is worth to remember that the cost of evaluation of
POSATM is not high. It simply computes one bivari-
ate marginal, and for each member of the selected set,
updates some variables (usually 1) using the computed
probabilities.

Another experiment (table6) was oriented to explore
the influence of probabilistic information in the behav-
ior of the algorithm. We run a POSATM (EA1) where
probabilistic information is not used. In the step 2 of
the algorithm the new value is chosen randomly using
a uniform distribution. EA2 is the same algorithm (it
has the same parameters), but using the probabilistic
information.

Finally, we investigate the role of parameter V in the
behavior of the algorithm. EA3 shares all the para-
meters with EA2 except parameter V that has been
set to 3, it means that in the step 2 of the algorithm
3 variables modify their values. Results deteriorate,
and this fact can be explained by the magnitude of
the disruptive effect.

Table 5: Results for the 4-tuple BB(6). Productivity
of the best individual in the final population. Each
experiment was repeated 30 times. The results are
averaged. N- popsize; T- tournament size; A0- GA
with 2 point crossover; A1-Graph based crossover; A2-
POSATM. Mutation is given in %.

[[~ [T] % e]

AO 100 | 2| 85 | 98 | 93 | 9.2
AO || 100 |5 | 74 | 14.3 | 10.6 | 10.8
A0 || 500 | 2 | 86 | 82 | 8.1 8.3
AO | 500 | 5| 79 | 12.6 | 9.0 | 9.8
A1 || 100 | 2 | 146 | 121 | 9.9 | 12.2
A1] 100 | 5 | 104 | 16.1 | 12.2 | 12.9
Al | 500 [2 | 13.7]| 10.5 | 8.6 | 10.9
A1) 500 |5 | 9.1 |16.9 | 10.8 | 12.3
A2 || 100 | 2 | 16.7 | 15.8 | 14.1 | 15.5
A2 || 100 | 5 | 13.7 | 19.2 | 16.8 | 16.8
A2 || 500 | 2 | 13.3 | 15.4 | 13.7 | 13.7
A2 || 500 | 5 | 148 [199 | 174 | 174
Table 6: Best productivity reached in a num-

ber of functions evaluations for different variants of
POSATM. NE- number of evaluations multiplied by
10~7. Results averaged in 30 runs.

[NE [025 o5] 1 [15]25] 3 |
EA1 | 12.25 | 14.4 | 16.2 | 16.3 | 164 | 16.5
EA2 | 17.2 18 19 | 19.4 | 19.8 | 20
EA3 | 10.2 12 [12,5130 | 135 | 14

8 CONCLUSIONS

We recall the main goal of the paper: to study the ef-
fectiveness of EDA-like approaches to problems that
are based in a non-binary representation, and have
graph-like structures. We consider the obtained results
encouraging. First of all, the experiments have shown
that at least under certain conditions an EDA-like ap-
proach seems to outperform recombinative methods
in the optimization of problems with graph-like struc-
tures. This result is highlighted by the fact that the
cost of evaluation of POSATM is not high with respect
to the previous GA approaches.

Besides, we have been able to show that it is possible to
construct useful (from the optimization point of view)
partial probabilistic models based only on the depen-
dencies displayed for a subset of the variables. This
is of course an important issue because many prob-
lems could benefit from a preliminary variable selec-
tion step.

We would like to point out that we consider the model

studied here as preliminary and that we are confident
that much better results can be achieved following this
line of thinking. We plan to develop new and better
EDA-like approaches to this class of problems.

Finally, it is worth noting, that although we have ex-
plored here a concrete problem, we believe that our re-
sults have a more general scope, they could be applied
also to other Turing or Finite State Machine problems.

References

[1] Rado, T. (1962) On non-computable functions,
The Bell System Technical Journal, vol. 41, no.
3, pp-877- 884.

[2] Miihlenbein, H., Paass G. (1996). From recombi-
nation of genes to the estimation of distributions
{I}. Binary parameters. pp 178-187.

[3] Miihlenbein, H., Mahnig, T., Ochoa A. (1999).
Schemata, Distributions and Graphical Models in

Evolutionary Optimization, Journal of Heuristics
Vol 5, No. 2. pp. 215-247.

[4] Soto M., Ochoa A., Acid S., De Campos L. (1999).
Introducing the Polytree Approximation of Dis-
tribution Algorithm. Proceedings of the II Second
Symposium on Artificial Intelligence CIMAF99.
pp- 360-367.

[5] Fogel, L. J., Owens J. A., Walsh M. J. Artifi-
cial Intelligence through simulated evolution. John

Wiley & Sons Publishers, 1967.

[6] Booth, T. L. Sequential machines and automata
theory (1967) John Wiley & Sons Publishers.

[7] Ochoa A., Soto M., Santana R., Madera J. C.,
Jorge N. (1999). The Factorized Distribution Al-
gorithm and The Junction Tree: A Learning Per-

spective. Proceedings of the II Second Symposium
on Artificial Intelligence CIMAF99. pp. 368-377.

[8] Salustowicz, R. , Schmidhuber J. (1997). Prob-
abilistic Incremental Program Evolution. Evolu-
tionary Computation 5(2): pp. 123-141.

[9] Wood, D. (1987). Theory of Computation, Harper
and Row, Publishers.

[10] Boolos, G., and Jeffrey, R. (1995). Computability
and Logic, Cambridge University Press.

[11] Jones, T., Rawlins, G. (1993) Reverse HillClimb-
ing, Genetic Algorithms and the Busy Beaver
Problem, In Forrest, S. (Ed.), Genetic Algo-
rithms: Proceedings of the Fifth International

[13]

[16]

[17]

Conference (ICGA-93). San Mateo, CA: Morgan
Kaufman, pp 70-75.

Pereira, F. B., Machado, P., Costa E. and Car-
doso, A. (1999). Busy Beaver: An Evolutionary
Approach. Proceedings of the Second Symposium

on Artificial Intelligence, Havana, Cuba. pp. 212-
216.

Machado, P., Pereira, F. B., Cardoso, A. and
Costa E. (1999). Busy Beaver: The Influence
of Representation. Proceedings of the 2nd Euro-
pean Workshop on Genetic Programming, Gote-
borg, Sweden. pp.

Marxen, H. Buntrock, J. (1990). Attacking Busy
Beaver 5, Bulletin of the European Association for
Theoretical Computer Science, Vol 40.

Pereira, F. B., Machado, P., Costa E. and Car-
doso, A. (1999). Graph Based Crossover A
Case Study with the Busy Beaver Problem.
Banzhaf W., Daida J., Eiben A. E.; Garzon M.
H., Honavar V., Jakiela M. and Smith R. E.
(Eds.). Proceedings of the Genetic and Evolution-
ary Computation Conference GECCO 99. Volume
IT (pp. 1149-1155) Orlando F1. Morgan Kauffman
Publishers. San Francisco, California.

Hancock P. J. B. (1992) Genetic Algorithms and
permutation problems: a comparison of recombi-
nation operators for neural net structure specifi-
cation,” in Proceedings of the International Work-
shop on Combination of Genetic Algorithms and
Neural Networks (COGANN-92) (D. Whitley
and J. D. Schaffer, eds.) pp. 108-122, IEEE Com-
puter Society Press, Los Alamitos, CA.

Ponce de Leon, E.; Santana, R., Ochoa A. (1997).
A genetic algorithm for a Hamiltonian path prob-
lem: mutation - crossover interaction. In Proceed-
ings of the 13th ISPE/IEE International Confer-
ence on CAD/CAM, Robotics and Factories of
the Future. pp. 788-793.

