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Abstract. In this paper we analyse a new evolutionary approach to the vehicle 
routing problem. We present Genetic Vehicle Representation (GVR), a 
two-level representational scheme designed to deal in an effective way with all 
the information that candidate solutions must encode. Experimental results 
show that this method is both effective and robust, allowing the discovery of 
new best solutions for some well-known benchmarks. 

1 Introduction 

The Vehicle Routing Problem (VRP) is a complex combinatorial optimization 
problem, which can be seen as a merge of two well-known problems: the Traveling 
Salesperson (TSP) and the Bin Packing (BPP). It can be described as follows: given a 
fleet of vehicles with uniform capacity, a common depot, and several costumer 
demands (represented as a collection of geographical scattered points), find the set of 
routes with overall minimum route cost which service all the demands. All the 
itineraries start and end at the depot and they must be designed in such a way that 
each costumer is served only once and just by one vehicle. VRP is NP-hard, and 
therefore difficult to solve. Due to its theoretical and practical interest (it has 
numerous real world applications, given that distribution is a major part of logistics 
and a substantial cost for many companies), the VRP has received a great amount of 
attention since its proposal in the 1950’s.  

Due to the nature of the problem it is not viable to use exact methods for large 
instances of the VRP (for instances with few nodes, the branch and bound technique 
[1] is well suited and gives the best possible solution). Therefore, most approaches 
rely on heuristics that provide approximate solutions. Some specific methods have 
been developed to this problem (see, e. g., [2], [3]). Another option is to apply 
standard optimization techniques, such as tabu search [4], simulated annealing [4], 
[5], constraint programming [6], or ant colony optimization [7].  

In the past few years there has also been some applications of evolutionary 
computation (EC) techniques to the VRP (for a good overview on this topic, consult 
[8]). Most researchers rely on hybrid approaches that combine the power of an EC 
algorithm with the use of specific heuristics (see, e.g., [9], [10]) or use simplified 
versions of the problem. One common simplification is to pre-set the number of 



vehicles that is going to be used in the solution [11], [12]. When applied alone, the 
success of EC techniques has been limited. In the literature we found two reports [13], 
[14] about the application of non-specific EC methods to wide-ranging versions of 
this problem (i.e., versions that do not consider any kind of simplification). Both of 
them were tested in several well-known benchmarks and obtained results that are not 
very good, when compared to the best solutions found by other approaches. 

We consider that the representation adopted for individuals plays a crucial role in 
the performance of an EC algorithm. In this paper we propose a new representational 
scheme intended to deal efficiently with the two levels of information that a solution 
must encode: clustering of the demands (i.e., allocation of all the demands to different 
vehicles) and specification of the delivery ordering for each one of the routes. This 
representation also enables an easy adjustment of the number of vehicles required for 
one possible solution. The search process relies on standard EC techniques. We do not 
use specific heuristics, nor do we perform any kind of simplification to the problem.  

The paper has the following structure: in section 2 we give a formal definition of 
the VRP. Section 3 comprises a description of the proposed EC model. In section 4 
we present and analyze the most important experimental results achieved. Finally, in 
section 5, we draw some overall conclusions and suggest directions for future work. 

2 The Vehicle Routing Problem 

The most general version of the VRP is the Capacitated Vehicle Routing Problem 
(CVRP), which can be formally described in the following way: there is one central 
depot 0, which uses k independent delivery vehicles, with identical delivery capacity 
C, to service demands di from n customers, i = 1, …, n. The vehicles must accomplish 
the delivery with a minimum total length cost, where the cost cij is the distance from 
customer i to customer j, with i, j ∈ [1, n]. The distance between customers is 
symmetric, i.e., cij=cji and also cii=0. A solution for the CVRP would be a partition 
{R1,…,Rk} of the n demands into k routes, each route Rq satisfying Cd

qRp p ≤∑ ∈
. 

Associated with each Rq is a permutation of the demands belonging to it, specifying 
the delivery order of the vehicles. In figure 1 we present an illustration of the 
problem, viewed as a graph, where the nodes represent the customers. 
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Figure 1: Vehicle Routing Problem 



3 Experimental Model 

3.1 Genetic Vehicle Representation (GVR) 

A candidate solution to an instance of the CVRP must specify the number of vehicles 
required, the partition of the demands through all these vehicles and also the delivery 
order for each route. We adopted a representation where the genetic material of an 
individual contains several routes, each one of them composed by an ordered subset 
of the costumers. All demands belonging to the problem being solved must be present 
in one of the routes. As an example, the chromosome from figure 2 represents the 
solution presented in figure 1. 

Route 1 Route 3Route 23 10 56819472  
Figure 2: An example of a GVR chromosome. 

 
Some routes in the chromosome may cause a vehicle to exceed its capacity. When 

this happens, and to guarantee that the interpretation yields a valid solution, we split 
the route that exceeds capacity in several ones. An example illustrates this adjustment: 
assume that the original route {a, b, c, d, e, f} causes the vehicle to exceed its capacity 
at node d. When this situation occurs, the itinerary is divided in two sections: {a, b, c} 
and {d, e, f}, and a new vehicle is added to the solution. If necessary, further divisions 
can be made in the second section. Notice that these changes only occur at the 
interpretation level and, therefore, the information codified in the chromosome is not 
altered.  

3.2 Genetic Operators 

The EC algorithm processes the individuals in a straightforward way. Assuming that 
the population size is N, in each generation N parents are chosen and N descendants 
are obtained through the application of genetic operators to the elements of the 
selected set.  

We consider two categories of operators: crossover and mutation. They must be 
able to deal with the two levels of the representation. Thus, they should be capable to 
change the delivery order within a specific route and to modify the allocation of 
demands to vehicles. In this last situation, they can, not only switch costumers from 
one route to another, but also modify the number of vehicles belonging to a solution 
(adding and removing routes). Another important requirement is that the genetic 
operators must always generate legal solutions.  

The crossover operator used in our approach does not promote a mutual exchange 
of genetic material between two parents. Instead, when submitted to this kind of 
operation, one individual receives a fragment of genetic material (more precisely, a 
sub-route) from another parent and inserts it in one of its own routes. The donor is not 
modified. The geographical location of the costumers is used to determine the 
position where the sub-route is inserted. The following algorithm clarifies how 
crossover is applied to the individuals of the selected set: 

 



1. For each individual I1 from the selected set S Repeat:
1.1. Randomly select another individual I2 from S
1.2. From the genetic material of I2 randomly select a sub-route SR:

{a1, a2, …, an}
1.3. Find the costumer c, not belonging to SR, that is

geographically closer to a1
1.4. Insert SR in the genetic material of I1 in such a way that a1 is

placed immediately after c
1.5. From the original genetic material of I1 remove all duplicated

costumers that also appear on SR, obtaining a descendant D

The example from figure 3 helps to illustrate how crossover acts. It assumes that 
costumer 6 is the one that is geographically closer to costumer 9. This way, sub-route 
{9, 1, 10} is selected from I2 and is inserted in one the routes of I1, immediately after 
demand 6. The crossover operator makes possible that a fragment of information that 
is part of one individual can be incorporated into another solution. Given its 
behaviour, it cannot add new vehicles to the solution. On the other hand, it might 
remove routes.  
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Figure 3: Example of crossover. 
 
Descendants resulting from crossover can be subject to mutation. We consider 4 

operators, based on proposals usually applied to order-based representations: 
Swap: selects two costumers and swaps them. Selected points can belong to the 

same or to different routes. 
Inversion: selects a sub-route and reverses the visiting order of the costumers 

belonging to it. 
Insertion: selects a costumer and inserts it in another place. The route where it is 

inserted is selected randomly. It is possible to create a new itinerary with this single 
costumer. In all experiments reported in this paper, the probability of creating a new 
route is 1/(2×V), where V represents the number of vehicles of the current solution. 
This way, the probability of creating a new route is inversely proportional to the 
number of vehicles already used.  In figure 4 we show an example of this operation.  

Displacement: selects a sub-route and inserts it in another place. This operator can 
perform intra or inter displacement (whether the selected fragment is inserted in the 
same or in another route). Just like in the previous operator, it is also possible to 
create a new route with the subsequence (the probability of this occurrence is 
calculated in the same way).  



Swap and inversion do not change the number of routes of an individual. On the 
contrary, insertion and displacement have the ability to remove and to add vehicles to 
a solution. All genetic operators described have a specific probability of application. 
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Figure 4: Example of insertion mutation applied over costumer 9. 

4 Experimental Results 

To evaluate our approach we performed an extensive collection of tests with 12 
instances from some well-known benchmarks: Augerat Set A (instances A32k5, 
A54k7, A60k9, A69k9, A80k10), Augerat Set B (instances B57k7, B63k10, B78k10) 
and Christofides and Eilon (instances E76k7, E76k8, E76k10, E76k14) [15]. 

The settings of the EC algorithm are the following: Number of generations: 50000 
(except for the instance A32k5, where only 10000 generations were required); 
Population size: 200; Tournament selection with tourney size: 5; Elitist strategy; 
Crossover rate:  0.75; Mutation rates: swap: 0.05; inversion: {0.1, 0.15}; insertion: 
0.05; displacement: {0.15, 0.2}. For every set of parameters we performed 30 runs 
with the same initial conditions and with different random seeds. All initial 
populations were randomly generated according to the following algorithm: 
1. Build a set D with a random permutation of all the demands
2. While there are elements in D Repeat:

2.1. Create one new route with K demands. K is a random value
between 1 and the current number of elements from D

2.2. Remove first K elements from D and assign them to the new route 

Even though values for different parameters were set heuristically, we performed 
some additional tests and verified that, within a moderate range, there was no 
significant difference in the outcomes. 

In table 1 we present, for all instances, the best solution found with each one of the 
4 settings selected for this paper. Column “Nr. Points” identifies how many costumers 
each instance has and column “Previous Best” summarizes the cost of the best 
solutions that were known when we started our research. A brief perusal of the results 
reveals that our EC approach was able to consistently find good solutions to the 
different instances used in the experiments. In six of them (A60k9, A69k9, B57k7, 
B78k10, E76k10 and E76k14), it discovered new best solutions with lower cost than 
those ones previously known. It is interesting to notice that in instance B57k7 the new 
solution found requires 8 vehicles, whereas the previous best required just 7 vehicles 
but had a higher overall cost (1153 vs. 1140). Since in the CVRP, the cost is the 
single objective to minimize, the solution we found is clearly better. 

In table 2 we show, for the same settings, the average of best solutions found in 
each one of the 30 runs. Columns labelled “Dist.” present the distance (in percentage) 
between these averages and the best-known solutions for the instances. Information 



from this table reveals that the representation used is very reliable. Considering the 
results as a whole, the distance that we just mentioned never exceeds 3.5% (in many 
situations, this value is considerably smaller). A detailed consult to both tables also 
shows that a small variation in the mutation rates of displacement and inversion does 
not produce major divergences in the results achieved. Other settings not presented 
here due to lack of space follow the same trend, showing that this method is robust: it 
was both able to find new best solutions for some of the instances used in the tests and 
to guarantee, with high likelihood, that good solutions are found during the search 
process.  

Inversion = 0.1 Inversion = 0.15 
Instances 

Nr. 
Points 

Previous 
Best Disp = 0.15 Disp = 0.2 Disp = 0.15 Disp = 0.2 

A32k5 32 784 784 784 784 784 
A54k7 54 1167 1167 1167 1167 1167 
A60k9 60 1358 1358 1354 1358 1358 
A69k9 69 1167 1159 1165 1165 1165 
A80k10 80 1764 1764 1777 1781 1774 
B57k7 57 1153 1140 1140 1140 1140 
B63k10 63 1496 1507 1496 1516 1497 
B78k10 78 1266 1224 1223 1224 1221 
E76k7 76 682 683 687 691 683 
E76k8 76 735 737 738 738 740 
E76k10 76 832 837 841 830 837 
E76k14 76 1032 1028 1022 1031 1030 

Table 1: Best solutions found. Bold entries highlight new best solutions. 
 

Inversion = 0.1 Inversion = 0.15 
Disp = 0.15 Disp = 0.2 Disp = 0.15 Disp = 0.2 

Instances Avg. Dist. Avg. Dist. Avg. Dist. Avg. Dist. 
A32k5 793.4 1.2 790.9 0.9 796.5 1.6 786.3 0.3 
A54k7 1178.6 1.0 1186.2 1.6 1182.4 1.3 1188.9 1.9 
A60k9 1377.9 1.8 1377.9 1.8 1387.9 2.5 1372.4 1.4 
A69k9 1180.6 1.9 1182.0 2.0 1180.0 1.8 1179.9 1.8 
A80k10 1811.2 2.7 1813.8 2.9 1819.3 3.2 1811.0 2.7 
B57k7 1141.1 0.1 1141.2 0.1 1141.7 0.1 1140.7 0.1 
B63k10 1546.6 3.4 1544.0 3.2 1547.0 3.4 1545.7 3.3 
B78k10 1255.3 2.8 1254.6 2.7 1249.5 2.3 1252.3 2.6 
E76k7 705.9 3.5 704.8 3.3 703.4 3.1 705.0 3.4 
E76k8 755.9 2.8 755.3 2.8 756.2 2.9 755.4 2.8 
E76k10 851.7 2.5 856.6 3.2 852.6 2.7 854.0 2.9 
E76k14 1042.9 2.0 1043.5 2.1 1045.2 2.3 1043.0 2.1 

Table 2: Average of the best solutions found in each one of the 30 runs. 

Another important feature of the algorithm is that it shows a good ability to escape 
from premature convergence to regions containing local optima. An example helps to 
illustrate this situation: we selected the instance with a higher number of costumers 
(A80k10) and extended the search process to 100000 generations. Table 3 shows the 
effect of the duplication of the simulation time. With all setting, the average of the 
best solutions found in the 30 runs shows a slight decrease and, most important, it was 
possible to find a new best solution with cost 1763. This example confirms that search 



is not stagnated. Even though it is possible to discover good solutions in early stages 
of the search process, if the algorithm is given enough time to carry on its exploration, 
it might continue to improve the best individuals found. 

Inversion = 0.1 Inversion = 0.15 
Disp = 0.15 Disp = 0.2 Disp = 0.15 Disp = 0.2 Nr. of 

generations Best Avg. Best Avg. Best Avg. Best Avg. 
50000 1764 1811.2 1777 1813.8 1781 1819.3 1774 1811.0 

100000 1764 1800.8 1777 1808.6 1775 1813.4 1763 1805.8 
Table 3: Effect of the duplication of the simulation time with instance A80k10. The 

bold entry highlights a new best solution. 

In this paper we will not perform a detailed analysis about the relative importance 
of each one of the 5 genetic operators used. This study will be carried out in a future 
publication. We want nevertheless to illustrate how crossover is important to discover 
good solutions. To achieve this goal, we performed an additional set of experiments 
that did not use this operator. Displacement mutation was selected to replace 
crossover. In table 4 we present results of experiments performed with the following 
mutation rates: insertion and swap: 0.05; inversion: 0.15; displacement: {0.2, 0.5, 
0.75}. All other settings remain unchanged. To help comparison, column “With Cx.” 
shows the results achieved in the experiment performed with the following settings: 
crossover rate: 0.75; insertion and swap: 0.05; inversion: 0.15; displacement: 0.2. 
Even though this is just a preliminary study, a brief inspection of table 4 reveals that 
the transfer of genetic material between parents seems to be crucial to the success of 
the proposed approach. Solutions found by experiments that used crossover are 
consistently better than all other situations that just relied on mutation. If we maintain 
our focus on the results presented on table 4 and consider each one of the 12 instances 
separately, in most cases the average of the best solutions found by the experiment 
that used crossover is significantly lower (significance level: 0.05) than those ones 
achieved by experiments that just relied in mutation. The only exceptions occur in the 
3 experiments performed with instance B57k7 and in one of the experiments done 
with instance A57k7 (the one that used displacement rate = 0.5).  

Disp = 0.2 Disp = 0.5 Disp = 0.75 With Cx. 
Instances Best Avg. Best Avg. Best Avg. Best Avg. 

A32k5 784 816.3 784 809.1 784 813.5 784 786.3 
A54k7 1176 1219.3 1167 1199.4 1172 1209.4 1167 1188.9 
A60k9 1363 1422.5 1358 1414.2 1377 1415.7 1358 1372.4 
A69k9 1175 1213.7 1165 1199.6 1172 1209.7 1165 1179.9 
A80k10 1801 1783.5 1813 1868.5 1851 1897.0 1174 1811.0 
B57k7 1140 1142.7 1140 1141.2 1140 1142.2 1140 1140.7 
B63k10 1507 1569.9 1504 1558.4 1548 1571.1 1497 1545.7 
B78k10 1253 1289.6 1266 1289.4 1243 1281.4 1221 1252.3 
E76k7 692 718.4 692 713.3 692 722.5 683 705.0 
E76k8 747 778.3 748 768.7 738 767.4 740 755.4 
E76k10 861 881.1 846 866.1 846 869.0 837 854.0 
E76k14 1040 1062.9 1044 1064.3 1040 1064.4 1030 1043.0 

Table 4: Summary of the influence of crossover on the search process. 



5 Conclusions and Further Work 

In this paper we presented a new generic evolutionary approach to the VRP. The 
two-level representational scheme we proposed proved to be extremely effective to 
this problem, since we were able to find new best solutions for several instances 
belonging to well-known benchmarks. Moreover, results show that this method is 
both robust and scalable.   

Results presented here can be considered as preliminary. As future work we intend 
to perform a detailed study on the importance of the genetic operators presented in 
this paper and also extend our approach to other variants of the problem, such as the 
VRP with time windows.  
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