
Too Busy to Learn

Francisco B. Pereira♠,♣, Penousal Machado♠,♣, Ernesto Costa♣, Amílcar Cardoso♣,
Alberto Ochoa-Rodriguez♦, Roberto Santana♦, Marta Soto♦

♠Instituto Superior de Engenharia de Coimbra, Quinta da Nora
3030 Coimbra, Portugal

♣Centro de Informática e Sistemas da Universidade de Coimbra, Polo II – Pinhal de Marrocos
3030 Coimbra, Portugal

{xico, machado, ernesto, amilcar}@dei.uc.pt
♦Center of Mathematics and Theoretical Physics, ICIMAF. CP 10400, La Habana, Cuba

{ ochoa, rsantana, mrosa}@cidet.icmf.inf.cu

Abstract- The goal of this research is to analyze how
individual learning interacts with an evolutionary
algorithm in its search for best candidates for the Busy
Beaver problem. To study this interaction two learning
models, implemented as local search procedures, are
proposed. Experimental results show that, in highly
irregular and prone to premature convergence search
spaces, local search methods are not an effective help to
evolution. In addition, one interesting effect related to
learning is reported. When the mutation rate is too high,
learning acts as a repair, reintroducing some useful
information that was lost.

1 Introduction

Evolution and learning are the two major forces that
promote the adaptation of individuals to the environment.
Each one of these complementary forces takes place at
different levels. Evolution, operating at the population level,
includes all mechanisms of genetic changes that occur in
organisms over successive generations. Learning occurs at a
different time scale. It gives to each individual the ability to
modify its phenotype during its life in order to increase its
adaptation to the environment and, hence, its chance to
survive and be selected for reproduction.

In our research we are interested in study how learning
and evolution can be combined in computer simulations.
More specifically, we would like to investigate how should
these processes be related with each other in order to
originate a greater adaptive advantage (for a good overview
on the subject, see [Belew & Mitchell, 1996]).

In this paper we will use the Busy Beaver (BB) problem
as the testbed to study the above mentioned interactions. In
1962, Tibor Rado proposed this problem in the context of
the existence of non-computable functions [Rado, 1962]. It
can be defined as follows: suppose a Turing Machine (TM)
with a two way infinite tape and a tape alphabet = {blank,1}.
The question Rado asked was: What is the maximum

number of 1’s that can be written by a N-state TM when
started on a blank tape? This number, which is a function of
the number of states, is denoted by ∑(N). A TM that
produces ∑(N) non-blank cells is called a Busy Beaver. The
BB is considered one of the most interesting theoretical
problems and, since its proposal, it has attracted the
attention of many researchers. Some values for ∑(N) and the
corresponding TMs are know today for small values of N.
As the number of states increases the problem becomes
harder, and for N≥5, there are several candidates that set
lower bounds on the value of ∑(N). To prove that a
particular candidate is the N-state BB we must perform an
exhaustive search over the space of all N-state TMs and
verify that no other machine produces a higher number of
ones. This is extremely complex due to the halting problem.

In the original setting, the problem was defined for
5-tuple TMs. This type of machines, given a current state
and symbol, write a new symbol, enter a new state and move
the read/write head left or right. One of the main variants
consists in considering 4-tuple TMs. These machines, during
the transition to a new state, either write a new symbol to the
tape or move the head (the actions are not allowed
simultaneously). In the next section we present a formal
definition of the BB problem to both variants.

The search space of the BB problem possesses several
characteristics, such as its dimension and its complexity, that
make it extremely appealing to Evolutionary Computation
(EC) techniques. The first attempt to apply EC techniques to
the BB problem was reported by Terry Jones [Jones &
Rawlins, 1993], who used a genetic algorithm to search for
specific instances of the 5-tuple BB. In 1999, our research
group obtained a remarkable success in our first attempt to
apply EC algorithms to the 4-tuple variant of the problem
[Pereira et al, 1999a]. Several new lower bounds were set,
leading to a large increase in the productivity of the TMs
(e.g., from 21 to 25 for 6-state TMs and from 37 to 196 for
7-state TMs). Among the contributions to the BB problem,
we studied several alternative representation techniques

[Machado et al, 1999] and developed a new crossover
operator that manipulates individuals in a way that is
consistent with its representation [Pereira et al, 1999b].

Just like we mentioned, in this paper we focus our
attention on the interactions between learning and evolution.
We propose two different local search procedures, which
will be used as learning models to help an evolutionary
algorithm to search for good candidates for BB(6). Our goal
is to determine what is, in this domain, the influence that
learning methods have in the evolutionary process.

The structure of the paper is the following: in the next
section we describe the Busy Beaver problem. In section 3
we present the developmental process of an individual and
describe the learning models used. Section 4 comprises
some experimental details about the simulation. In section 5
we present the results of the experiments performed, whilst,
in section 6, we analyze them and suggest possible
explanations for the results achieved. Finally, in section 7,
we present some conclusions and suggest directions for
future work.

2 The Busy Beaver Problem

A deterministic TM can be specified by a sextuple
(Q,Π,Γ,δ,s,f), where [Wood, 1987]:

• Q is a finite set of states

• Π is an alphabet of input symbols

• Γ is an alphabet of tape symbols

• δ is the transition function

• s in Q is the start state

• f in Q is the final state.
The transition function can assume several forms. The

most usual one is:
δ: Q×Γ → Q×Γ×{L,R}

where L denotes move the head left and R move right.
Machines with a transition function with this format are
called 5-tuple TMs. A common variation consists in
considering a transition function of the form:

δ: Q×Γ → Q×{ Γ∪{L,R}}
Machines of this type are known as 4-tuple TMs. When

performing a transition, a 5-tuple TM will write a symbol on
the tape, move the head left or right and enter a new state. A
4-tuple TM either writes a new symbol on the tape or moves
its head, before entering the new state.

The original definition of the BB [Rado, 1962]
considered deterministic 5-tuple TMs with N+1 states (N
states and an anonymous halt state). The tape alphabet has
two symbols, Γ={blank, 1}, and the input alphabet has one,
Π={1}. The productivity of a TM is defined as the number
of 1’s present, on the initially blank tape, when the machine
halts. Machines that do not halt have productivity zero.
∑(N) is defined as the maximum productivity that can be
achieved by a N-state TM. This TM is called a Busy Beaver.

In the 4-tuple variant productivity is usually defined as
the length of the sequence of 1’s produced by the TM when
started on a blank tape, and halting when scanning the
leftmost one of the sequence, with the rest of the tape blank.
Machines that do not halt, or, that halt on another
configuration, have productivity zero [Boolos & Jeffrey,
1995]. Thus, the machine must halt when reading a 1, this 1
must be the leftmost of a string of 1’s and, with the
exception of this string the tape must be blank.

3 Development of an Individual

Development is the process by which a genotype is
transformed into a final phenotype. Usually these changes
are divided in two categories, to distinguish whether they are
due to genetic causes or to interactions with the environment
[Hart et al, 1993]:

• Maturation: process of transforming a genotype into a
phenotype. In the end of this phase we have a newborn
individual.

• Learning: includes all modifications produced in the
phenotype of the individual during its life. Changes
induced by learning should promote an increase in the
adaptation of the individual to the environment where it
lives.

In this research we are essentially concerned with the
second mechanism. Nevertheless, it is important to describe
how maturation is performed because learning will be
applied to the individual resulting from this first phase of
development.

2

34 5

6 1 0 ,1

1 ,L 0 ,R

1 ,1
0 ,R

0 ,R
1 ,0

0 ,1 1 ,L

f f

0 ,R

1 ,R

1 ,L

δ By blank By one

Q
New
State

Action
New
State

Action

1 2 1 5 L

2 6 R 2 R

3 2 R f 1

4 5 R 6 L

5 3 R 4 0

6 4 1 1 L

Figure 1: A six state 4-tuple TM and its corresponding
transition table. The blank symbol is represented by 0.

3.1 Maturation
In the experiments described in this paper we are searching
for the BB(6). Without loss of generality we consider

Q={1,2,3,4,5,6, f}, set 1 as the initial state and f as the final
state. Since Γ={blank, 1} the essential information needed
to represent a potential solution is reduced to the transition
function: δ: Q×{blank, 1} → Q×{L, R, blank, 1}.

Figure 1 shows a 4-tuple TM with 6 states (plus the
halting state f) and its transition table. To codify the
information contained in the transition table we use an
integer string with 24 genes (4 genes per state) with the
following format:

N ew
S tate

A ction
N ew
S tate

A ction

S tate 1

B y b lank B y 1

... N ew
S tate

A ction
N ew
S tate

A ction

S tate N

B y b lank B y 1

To simulate a TM we need to interpret the chromosome.
There are several alternative ways to build a TM with the
encoded information. The most evident is to directly decode
the chromosome into a TM. Another option, which was
analyzed in a previous study [Machado et al, 1999], deals
with the existence of sets of TMs with equivalent behavior.

In this paper we will use the direct interpretation of the
information contained in the chromosome with one
exception. It is clear that best solutions to the BB problem
are TMs that use all their states and all their transitions.
According to this assumption, during simulation it is
possible to perform a straightforward modification in the
structure of the TMs, which is described in the next
paragraph.

In a given step S of the simulation, consider that the set
DT includes all transitions of the TM that were already used
and that the set DS includes all states that were already
visited (they have at least one transition in DT). If the
following three conditions hold:

- the transition T to be used in step S does not belong
to DT (i.e., it was not used before);

- T is the last transition of the states belonging to DS
left to be defined;

- T leads to a state belonging to DS;
then the state to where T leads is randomly changed to a

new state not belonging to DS. This modification prevents
the simulation of the TM to be locked inside a subset of the
states without ever halting.

3.2 Learning Models
An individual’s ability to learn is directly related to its
phenotypic plasticity, i.e., the capacity to change its
behavior in response to environment stimulus.

In EC optimization, learning has been essentially
implemented as local search algorithms (see, e.g., [Sasaki &
Tokoro, 1999], [Whitley et al, 1994]). These methods
iteratively perform some exploratory searches in the close
neighborhood of the individual, testing several alternatives,
in order to discover better solutions. In the end of this
process the quality of an individual will be, not only the

measure of its initial fitness, but also of its ability to
improve, which leads to a better understanding of the fitness
landscape. In this research we will test two different local
search procedures.

3.2.1 Model 1: EDA Local Search
Evolutionary estimation distribution algorithms (EDAs) use
a probabilistic model of promising solutions to guide further
exploration of the search space [Pelikan et al, 1999],
[Muhlenbein & Paass, 1996]. Generally, in an EDA, the
estimation of the probability distribution of the best
individuals of one generation is used to generate the
individuals of the next population. There are no standard
genetic operators, such as crossover or mutation. EDAs can
be classified according to the complexity of the model used
to capture the interdependencies between variables that
constitute a solution.

When building a probabilistic model two opposing forces
must be measured and an acceptable balance has to be
found. In one side, the expressiveness of the model depends
on the interactions that are considered. Whilst simple
models consider an inferior number of dependencies,
complex models try to cope with a higher of dependencies.
On the other side, the computational cost of building such a
model must also be taken into account. Computational costs
of EDA implementations are determined, to a large extent,
to the time spent to update and sample the probabilistic
model.

A first approach to the BB problem with an EDA
bivariate model is reported in [Santana et al, 2000]. Results
obtained in searching for BB(6) prove that this approach is
competitive with other evolutionary approaches to this
problem. Here, we will use the probabilistic model proposed
in [Santana et al, 2000] to perform local search.

In the BB problem, it is clear that all 4*N1 variables that
represent a TM can interact during simulation. Nevertheless
we performed a simplification and, in the model proposed,
we only consider the probabilistic information of the 2*N
variables that codify the actions performed by the TM.

The goal of the probabilistic model is to identify the
dependencies that exist between the selected variables.
These variables can be grouped in different ways. Our
model joins pairs of variables representing two actions
performed by transitions leaving the same state of the TM.
There are 16 possible pairs of actions. To build the model,
for a given selected set of individuals, we need to count the
frequency of occurrence of these pairs in the TMs belonging
to the set.

Despite its simplicity this model proved to be very
efficient when searching for BB(6). If we observe the
frequency of the four possible actions in good BB

1 N is the number of states of the TM. We consider as
variables the information that is contained in the transition
table.

candidates it is obvious that there is an unequal distribution
of these values. An empirical analysis would certainly say
that a good candidate should have more transitions writing a
1 than transitions writing a blank. The probabilistic model
can keep these differences in the frequency of single
transitions. In addition, it can capture the dependencies
between actions associated with the same state of the TM
[Santana et al, 2000].

In each generation the probabilistic model is built using
the information gathered from the individuals selected for
reproduction (the selected set). When an individual is
selected for learning the steps of the following algorithm are
executed:

1. Select one transition used in the simulation of the TM.
2. Modify the selected transition according to the

probabilistic model.
3. Simulate the resulting TM.
4. If the modification leads to an increase in the fitness of

the individual or if the maximum number of learning
steps has been equaled then stop learning. Otherwise,
discard the change and go to step 1.

In step 2 of the algorithm, the modification of the
selected transition is done using the table with the bivariate
marginal distributions. Assume that transition T1 was
selected for modification. T1 has associated one action with
value A12. The other transition, T2, from the same state has
associated one action with the value A2. There are three new
possible actions NA1 to associate with T1. The new value of
NA1 depends on the probability of the pairs (NA1, A2) in
the probabilistic model. We illustrate this situation with a
concrete example. Suppose that T1 is the transition by blank
of state 4 from the TM of Figure 1. In this situation, A1 is
move Right and A2 is move Left. The actual value of NA1
will be probabilistically selected in accordance to the
frequencies of the pairs (blank, L), (1, L), (L, L) in the
probabilistic model.

Assume now that a partial view of the model reveals the
following values:

Pairs … (blank, L) … (1, L) … (L, L) …
Prob. 0.04 0.12 0.02

In this situation the probability NA1=blank is
approximately 0.22 (obtained with the division
0.04/(0.04+0.12+0.02)). Probabilities for the remaining
values are obtained in a similar way. If all pairs have
probability 0 the new action is chosen randomly.

3.2.2 Model 2: Random Local Search
The only difference with respect to the local search
procedure described in the previous section concerns step 2
of the algorithm. Using random local search the choice of
the new action for the selected transition is done randomly.

2 Possible values for one action: {blank, 1, L, R}.

By comparing both methods we expect to gain
understanding of what might be the importance of the
probabilistic information when performing local search.

3.3 Learning Strategies
There are two different ways to combine evolution and
learning in artificial systems, inspired in two biological
theories:

• Lamarckian theory of evolution claims that phenotypic
characteristics acquired by individuals during their
lifetime are somehow encoded in their genes and
directly inherited by their descendants. This process
requires the existence of an inverse of the maturation
function3.

• Baldwin proposed a non-Lamarckian view of evolution,
where acquired characteristics could be indirectly
inherited. This process, known as the Baldwin effect,
occurs in two steps [Turney et al, 1997]: first,
phenotypic plasticity allows an individual to adapt to
successful mutations. These mutations lead to an
increase in the fitness of the individual and so it will
tend to proliferate in the population. Given sufficient
time, a behavior that was once learned may become
innate.

We will test both learning strategies with each one of the
models proposed.

4 Experiments

4.1 Simulation and Evaluation
The evaluation phase comprises the interpretation of
chromosomes and the simulation of the resulting TM. Due
to the halting problem we must establish a limit for the
maximum number of transitions (MaxT). Machines that
don’t halt before this limit are considered non-halting TMs.
To assign fitness we consider the following factors in
decreasing order of importance [Pereira et al, 1999a]:

• Halting before reaching the predefined limit for the
number of transitions;

• Accordance to the 4-tuple rules;

• Productivity;

• Number of used transitions;

• Number of steps made before halting.

We consider all these factors to assign fitness because we
intend to explore differences between “bad” individuals.
With this fitness function a TM that never leaves state 1 is
considered worse than another one that goes through 3 or 4
states, even if both are non-halting machines and have the
same productivity. This approach proved to be more

3 Even though Lamarckian theory proved to be wrong in
biological systems, from the viewpoint of adaptive artificial
systems it should be considered.

effective than using productivity alone as fitness [Pereira et
al, 1999].

4.2 Experimental Settings
The experiments presented concern the search for the
4-tuple BB(6). Current best candidate has productivity of 25
and performs 256 transitions [Pereira et al, 1999b].
According to these values we set MaxT to 500. All
experiments were performed using a modified version of
GALLOPS 3.2 [Goodman, 1996]. The settings of the
evolutionary algorithm are the following:

• Number of evaluations: 60000000;

• Population Size: 500;

• Generation Gap: 1;

• Elitist Strategy;

• Tournament Selection with tourney size 5;

• Single point Mutation;

• Mutation rate: {0.01, 0.025, 0.05};

• Graph Based Crossover

• Maximum graph crossover size: 3

• Crossover rate: 0.7
Graph based crossover was presented in [Pereira et al,

1999]. It was designed to work with individuals with a
graph-like structure. The main idea of this operator is the
exchange of sub-graphs between individuals. Maximum
graph crossover size defines the number of states belonging
to each sub-graph. Results presented confirmed that, in this
domain, it clearly outperforms two-point crossover.

In experiments with learning there are two extra
parameters to consider:

• Learning Rate (LR): probability of an individual being
subject to learning. We will perform experiments with 3
different values: {0.1, 0.5, 1}.

• Learning Length (LL): maximum number of learning
steps. This parameter is set to 10.

During learning, each simulation of a TM counts as one
evaluation. The initial population is randomly generated and
for every set of parameters we performed 30 runs with the
same initial conditions and different random seeds.

5 Experimental Results

Table 1 presents the average number of ones written by the
best individual of the final population, for all considered
configurations. A brief perusal of the results suggests that
learning does not cause any significant improvement in the
search process.

From the three values considered, a mutation rate of
2.5% seems to be the best choice. Focusing our attention in
the experiments performed with this value it is obvious that
no learning strategy and no learning method was able to
induce an increase in the productivity obtained by evolution
alone.

Another interesting result is that, with lower mutation
rates (1% and 2.5%), there is no significant difference
between the results obtained with different learning
strategies and/or different learning models. This suggests
that the evolutionary algorithm was unable to use the
potential offered by learning.

We performed some previous experiments using a
probabilistic evolutionary approach to this problem [Santana
et al, 2000]. A bivariate model, similar to the one proposed
here was used as the evolutionary algorithm and the results
proved that, despite its simplicity, this model can be very
effective when searching for the BB(6). In the same research
we performed some additional experiments with a
probabilistic evolutionary algorithm where the selection of
the new action was done randomly. In this last situation
results were clearly worse, if compared to those obtained
when information from the bivariate model was used.

In the experiments presented in this paper, learning
performed with the EDA model was unable to take
advantage of the probabilistic information (at least this
information was not useful to help to guide the search
process). If we average the productivity of all experiments
performed we obtain the following results: evolution-only:
17.2; experiments with the EDA model: 17.4; experiments
with the random model: 17.3.

Concerning the two learning strategies the conclusions
are similar: the average productivity of the experiments with
the Baldwin effect is 17.3, whilst the average productivity of
the experiments with Lamarckian learning is 17.4.

Baldwin Lamarck Evolution
EDA Random EDA Random -

LR 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1 0.1 0.5 1 -

0.01 18.8 18.4 18.2 18.7 18.5 18.6 18.8 17.9 18.0 18.6 18.2 18.2 18.7

0.025 19.7 19.7 20.1 20.0 19.5 19.8 19.4 19.2 19.1 19.9 19.2 19.5 20.0

M
u

ta
tio

n

0.05 12.9 13.2 13.9 12.7 14.2 13.7 13.1 15.7 17.1 13.2 12.9 15.5 12.8

Table 1: Productivity achieved by the best individual of the final population. Each experiment was repeated 30 times. Results are the
averages. Column labeled Evolution presents results from experiments without learning. Columns labeled Baldwin and Lamarck present
results from experiments with both learning strategies.

Given these values, the main conclusion is that learning,
implemented as a local search algorithm, was ineffective to
help evolution:

• There is no difference between a probabilistic and a
random model of learning.

• There is no difference between a Lamarckian strategy
and the Baldwin effect.

• There is no relevant difference between experiments
with and without learning.

Other measures of the behavior of the evolutionary
algorithms help to support this idea. As an example, the
rates of convergence for experiments without learning, with
the Baldwin effect and with Lamarckian learning are similar.
This suggests that premature convergence did not affect
learning experiments.

Graph 1: Evolution on the number of ones written by the best
individual on the different experiments performed with a mutation
rate of 0.025. In the experiments with learning, value for LR is 0.1.
All values are averages of series of 30 runs.

Graph 2: Productivity of the best individual of the final
generation for each one of the 30 runs. All experiments were
performed with a mutation rate of 0.025. In the experiments with
learning, LR has value 0.1.

 In graph 1 we present the evolution on the number of 1’s
written by the best individual for the different experiments
performed with a mutation rate of 0.025. Only experiments
with LR=0.1 are shown, even though the conclusions are
similar for other values of this parameter. It is visible that all
lines are almost coincident. Concerning the same
experiments, in graph 2 we present the productivity of the
best individual of the final generation, for each one of the 30
runs. The distribution of productivities is similar in all
experiments, which corroborates and reinforces our
conclusion.

If we look to the results from another point of view we
can see that, even though learning was unable to improve
performance, its effect is nevertheless visible in one
particular situation. A closer look at the results obtained by
the experiments performed with a mutation rate of 5% leads
us to formulate some interesting hypothesis.

Graph 3: Evolution on the number of ones written by the best
individual on the different experiments performed with a mutation
rate of 0.05. In the experiments with learning, value for LR is 1.
All values are averages of series of 30 runs.

Graph 4: Productivity of the best individual of the final
generation for each one of the 30 runs. All experiments were
performed with a mutation rate of 0.05. In the experiments with
learning, LR has value 1.

0

2

4

6

8

10

12

14

16

18

20

10 11 12 13 14 15 16 17 18 19 20 21

Productivity

Nr. Of Runs

Evolution Lamarck EDA Lamarck Random Baldwin EDA Baldwin Random

0

2

4

6

8

10

12

14

16

10 11 12 13 14 15 16 17 18 19 20 21

Productivity

Nr. Of Runs

Evolution Lamarck EDA Lamarck Random Baldwin EDA Baldwin Random

8

10

12

14

16

18

20

22

0 10000000 20000000 30000000 40000000 50000000 60000000

Evals

Productivity

Evolution Lamarck EDA Lamarck Random
Baldwin EDA Baldwin Random

8

10

12

14

16

18

20

22

0 10000000 20000000 30000000 40000000 50000000 60000000

Evals

Productivity

Evolution Lamarck EDA Lamarck Random
Baldwin EDA Baldwin Random

Experiments with higher mutation rates are the ones that
obtained worst results. It is clear that a 5% mutation rate is
too high to enable an efficient sample of the search space.
The evolutionary process is unable to combine the building
blocks in an efficient way and to converge to promising
areas, because mutation constantly changes too many values
to allow the process to converge. Nevertheless it is in these
experiments that the effect of learning is visible. In these
hard conditions, learning, probably, acts as a gene repair,
fixing some values that were lost by mutation. In
accordance, it is not surprising that the best results are
obtained by Lamarckian learning applied to all individuals
in each generation (LR = 1). Repairing is needed to all
individuals and must be done directly. Repairing performed
by the Baldwin effect is lost to the next generations. Graphs
3 and 4 present results concerning experiments performed
with 5% mutation rate (learning experiments have LR = 1).
In both graphs the repair effect is clearly visible.

This is a slightly different view of learning, which might
be subject of future research. It helps evolution not to find
promising areas, but to keep important discovered
information that could otherwise by lost due to the effect of
mutation. A similar effect was also proposed in [Harvey,
1997].

6 Discussion

The repair effect suggested in the end of the previous section
implies that learning, even though in an unusual way, is
present in the evolutionary process. In this section we will
try to advance some explanations to why was learning
unable to improve the performance when the mutation rate is
lower.

One hypothesis is that the evolutionary algorithm is so
effective in this problem that leaves no room for learning to
act. Based on the experiments conducted, our believing is
that this is partially true. It is clear that the current
evolutionary algorithm is remarkably adapted to the BB
problem and, at least when searching for 6-state candidates,
there is not much room for improvement.

Nevertheless, it is important to notice that, in the
experiments performed in this research, the current best
know solution for BB(6) was never found, which suggests
that there were some potential improvements that could have
been induced by learning.

We performed an empirical study on the search
landscape to gain some knowledge about the topology of the
space and to try to understand why is local search learning
so ineffective. We verified that, in different areas of the
search space, there are several TMs that write 21 1’s. These
TMs are surrounded by low fitness solutions, which makes
the space very irregular and prone to premature
convergence. Evolution by itself is usually able to quickly
identify the areas where the TMs that produce 21 1’s are.

After finding one of these local maxima, there is a high
evolutionary pressure towards this point and it is almost
impossible for the evolutionary process to escape premature
convergence. Learning methods employed in this study
search for better points in the close neighborhood of the
solutions. In the described situation, the efforts of local
search are helpless, since the exploration of the
neighborhood will, most likely, lead to the already
discovered local maxima.

Some preliminary experiments performed with 4-tuple
BB(7) confirm that, in this domain, local search methods are
not effective. The problem of premature convergence is
even magnified and learning is unable to help evolution to
escape such local maxima. In most of the experiments that
we performed, with both learning models and different
learning strategies, the evolutionary algorithm converges to
areas in the neighborhood of TMs with productivity ranging
from 37 to 49. Several 7-state TMs with productivities
above 100 are known and were infrequently obtained by our
research group.

7 Conclusions

In this paper we analyzed several interactions that occur
between learning and evolution in artificial adaptive
systems. The application domain was the BB problem, more
specifically the search for BB(6) candidates.

To help evolution, we proposed two different learning
procedures, designed to act as local search methods.
Experimental results show that, in this domain, the structure
of the fitness landscape prevents local search methods from
being an effective assistance to evolution.

 We also reported one interesting effect that happens
when the mutation rate is too high. In this situation, learning
fixes some genes that were lost, acting as a repair of the
extreme perturbation introduced by this operator. To
accomplish this effect, Lamarckian learning is more
effective because it directly repairs undesirable mutations
and passes it to descendants.

In spite of the inefficiency of local search methods, we
believe that there is room for learning in this kind of
problems. The space is hard to search and learning might
help to provide a better understanding of the fitness
landscape. Our future research efforts will be devoted to the
development and testing of alternative ways of considering
learning in this domain. Assuming that learning includes any
kind of modifications occurring during the lifetime of an
individual as a result of its interactions with the
environment, it is possible to devise several learning
algorithms alternative to the traditional view of local search.
Several ideas that will be subject of future research include:

• We will conduct several experiments where individuals
learn to perform tasks not directly related to the main
goal of the optimization. Several studies [Nolfi et al,

1994],[Harvey & Stone, 1995] refer that learning an
ability which is different from the ability for which
individuals are selected, might provide a beneficial
effect on evolution. Concerning our problem, there are
alternative ways to assess the complexity of a TM.
Candidate TMs can, for example, learn to perform
simple arithmetic operations with a unary alphabet.

• Another possibility is to let other individuals from the
current population help the learning process of one of
them. The idea is to develop some mechanism of
cooperative learning, where a group of individuals tries
to find the solution to a problem. If each individual has
partial relevant information then the group might
symbiotically find the solution that otherwise would be
unobtainable. A simple model of symbiotic
relationships occurring in an adaptive system is
proposed in [Watson & Pollack, 1999].

Acknowledgments

This work was partially funded by the Portuguese Ministry
of Science and Technology, under Program PRAXIS XXI.

Bibliography

Belew, R. and Mitchell, M. (1996). Adaptive Individuals in
Evolving Populations: Models and Algorithms, Santa Fe Institute
in the Sciences of Complexity, Vol. XXVI, Reading, MA:
Addison-Wesley.

Boolos, G., and Jeffrey, R. (1995). Computability and
Logic, Cambridge University Press.

Goodman, E. (1996). GALOPPS, The Genetic Algorithm
Optimized for Portability and Parallelism System, Technical
Report #96-07-01, Michigan State University.

Hart, W. E., Kammeyer, T. E. and Belew, R. K. (1995). The
Role of Development in Genetic Algorithms. In Whitley, D.
and Vose, M. D. (Eds.), Foundations of Genetic Algorithms
3, California: Morgan Kaufmann.

Harvey, I., Stone, J. (1995). Unicycling Helps your French:
Spontaneous Recovery of Association by Learning
Unrelated Tasks. Cognitive Science Research Paper CSRP
379, School of Cognitive and Computing Sciences,
University of Sussex, England, UK.

Harvey, I. (1997). Is There Another New Factor in
Evolution?, Evolutionary Computation, Vol. 4(3), pp.
313-329.

Jones, T. and Rawlins, G. (1993). Reverse Hillclimbing,
Genetic Algorithms, and the Busy Beaver Problem. In
Forrest, S. (Ed.). Proceedings of the 5th International
Conference on Genetic Algorithms (ICGA-93), pp.70-75,
San Mateo, CA, Morgan Kaufmann.

Machado, P., Pereira, F. B, Cardoso, A., Costa, E. (1999).
Busy Beaver – The Influence of Representation,
Proceedings of the Second European Workshop in Genetic
Programming, Göteborg, Sweden.

Muhlenbein, H. and Paass, G. (1996). From Recombination
of Genes to the Estimation of Distributions I. Binary
Parameters. In Voigt, H-M, Ebeling, W., Rechenberg, I. and
Schwefel, H.-P. (Eds.), Parallel Problem Solving from
Nature, pp. 178-187, Springer:Berlin.

Nolfi, S. Elman, J, and Parisi, D. (1994). Learning and
Evolution in Neural Networks. Adaptive Behavior, Vol.
3(1), p. 5-28.

Pelikan, M., Goldberg, D., and Lobo, F. (1999). A Survey of
Optimization by Building and Using Probabilistic Models.
IlliGAL Report No. 99018, University of Illinois.

Pereira, F. B., Machado, P., Costa, E. and Cardoso, A.
(1999). Busy Beaver: An Evolutionary Approach.
Proceedings of the 2nd Symposium on Artificial Intelligence,
pp.212.216. Havana, Cuba.

Pereira, F.B., Machado, P., Costa, E. and Cardoso A.
(1999). Graph Based Crossover - A Case Study with the
Busy Beaver Problem. In Banzhaf, W., Daida, J., Eiben, A.
E., Garzon, M. H., Honavar, V., Jakiela, M., & Smith, R. E.
(Eds.). GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1149-1155,
Orlando, Florida, USA. Morgan Kaufmann.

Rado, T. (1962) On non-computable functions, The Bell
System Technical Journal, vol. 41, no. 3, pp.877-884.

Santana, R., Rodriguez, A. O., Soto, M., Pereira, F. B.,
Machado, P., Costa, E. and Cardoso, A. (2000).
Probabilistic Evolution and the Busy Beaver Problem.
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2000), (to appear).

Sasaki, T. and Tokoro, M. (1999). Adaptation under
Changing Environments with Various Rates of Inheritance
of Acquired Characters: Comparison Between Darwinian
and Lamarckian Evolution. In McKay, B., Yao, X., Newton,
C. S., Kim, J. H. and Furuhashi, T. (Eds.), Proceedings of
2nd Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL-98), Canberra, Australia.

Turney, P., Whitley, D., and Anderson, R. (1997).
Evolution, Learning and Instinct: 100 Years of the Baldwin
Effect, Evolutionary Computation, Vol. 4(3), iv-viii.

Watson, R., and Pollack, J. (1999). How Symbiosis Can
Guide Evolution. In Nicoud, J.-D. and Mondada, F. (Eds.)
Proceedings of the 5th European Conference on Artificial
Life, Springer-Verlag.

Whitley, D., Gordon, S. and Mathias, K.(1994). Lamarckian
Evolution, the Baldwin Effect and Function Optimization. In
Davidor, Y., Schwefel, H. P. and Manner, R. (Eds.),
Parallel Problem Solving from Nature - PPSN III, 6-15.
Berlin: Springer-Verlag.

Wood, D. (1987). Theory of Computation, Harper & Row,
Publishers.

