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Summary. A novel approach to the production of evolutionary art is presented.
This approach is based on the promotion of an arms race between an adaptive
classifier and an evolutionary computation system. An artificial neural network is
trained to discriminate among images previously created by the evolutionary engine
and famous paintings. Once training is over, evolutionary computation is used to
generate images that the neural network classifies as paintings. The images created
throughout the evolutionary run are added to the training set and the process is
repeated. This iterative process leads to the refinement of the classifier and forces
the evolutionary algorithm to explore new paths. The experimental results attained
across iterations are presented and analyzed. Validation tests were conducted in
order to assess the changes induced by the refinement of the classifier and to identify
the types of images that are difficult to classify. Taken as a whole, the experimental
results show the soundness and potential of the proposed approach.

18.1 Introduction

We are interested in the development of Artificial Artists (AAs), i.e., artificial
systems with artistic capabilities similar to their human counterparts. In our
view, an AA should be able to perform aesthetic and/or artistic judgments –
i.e., be able to assess the merits of the artworks it creates, as well as the works
of other, artificial or human, artists [1] – and to adapt to the requirements
of a dynamic hybrid society [2], populated by artificial and human agents.
Taking this into consideration, our architecture for the development of AAs
comprises two modules: a Creator and an Artificial Art Critic (AAC) [3].

Although, the results presented in this paper concern the visual domain, we
are also interested in the music domain, and on the cross-transfer of concepts
between both. Therefore, our approach to aesthetics in the visual domain is
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informed by our work in aesthetic modeling and classification in the music
domain [4, 5].

We consider that the ability to learn how to perform aesthetic judgments
is vital. It allows the system to be fully autonomous, and to use the works of
other artists as source of inspiration [1]; also it creates some of the precondi-
tions for stylistic change in the system’s artistic performance, enabling it to
explore, or set, new trends [3, 2].

The results presented in this chapter are a step in that direction. In par-
ticular, the main research goal is to develop a system that: (i) builds its own
aesthetic model from a set of examples (thus allowing it to be influenced by
other artists); and (ii) autonomously modifies its artistic style.

To achieve this goal, we explore an approach where the role of the creator
is played by an Evolutionary Computation (EC) engine, and the role of the
AAC by a classifier that uses a Feature Extractor (FE) and an Artificial
Neural Network (ANN)-based Evaluator. Our proposal has two distinctive
characteristics:

1. The use of an ANN to distinguish between images generated by the EC
engine and a selected set of external images (e.g., famous paintings, art-
works of a given style, landscape photographs, portraits, etc.).

2. The iterative execution of the following steps:
• The EC engine tries to find images that are classified as external ones;

the fitness is a function of the output of the ANN.
• Once the EC run is over, the created images are added to the training

set of the ANN as instances of internal images.
• The ANN is trained to distinguish between the two sets.

Conceptually, this approach can be seen as a compromise between approaches
with a static/global fitness function and those with dynamic/contextual fitness
assignment such as co-evolutionary ones.

The external set of target images constitutes an “inspiring set”, a stable
attractor that is meant to ensure that the evolved imagery tends to incorporate
aesthetic qualities recognized by humans. On the other hand, the systematic
addition of the evolved images to the training set as “counter-examples” and
the subsequent training of the ANN causes a competition between evolver and
classifier, allowing us to attain a dynamic behavior. The fitness changes from
iteration to iteration, hence promoting stylistic change.

The proposed approach has been tested with an external set of 3322 im-
ages of renowned painters and an internal set of EC-generated images. The
employed AAC architecture [3] has been used in the music domain in author
identification tasks, and in classification experiments related to aesthetic judg-
ment [5, 6]. In the field of visual art, this architecture has been used in author
identification tasks [7, 8, 9]. The employed FE incorporates ideas inspired by
the use of complexity [10], fractal dimension [11, 12], and the Zipf–Mandelbrot
law [13, 14, 7, 15] in both the visual and music domains.
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Our experimental results show that the AACs used are able to discrim-
inate between the two sets and to guide the EC algorithm. Conversely, in
each iteration, the EC algorithm is able to find images that are classified
as external. Therefore, an autonomous neuro-evolutionary framework able to
perform stylistic variation is attained. In Manaris et al. [6] we explore a similar
approach in the music domain.

The chapter is structured as follows: we begin with an overview of previous
work on automatic fitness assignment and computational aesthetics (Sect.
18.2), and with a short overview of our previous work on fitness automation
in the field of visual art (Sect. 18.2); in Sect. 18.4 we describe our approach;
this is followed by a global overview of the system and an in-depth look at
its main modules (Sect. 18.5); the experimental results attained in the visual
domain and their analysis are presented in Sect. 18.6; next, we present the
results attained in several validation tests; finally, in Sect. 18.8, we draw overall
conclusions, and indicate other research directions and application areas.

We include all images generated throughout the evolutionary runs in the
accompanying DVD, as well as the corresponding fitness values. Although the
number of images, over 30000, is probably too large for a close inspection,
browsing over them will, hopefully, allow the reader to get a better grasp of
the types of imagery produced in each iteration.

18.2 State of the Art

One of the main difficulties in the application of EC to artistic tasks is the
development of appropriate fitness assignment schemes.

Fitness assignment plays an important role in any EC system; artistic
tasks are not an exception. Focusing on the domain of visual art, there are
essentially five approaches to fitness assignment: interactive evolution – an
approach that has been popularized by Karl Sims [16] (see Chap. 1 for a
wider list of references); similarity based – i.e., evolving towards a specific
image or images (see Chap. 1); hardwired fitness functions [17, 18, 19, 20];
machine-learning approaches [21]; and co-evolutionary approaches [12, 22] (see
Chap. 17). The combination of several of the above methods has also been
explored, for instance Saunders and Gero [12] use ANNs in the context of a co-
evolutionary approach and Machado et al. [8, 9] combine interactive evolution
with a hardwired fitness function.

Taking into account that we are interested in systems able to perform
aesthetic judgments, interactive evolution and similarity-based approaches are
not of particular relevance for the present chapter. The remaining approaches
pose several complex problems.

Even if we consider that there is such a thing as a global aesthetic value
that can be objectively measured, or that we are only interested in mimicking
the aesthetic preferences of a particular user, building a hardwired function
capable of assessing it is definitely a difficult task. If we take into consideration
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that this function will be used in conjunction with EC algorithms, which
are prone by nature to explore the shortcomings of the fitness function to
maximize fitness, the scenario becomes even worse.

Using a machine-learning approach can alleviate some of the burden of
coding the fitness function. Nevertheless, learning to evaluate aesthetic judg-
ments has proven to be a complex task. The work of Baluja et al. [21] is one
of the few published attempts at doing so, and it is also the closest one to the
approach presented in this chapter. Baluja et al. [21] use interactive evolution
to build a set of evaluated images, in a later stage these images are used to
train an ANN that receives as input an image and produces an evaluation.
Several ANN architectures have been tested.

Although the approach is elegant, the results are far from being a success
[21]. The ANN is able to train, yet it fails to generalize properly. In the best
configuration found, the error in the test set is 0.2, which is only marginally
superior to the results attainable by using a random function, biased to match
the probabilistic distribution of the training set, to assign fitness (0.24) [21].

Independently of the fitness function being built or learned, static ap-
proaches to fitness assignment share a common problem: the EC algorithm
tends to converge to a specific type of imagery that depends on the particu-
larities of the fitness function and of the EC algorithm.

Co-evolutionary approaches overcome, to some extent, this limitation.
However, it is difficult to incorporate aesthetic criteria in the evaluation
scheme.4 Even if this difficulty is overcome, ensuring that the evolved im-
agery relates to human aesthetics is not a trivial task. As Todd and Werner
state:

“One of the biggest problems with our coevolutionary approach is
that, by removing the human influence from the critics ... the system
can rapidly evolve its own unconstrained aesthetics.” [23]

Taking into consideration the limited number of EC systems, in the field
of visual art, where an attempt to incorporate aesthetic criteria in fitness
assignment is made, it becomes relevant to consider approaches that, while
not related to EC, are of pertinence to the field of computational aesthetics.

The work of Birkhoff [24] is probably the first attempt to present a formal
measurement of aesthetics. Birkhoff suggests that aesthetic value results from
the ratio between order and complexity, applying this principle to measure
the aesthetic value of several 2D contours. The works of Moles [25], Arnheim
[26, 27, 28] and Bense [29], draw upon the ideas of Birkhoff, bringing into
play Shannon’s [30] Information Theory. More recently, Staudek [31, 32] also
presents an aesthetic theory where notions such as chaos and complexity play
an important role.

Machado and Cardoso [10] use complexity estimates, based on JPEG and
fractal image compression, to estimate the aesthetic value of grayscale images,

4 A thorough description and analysis of co-evolutionary approaches in the field of
visual art can be found in Chap. 17.
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attaining results higher than the human average in Maitland Graves’ “Design
Judgment Test” [33]. This work was the basis for the automated fitness as-
signment scheme [17, 9] which we briefly describe in Sect. 18.3.

Svangärd and Nordin [20] also resort to complexity estimates based on
compression schemes to evaluate images. Ritendra et al. [34] resort to a set of
features – which includes texture, colorfulness, shape convexity and familiarity
measures – and an support vector machine-based classifier to discriminate
between photographs with high and low ratings, using as data source an online
photo sharing Web site (Photo.net).

The concept of fractal dimension (FD) has also been considered a relevant
aesthetic feature [35]. Taylor et al. [11] show the evolution of the FD of Jackson
Pollock’s paintings, later exploring the use of this technique to authenticate
them. Finally, they study the relations between FD and aesthetics [36]. Inter-
estingly, FD has also been used in Evolutionary Art (EA) to automate fitness
assignment [37, 12].

18.3 Background Work on Automated Fitness
Assignment in Visual Art

Inspired by the works of Moles [25] and Arnheim [26, 27, 28] and by studies
that indicate a preference for simplified representations of the world, and a
tendency to perceive it in terms of regular, symmetric and constant shapes
[38, 27, 39, 40], Machado and Cardoso [10, 17, 9] have explored the following
hypothesis: Aesthetic value is related to the sensorial and intellectual plea-
sure resulting from finding a compact percept (internal representation) of a
complex visual stimulus.

This approach rewards images that are simultaneously visually complex
and easy to perceive, employing estimates for the Complexity of the Percept
(CP) and for the Complexity of the Visual Stimulus (CV). CP and CV are
estimated through the division of the root mean square error (RMSE) by
the compression ratio resulting, respectively, from the fractal (quadratic tree
based) and JPEG encoding of the image.

Additionally, a temporal component is also considered [10, 17, 9]. As time
passes the level of detail in the perception of the image varies. It is therefore
necessary to estimate CP for different moments in time, in this case t0 and
t1, which is attained by performing fractal image compression with increasing
levels of detail. The proposed approach values images where CP is stable
for different levels of detail. To capture the previously described notions the
following formula was proposed [10]:

value =
CV a

(CP (t1)× CP (t0))
b
×

1
(

CP (t1)−CP (t0)
CP (t1)

)c (18.1)
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Fig. 18.1. Best individuals from 10 independent runs

where a, b and c are parameters used to adjust the importance given to each
of the components. The left side of the formula rewards images that have,
simultaneously, high CV and low CP estimates. The right side rewards images
whose CP is stable across time. The division by CP (t1) is a normalization
operation.

To apply this set of ideas in an evolutionary context, we limit the different
components of the formula, as follows:

value =
min(α,CV )a

max(β,CP (t1)× CP (t0))b
×

1

max
(

γ, CP (t1)−CP (t0)
CP (t1)

)c (18.2)

where α, β and γ are constants defined by the user.
Machado and Cardoso [17, 9] conducted several experiments, using the

Genetic Programming (GP) engine of NEvAr5 and (18.2) as fitness function.
The results attained with this autonomous EA system are quite surpris-

ing [17, 9]. Although the approach has several shortcomings – e.g., it only
deals with grayscale images – it allows the evolution of a wide set of imagery
with arguable aesthetic merit. In Fig. 18.1, we present the fittest images from
several independent runs.

In a subsequent study [8, 9], a variation of this approach was used in
the context of a partially interactive system. In this variation, the user
was allowed to specify optimum values for CV , CP (t1) × CP (t0), and
(CP (t1)−CP (t0))/CP (t1). The user was also able to intervene at any stage
of the evolutionary run, supplying fitness values to the current population.
The evaluations performed by the user took precedence over the ones made
by the system. Using this variation it became possible to overcome some of the
shortcomings of the previous approach, including the limitation to grayscale
images.

5 NEvAr stands for “Neuro Evolutionary Art”. In Sect. 18.5.1 a brief overview of
the system is provided.
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18.4 The Approach

Succinctly, the proposed approach can be described as follows:

1. A set of external images is selected.
2. Using the EC system, a set of randomly generated internal images is

created.
3. The ANN is trained to distinguish among internal and external imagery.
4. A new EC run is started. The output of the ANN is used to assign fitness.

Images classified as external have higher fitness than those classified as
internal.

5. The EC run stops when a termination criterion is met (e.g., a pre-
established number of generations, attaining a given fitness).

6. The images generated by the EC algorithm are added to the set of internal
images.

7. The process is repeated from step 3.

One of the key aspects of this approach is the definition of two classes of
images. The first class contains external imagery. Images that were not created
by the GP system and that are usually considered “interesting” or of “high
aesthetic value”. This class represents an “inspiring set”. In the experiments
presented in this chapter we employ a set of paintings made by famous artists.
The second class contains internal imagery, i.e., images previously generated
by the GP engine. Although part of these images may be considered inter-
esting by some, for the purposes of the present chapter this class represents
undesirable imagery – we are interested in stylistic change, therefore, in this
context, images that were already created by the system are not desirable.
Nevertheless, and for different purposes, the inclusion of remarkable images
generated by the GP engine in the inspiring set may be appropriate.

Like Baluja et al. [21], we use ANNs to assign fitness to the evolved images.
In their work, the ANN is trained to mimic the evaluations performed by users
in previous interactive runs.

This poses problems, such as: (i) it is difficult to create a set of consistently
evaluated images; and (ii) it is difficult to ensure that such a set is representa-
tive of the range of imagery that the system may produce. In our proposal the
ANN is trained to discriminate between internal and external images. These
sets can be objectively defined, which solves the first problem. Regarding the
second problem, although the set of external images should be representative
of a given type of imagery, this is arguably easier than creating a set that
is representative of all the images that an EA tool can create (note that, for
instance, NEvAr can, in theory, generate any image [17, 9]). Additionally, the
internal set is iteratively expanded, which also contributes to overcome the
second problem.

The approach of Baluja et al. [21] has another type of limitation: since
the training images are generated by the GP system, even if the ANN is able
to reproduce the evaluations of the user(s) (note that this was not the case
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[21]), its use to assign fitness will, most likely, lead to the evolution of images
that were already generated in interactive runs, or which are similar to them.
Although this can be valuable, the generation of novel imagery would be far
more interesting.

In our approach, the task of the evolutionary module is to evolve images
that the ANN classifies as external imagery. This may be accomplished by
evolving images that:

1. are similar (from the perspective of the ANN) to those belonging to the
external set;

2. are different from the set of GP-generated images used to train the ANN
(e.g., images that are entirely novel, hence dissimilar from both sets).

Once such images are found, they become part of the internal imagery of the
system and are used to train the ANN that will be used in the next iteration,
which forces the GP to explore new paths in subsequent iterations.

In the long run, there are two possible final scenarios: (i) the EC system
becomes unable to find images that are classified as external; (ii) the ANN
becomes unable to discriminate between internal and external imagery.

The first outcome reveals a weakness of the EC engine. This can be caused
by a wide variety of factors, for instance: the set of EC parameters may be
inadequate; the fitness landscape may be deceptive; etc.

In the second outcome, there are two possible sub-scenarios: (ii.a) the
images created by the EC system are similar to some of the external images,
which implies that the EC and the classifier are performing flawlessly; (ii.b) the
images created by the EC system are stylistically different from the external
imagery provided.

The second sub-scenario indicates a weakness of the classifier system. In
theory, this can indicate: the existence of stylistic differences that are not
captured by the set of features; that the employed ANN and training technique
is not able to take full advantage of the provided features; that the settings
used in the training of the ANN were not appropriate; etc.

Distinguishing between situations (ii.a) and (ii.b) may encompass some
degree of subjectivity. Nevertheless, if that were the case, this difficulty alone
would imply, that a considerable success was attained, i.e., an autonomous
EC system capable of producing artworks that are arguably similar to those
made by humans.

18.5 Description of the System

The system employed, schematically represented in Fig. 18.2, uses a GP engine
to generate images and an AAC to classify them.

The GP engine, described briefly in the next section, is the same engine
employed in NEvAr (a detailed description can be found in Machado and
Cardoso [17, 9]). The AAC is presented in Sect. 18.5.2. The integration of
both systems is discussed in Sect. 18.5.3.
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Fig. 18.2. Overview of the system

18.5.1 Genetic Programming Engine

NEvAr is an expression-based EA system (inspired by the work of Karl Sims
[16]) that allows the evolution of populations of images.

NEvAr employs GP. As such, the genotypes are trees constructed from a
lexicon of functions and terminals. The function set is composed mainly of
simple functions such as arithmetic, trigonometric and logic operations. The
terminal set is composed of two variables, x and y, and random constants. The
phenotype (image) is generated by evaluating the genotype for each (x, y) pair
belonging to the image. Thus, the images generated by NEvAr are graphical
portrayals of mathematical expressions. As usual, the genetic operations (re-
combination and mutation) are performed at the genotype level. In order to
produce color images, NEvAr resorts to a special kind of terminal that returns
a different value depending on the color channel being processed.

The initial versions of NEvAr allowed only user-guided evolution. Later,
the system was expanded by the integration of modules that allow fully or
partial automation of the fitness assignment (see Sect. 18.3).

Figure 18.3 displays typical imagery produced via interactive evolution by
several users.6

Obviously, different users may have different preferences. The tastes of a
given user may also change from time to time, leading to the exploration of
distinct evolutionary paths. User fatigue also tends to decrease the consistency
of the evaluations. Additionally, the user may get tired of a particular type of
imagery; therefore, novelty may become more important to the user than the
aesthetic qualities of the image.

Although user-guided evolution is characterized by subjectivity, by incon-
sistency, and by the search for novelty, the interaction between system and
user typically results in a type of image, an identifiable signature (in the sense
defined by Cope [41]). This signature depends on the particularities of NEvAr

6 Further samples can be found on NEvAr’s Web site: http://eden.dei.uc.pt/
∼machado/NEvAr/index.html.
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Fig. 18.3. Examples of images generated with NEvAr by different users

(primitives, genetic operators, genotype–phenotype mapping, etc.) and on the
evaluations performed by the user that directly affect the fitness landscape.
Nevertheless, in theory, any image can be generated [17, 9] and, therefore,
stylistic change is possible.

18.5.2 Artificial Art Critic

Our AAC architecture [3] has been used in the field of visual art for author
identification tasks [7, 8, 9]. In the musical domain it was tested in experiments
on author identification, and in pleasantness and popularity prediction [5, 6].

It is composed of two modules, an FE and an Evaluator. The FE makes an
analysis of the image, measuring several characteristics which are thought to
be aesthetically relevant. Based on the collected measurements, the evaluator,
implemented by means of an ANN, performs the classification task.

The current version of the feature extractor includes two types of complex-
ity estimates based on JPEG and fractal compression. As in previous work,
(Sect. 18.3) the ratio between the RMSE and the compression rate is used to
estimate complexity. The fractal and JPEG estimates are calculated at three
levels of detail, which is accomplished by establishing different upper bounds
for the error per pixel.

The image is split into its Hue, Saturation and Value channels. For each
channel the FE calculates the above-mentioned features. Inspired by previous
results attained with similar metrics in music classification [4], the FE also
comprises Zipf-based metrics. Namely, the rank-frequency (Zipf [42]) distribu-
tion (slope and linear correlation, R2, of the trendline) of the Hue, Saturation
and Value.

Additionally, for each channel, the FE also determines:

1. The average value of each channel;7

7 Since the Hue channel is circular, we compute its average angle.
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2. The standard deviation of the value (STD);

For the Value channel, the FE also estimates the FD of the image, edges,
and horizontal and vertical edges. Each of these measurements results in two
values, the FD and the linear correlation with the FD.

The FD is measured using an approach similar to the one employed by
Taylor et al. [11]: the image is converted to black and white and the FD
estimated using the box-counting technique. To calculate the FD of the edges,
a Sobel filter is employed to detect them (see e.g., [43]) and the FD of the
resulting image is calculated.

In Table 18.1 we present the different groups of features and the compo-
nents of the image to which they are applied.

Table 18.1. Characteristics considered by the FE and components of the image to
which they are applied

Feature Image Hue Saturation Value

JPEG complexity X X X X
Fractal complexity X X X
Average and STD X X X
Zipf distribution and corresponding R2 X X X
FD and corresponding R2 X

To determine the variation of the considered characteristics, we partition
the image into five regions of the same size – the four quadrants, and an
overlapping central rectangle – and compute the previously described mea-
surements for each partition. This process yields a total of 246 measurements.

This FE is an improvement over the one used in previous experiments that
did not include an evolutionary component [7, 8, 9]. Taking into account the
results attained in those tasks, we decided to use a similar one to discriminate
between internal and external imagery. The main difference between the FE
used in previous experiments and the current one is the measurement of the
FD of several characteristics of the image.

The evaluator is composed of a feed-forward ANN with one hidden layer.
We resorted to Stuttgart Neural Network Simulator (SNNS) [44] for train-
ing purposes. Standard backpropagation was employed. The values resulting
from the feature extractor are normalized between 1 and −1. We adopt an
architecture similar to the one used in author identification experiments. We
use ANNs with one input unit per feature, 12 units in the hidden layer and 2
units in the output layer (one for each category).

18.5.3 Integration of the AAC and GP Engine

The fitness of the images is determined by the output of the AAC and requires
five steps: (i) rendering the image; (ii) extracting the features; (iii) normalizing
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the feature values and feeding them to the ANN; (iv) determining the ANN
output; (v) calculating the fitness value.

In essence, the ANN is trained to perform a binary classification task. This
creates a problem: a fitness landscape composed exclusively by values close to
zero or close to one will definitely cause problems for the GP system. In other
words, a binary classification is not adequate to guide evolution, intermediate
values are necessary.

To overcome this difficulty, while training the ANN, we allow differences
between desired and obtained output values. If the difference is below the
maximum tolerated error threshold, then it is propagated back as being zero
(i.e., non-existent). In the experiments presented in the following sections the
maximum tolerated error is set to 0.3. This allows us to get outputs that are
not in the limits of the [0, 1] interval, creating a smoother fitness landscape.

We use ANNs with two output neurons. The activation value of the first
neuron, O1, determines the degree of belonging to the class of selected external
images. The activation of the second output neuron,O2, determines the degree
of belonging to the class of internal images.

Considering this architecture – and a maximum tolerated error of 0.3 – it
is possible to devise fitness functions to evolve images that:

1. are classified as belonging to one category and not to the other (one neuron
with an activation value above 0.7 and the other with an activation below
0.3);

2. are simultaneously classified as belonging to both categories (both neurons
with an activation above 0.7);

3. are not classified as belonging to any of the categories (both neurons with
an activation below 0.3);

4. the ANN is unable to classify with certainty (both neurons with an acti-
vation value in the [0.3, 0.7] interval).

We are interested in evolving images that are classified as belonging to
the set of paintings considered, O1 ≥ 0.7, and as not belonging to the set
of NEvAr images, O2 ≤ 0.3. A suitable fitness function for this goal is as
follows:8

fitness =

[

1 + (O1 −O2)

2

]2

× 10 (18.3)

Accordingly, an image that results in an ANN output of (0.3, 0.7), thus
being marginally considered as a NEvAr image, has a fitness of 0.9. Conversely,
an image that is in the threshold of being classified as a painting, i.e., that
results in an ANN output of (0.7, 0.3), has a fitness of 4.9. In other words, a
fitness value in the [0, 0.9[ interval corresponds to images that are classified as
NEvAr’s; in the [0.9, 4.9] interval to images that the ANN is unable to classify;
and in the ]4.9, 10] interval to images classified as paintings by the ANN.

8 The multiplication by 10 is a scaling operation performed to allow an easier
integration with the user interface.
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18.6 Experimental Results

In this section we present some of the experimental results attained with our
approach.

As previously stated, one of the key issues of our approach is the iterative
methodology used, i.e., once an evolutionary run ends, the images generated
by NEvAr are added to the set of internal images and the ANN is retrained.

For the purpose of the current paper, we are mainly interested in analyz-
ing the differences, in terms of produced imagery, that occur from iteration
to iteration, which implies presenting the images obtained in each of them.
This necessity, coupled with space constraints, makes it infeasible to present
results from several independent experiments. Therefore, we focus on a single
experiment, paying particular attention to the first and last iterations.

18.6.1 Experimental Setup

The settings of the GP engine are presented in Table 18.2. The settings are
similar to those used by default when NEvAr is run in interactive mode [17, 9].
The images are rendered in full color, at a resolution of 128×128 pixels. Exter-
nal images of higher dimension are resized to 128×128 for feature extraction.

To calculate the complexity estimates used in the FE, the images are
compressed at three different levels of detail by setting the maximum error
per pixel to 8, 14 and 20. These values were determined empirically in previous
tests.

One of the sub-goals of our experiments is the assessment of the relevance
of some aspects of the FE, namely the relevance of the features concerning
color information and the importance of the features gathered from the par-
titions of the images.

Table 18.2. Parameters of the GP engine. See Machado and Cardoso [17, 9] for a
detailed description

Parameter Setting

Population size 50
Number of generations 50
Crossover probability 0.8 (per individual)
Mutation probability 0.05 (per node)
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, −, × , /, min, max, abs, neg, warp, sign,

sqrt, pow, mdist, sin, cos, if
Terminal set X, Y , scalar and vector random constants
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To serve this goal, we employ different combinations of features, which
result in ANNs with different input layers. The first group of ANNs includes
features pertaining to the three color channels of the image. The second group
of ANNs uses features related to the Saturation and Value channel. The in-
formation contained in the Hue channel is only relevant when the saturation
and value are taken into consideration. In addition, Hue is circular by nature,
which creates difficulties in the measurement of several features. For these
reasons, the information extracted from the Hue channel is likely to be less
reliable. The third group only considers the Value channel, thus analyzing the
grayscale version of the image.

We gather the same set of features for the entire image and for its parti-
tions, which results in some degree of redundancy. It is, therefore, important
to assess the relevance of the information gathered from the partitions. To do
so, we further divide the three groups above into ANNs which use features
relative to the partitions and those which do not.

Overall, we employ six ANN architectures. The particularities of each are
summarized in Table 18.3. In Table 18.4, we present other relevant parameters
relative to the ANNs.

For each considered architecture we perform 30 independent repetitions of
the training stage, in order to get statistically significant results. For each of
these repetitions we randomly create training, test and validation sets with,
respectively, 70%, 10%, and 20% of the patterns. The same randomly created
sets are used for the different architectures. The training of the ANNs is halted
when one of the following criteria are met: 1000 training cycles, or an RMSE
in both the training and test sets lower than 0.005. These parameters were
empirically established in previous experiments.

Table 18.3. Features considered in each ANN

Artificial Neural Network 1 2 3 4 5 6

Color channels 3 3 2 2 1 1
Partitions yes no yes no yes no

Number of features 246 41 186 31 108 18

The number of internal images increases from iteration to iteration, while
the number of external images remains constant. This creates a disproportion
between the two classes, which could jeopardize training. To avoid this prob-
lem we use a one-to-one class distribution scheme [44]. During training, the
ANN is exposed to the same number of patterns from each class, by including
repetitions of patterns from the class of lower cardinality in the training set
(this does not affect the test or validation sets).

We also wish to detect at what stage the different ANNs become unable
to fully distinguish between the two classes. For this purpose we carry out an
additional test in which all the patterns are included in the training set. In
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Table 18.4. Parameters relative to the ANNs and their training

Parameter Setting

Number of architectures 6
Activation function logistic
Output function identity
Initialization of weights random, [−0.1, 0.1] interval
Learning function backpropagation
Learning rate 0.3
Momentum 0
Update function topological order
Maximum n. of training cycles 1000
RMSE limit (train and test sets) 0.005
Shuffle weights yes
Class distribution (training set) one-to-one

this case, the ANN training is halted after 5000 training cycles or when an
RMSE of zero is reached. From here on we will call this specific test “Entire
Corpus”.

The generation of the 2500 images of each iteration takes, approximately,
4.5 hours. The creation and rendering of one population takes an average of
15 seconds, 0.3 seconds per image. Feature extraction is a time-consuming
process, taking, on average, 6 seconds per image. The ANN training is even
more time-consuming, depending on the number of patterns, the 30 training
runs for a single architecture can take up to 12 hours. All time estimates where
performed using a Pentium Mobile at 1.8 GHz.

Initial Sets

The initial sets of external and internal images play an important role in the
performance of our system. We use an external set containing 3322 paintings
of the following artists: Cézanne, de Chirico, Daĺı, Gaugin, Kandinsky, Klee,
Klimt, Matisse, Miró, Modigliani, Monet, Picasso, Renoir, van Gogh. The
images where gathered from different online sources. The rationale was to
collect a wide and varied set of artworks.

The set of internal images is created using NEvAr to generate 7 initial
random populations of size 500. In order to obtain a more representative set
of internal images, these generations were created using different upper bounds
for the tree depths. Additionally, in order to avoid a bias towards simplicity
in the internal set of images, a primitive that generates random noise in two
of the populations (2 and 7) is used.

Although the images were created randomly, some of the phenotypes may
appear more than once. The same can happen throughout iterations.

We performed tests in which these repetitions were removed, arriving to
the conclusion that it was not advantageous to do so. Considering our goals,
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images that occur frequently in one iteration should be avoided at all costs in
subsequent ones. Having repeated instances of “popular” images ensures that
these have more influence on the training of the ANN than others. Therefore,
classification errors are unlikely to happen in images that become popular,
avoiding a future convergence of the EC to these images.

The existence of repetitions implies a partial overlap between the training,
test and validation sets. Consequently, there is a bias in the ANN results.
To overcome it, we performed a set of independent validation experiments,
presented in Sect. 18.7.

In what concerns the external set, repetitions were avoided. Nevertheless,
it is relatively common for an artist to paint several versions of the same motif.
In these cases, and in order to avoid the subjectivity of deciding what was
sufficiently different, we decided to include the different variations.

18.6.2 First Iteration

In this section we present the experimental results attained in the first itera-
tion. An in-depth analysis of the results concerning the training of the ANN
and of the relative importance of the different groups of features, of this and
further iterations, will be published in the future.

In Table 18.5 we provide an overview of the results attained in training,
for the different ANN architectures, presenting the average number of training
cycles, the average RMSE and its STD for the training, test and validation
sets. The results are calculated from the 30 independent training repetitions
made for each of the 6 architectures.

Table 18.5. Overview of the ANNs’ training results in iteration 1

Training Test Validation
Network Features Cycles avg std avg std avg std

1 246 733.3 .0001 .0001 .0065 .0027 .0069 .0017
2 41 863.3 .0010 .0016 .0079 .0037 .0086 .0025
3 186 940.0 .0001 .0007 .0108 .0035 .0102 .0022
4 31 926.6 .0021 .0011 .0088 .0043 .0098 .0025
5 108 1000.0 .0005 .0005 .0212 .0060 .0232 .0041
6 18 1000.0 .0125 .0028 .0214 .0057 .0225 .0049

Average 910.5 .0027 .0011 .0128 .0043 .0135 .0029

We are also interested in the number of images that are incorrectly iden-
tified. In Table 18.6 we provide an overview of these results considering a
“winner-takes-all” strategy, i.e., the output neuron with the highest activation
value determines the category in which the corresponding image is classified.
We present the average number of misclassified images and its STD for the
test, training and validation sets. The last two columns of the Table concern
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Table 18.6. Average number of misclassified patters in iteration 1. The training,
test and validation set have, respectively, 4775, 682 and 1364 patterns

Training Test Validation Entire Corpus
Network avg std % avg std % avg std % Ext. Int.

1 .1 .2 .001 2.9 1.9 .430 6.5 2.4 .475 - -
2 1.9 3.6 .040 3.7 2.2 .545 8.7 2.9 .635 - -
3 .4 1.9 .008 6.2 2.5 .911 11.3 2.9 .828 - -
4 2.6 2.6 .054 3.9 2.7 .574 9.2 3.6 .672 - -
5 1.0 1.5 .020 10.2 3.4 1.491 22.6 4.5 1.660 - -
6 36.1 7.0 .756 10.8 3.4 1.581 21.9 5.0 1.604 6 5

Average 7.0 2.8 .147 6.3 2.7 .922 13.4 3.6 .976 1.00 .83

the Entire Corpus test. They depict the number of external images classified
as internal (Ext.) and the number of internal images classified as external
(Int.).

A brief perusal of Tables 18.5 and 18.6 shows that most of the ANNs
successfully discriminate between internal and external images. The average
RMSE in test and validation is lower than 0.0232 for all ANNs. Additionally,
the average percentage of correctly classified images always exceeds 98.43%.

There are no statistically significant differences between the RMSEs at-
tained in the test and validation sets,9 which tends to indicate that the ANNs
are generalizing properly.

The comparison between the RMSEs attained by the ANNs that use in-
formation gathered from the three color channels and those that only use
information from the Saturation and Value reveals statistically significant dif-
ferences for test, train and validation sets. Comparing the ANNs that resort to
the Saturation and Value channels with those that only use Value also shows
statistically significant differences for the three sets.

The analysis of the results of the ANNs that use features gathered from
the images’ partitions (ANNs 1, 3 and 5) with those that do not points out the
following: although significant differences exist when we consider the RMSEs
achieved in training, there are not statistically significant differences in the
results attained in the test and validation sets. This indicates that, in the con-
sidered experimental conditions, the information gathered from the images’
partitions is not relevant for generalization purposes.

To confirm the experimental results described above, we performed sev-
eral control experiments. In these tests we randomly assigned a category to
all the patterns used in the different sets. The experimental results indicate
misclassification percentages of, roughly, 50% for the test and validation sets,
regardless of the architecture, thus confirming that the previously described
results do not arise from some implicit bias in the methodology.

9 The statistical significance of these results, and subsequent ones, was determined
through the Wilcoxon–Mann–Whitney test. Confidence level of 0.99.



398 Penousal Machado, Juan Romero, and Bill Manaris

Considering the above experimental findings – which suggest that the in-
formation associated with the different color channels is relevant for general-
ization purposes, while the information gathered from the images’ partitions
is not – we chose the second architecture to guide the evolutionary algorithm.
This architecture employs a relatively low number of features (41), which was
also relevant for our choice. To assign fitness, we select the ANN with the low-
est average RMSE across training, test and validation, among the 30 trained
ANNs corresponding to the second architecture.

Analysis of the EC Results

Figure 18.4 depicts the best individual of each population and the correspond-
ing fitness values. In order to provide a better overview of the full range of
imagery produced in the run we selected some examples, which are presented
in Fig. 18.5. These images have a fitness higher than 4.9, which means that
the ANN is classifying them as external (see Sect. 18.5.2).

The comparison between the images produced and the ones from the in-
ternal set reveals that, while the images of the internal set tend to have very
low or very high complexity, the fittest images found during the run tend to
have intermediate levels of complexity.

This result was expected. Randomly generated images of small depth tend
to be simple. That is why we used a noise generation primitive in two of the
seven random populations of the initial internal set. However, the inclusion
of the noise primitive resulted frequently in mostly random images, which by
definition have high complexity. Since images of intermediate complexity are
frequent in the external set and rare in the internal one, it is only natural that
the ANN has chosen this path to discriminate between both.

The EC algorithm found images that the ANN classifies as external with-
out difficulties. From the fourth population onwards the fitness of the best
individual is above 4.9, from the tenth population onwards the best individ-
ual has a fitness above 9.

18.6.3 Intermediate Iterations

Once an iteration is over, the 2500 images produced by the GP engine are
added to the internal set and the ANNs retrained. As previously stated, we
use a class distribution of one-to-one. The number of external images does
not grow, but the set of internal images keeps expanding. Therefore, in each
training cycle the ANNs are only exposed once to each internal pattern; the
number of times they are exposed to each external pattern steadily increases
from iteration to iteration.

To ensure that the initial conditions are the same for all iterations, we
use a fixed random seed. Therefore, the initial population, albeit randomly
generated, is the same for all iterations. This ensures that the variations in
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0.55 0.71 2.15 3.80 5.81 7.34 7.34

6.86 7.25 8.69 9.51 9.72 9.72 9.76

9.80 9.91 9.67 9.67 9.81 9.72 9.72

9.72 9.42 9.57 9.51 9.31 9.68 8.92

9.28 9.27 8.92 9.27 9.37 9.67 9.80

9.96 9.61 9.74 9.89 9.75 9.88 9.74

9.87 9.70 9.97 9.89 9.94 9.69 9.94

9.75 9.89

Fig. 18.4. Fittest individual from each population of the first iteration. The image
in the upper-left corner corresponds to population 0; remaining images in standard
reading order. The numbers indicate the fitness values
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Pop.12, Ind.6 Fit.7.84 Pop.13 Ind.12 Fit.9.12 Pop.20 Ind.44 Fit.7.38

Pop.39 Ind.49 Fit.9.64 Pop.41 Ind.24 Fit.9.6 Pop.49 Ind.42 Fit.9.65

Fig. 18.5. Selected images from the first iteration (Pop=population,
Ind=individual, Fit=fitness attributed by the ANN)

the type of imagery produced by the GP engine do not result from different
initial conditions.

In Tables 18.7 and 18.8 we provide a synthesis of the results attained in
the training of the ANNs with the second architecture for iterations 1 to 12.

In the first iteration, most training runs end because the test RMSE be-
comes lower than the specified threshold. In the second iteration, most training
runs end because the maximum number of cycles is met. Therefore, in the first
iteration, the training RMSE is higher and test and validation lower than in
the second one. This may be explained by a higher correlation among the test,
training and validation sets in the first iteration – where all internal images
are randomly generated – than in the second one – where the internal set
contains 3500 random images and 2500 evolved ones.

The increase of test and validation RMSE in the second iteration is tem-
porary. The addition of new images resulting from evolutionary runs leads to
better generalization since the set becomes more representative.

As can be observed, from the third iteration onwards the RMSE and the
percentage of misclassified images remain relatively stable for the training,
test and validation sets. The main exception to this trend is the sudden, and
statistically significant, increase in the training RMSE and the misclassifica-
tion percentage from iteration 11 to 12. Due to this difference in performance,
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Table 18.7. Overview of the training results in iterations 1 to 12 of the ANNs with
the second architecture

Training Test Validation
Iteration Cycles avg std avg std avg std

1 863.3 .0010 .0016 .0079 .0037 .0086 .0025
2 953.3 .0003 .0009 .0113 .0039 .0111 .0024
3 913.3 .0003 .0007 .0082 .0025 .0082 .0018
4 943.3 .0003 .0009 .0090 .0028 .0095 .0020
5 823.3 .0005 .0009 .0074 .0029 .0083 .0021
6 920.0 .0003 .0006 .0081 .0024 .0079 .0018
7 930.0 .0005 .0005 .0088 .0027 .0085 .0022
8 886.7 .0004 .0005 .0079 .0026 .0079 .0014
9 880.0 .0007 .0008 .0076 .0024 .0077 .0017
10 940.0 .0006 .0009 .0083 .0025 .0084 .0011
11 893.3 .0008 .0006 .0079 .0026 .0079 .0019
12 916.7 .0016 .0017 .0085 .0026 .0085 .0025

Table 18.8. Average number and percentage of misclassified patterns attained by
the ANNs with the second architecture in iterations 1 to 12. The column “Patterns”
shows the total number of patterns in each iteration

Training Test Validation Entire Corpus
Iteration Patterns avg std % avg std % avg std % Ext. Int.

1 6822 1.9 3.6 .040 3.7 2.2 .545 8.7 2.9 .635 - -
2 9322 .9 3.4 .013 7.4 2.8 .798 14.2 4.2 .759 - -
3 11822 .9 2.4 .011 6.5 2.7 .552 13.3 3.8 .564 - -
4 14322 .8 2.8 .008 8.9 3.4 .624 19.0 4.6 .665 - -
5 16822 2.1 4.3 .018 8.8 4.0 .524 19.7 4.8 .586 - -
6 19322 .8 1.4 .006 11.1 3.7 .572 20.9 5.5 .542 - 1
7 21822 2.5 3.6 .017 12.8 4.5 .586 25.6 6.5 .586 - 1
8 24322 1.6 3.0 .009 13.2 4.5 .545 26.9 4.8 .552 - -
9 26822 2.6 4.2 .014 14.4 5.1 .537 27.4 6.3 .511 - 1
10 29322 4.2 5.8 .021 16.8 5.4 .574 34.5 5.3 .589 - 3
11 31822 5.7 4.3 .026 17.1 6.2 .537 35.5 9.9 .557 - 1
12 34322 16.6 25.1 .069 19.8 5.7 .578 39.6 11.8 .577 - 6

we decided to stop our iterative approach in order to perform a more detailed
analysis.

In the next section we present the results attained by the EC algorithm in
iterations 2 to 11. The ANNs of iteration 12 are analyzed in Sect. 18.6.4.

Analysis of the EC Results

In Fig. 18.6 we present the fittest individual from populations 0, 10, 20, 30,
40 and 50, for iterations 2 to 10. In Fig. 18.7 we present selected examples
from these iterations.
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It. Pop. 0 Pop. 10 Pop. 20 Pop. 30 Pop. 40 Pop. 50

2

0.03 8.22 9.54 9.99 9.95 9.97

3

0.55 6.84 9.71 9.83 9.92 9.64

4

0.01 9.82 9.57 9.86 10.00 9.98

5

0.00 1.29 1.43 9.93 9.98 9.98

6

0.00 1.48 9.45 9.38 9.32 9.36

7

0.18 7.34 7.97 8.92 8.24 8.48

8

0.00 7.93 9.44 9.16 9.39 9.90

9

0.01 1.64 9.94 9.99 9.99 10.00

10

0.00 9.84 9.12 9.55 9.91 9.80

Fig. 18.6. Fittest images from populations 0, 10, 20, 30, 40, 50 of Iterations 2–10
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It. 2

8.22 6.77 8.45 6.09 7.78 9.9

It. 3

8.23 8.12 9.67 9.74 9.65 9.95

It. 4

9.42 9.86 9.57 9.9 9.63 9.82

It. 5

9.9 9.89 9.95 9.48 9.04 9.61

It. 6

8.0 9.62 9.64 9.89 8.31 9.27

It. 7

5.36 7.34 7.04 8.11 8.45 8.21

It. 8

9.82 9.75 9.9 8.18 8.23 9.39

It. 9

9.82 9.99 9.93 9.99 9.89 9.52

It. 10

9.8 9.24 9.76 9.22 9.91 9.94

Fig. 18.7. Selected images from Iterations 2 to 10
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Since the addition of the images of iteration 11 to the internal set led
to the increase of the training RMSE and misclassification percentages on
the twelfth iteration, this iteration is presented with greater detail. In Fig.
18.8 we present the best individual of each population and the corresponding
fitness value, while in Fig. 18.9 we present selected images from the eleventh
iteration.

By nature, the analysis of visual results entails some degree of subjectivity.
We believe, however, that it is safe to say that there are significant differences
in the type of imagery produced from iteration to iteration. For instance, in
the eleventh iteration the EC algorithm converged to a style, characterized
by the use of specific hues and by the low saturation values, that diverges
from those explored in previous iterations. Considering that one of our main
goals was to attain stylistic variation in an autonomous EC framework, the
unlikeness of iterations is a key result.

We are not however, just interested in change. The inclusion of a fixed
aesthetic reference frame is also a key aspect of our approach. It is therefore
important that the generated imagery relates to human aesthetics.

One would expect to observe imagery that gets increasingly closer to the
set of external images as the number of iterations increases. Although this
may be the case in the long run, it is not reasonable to expect this approach
to the aesthetic reference to be steady. To understand why this is the case, it
is important to ponder about the reasons that may lead an ANN to classify
an image as an external one.

The ANNs are trained to distinguish among two sets. However, concep-
tually, three sets can be considered, images that: (i) appear to be paintings;
(ii) appear to be EC-generated; (iii) do not resemble paintings or EC created
ones. Even if an ANN that can fully discriminate between the first two sets
exists, occasionally this ANN will classify images of the third set as paintings.

When this situation occurs, the EC algorithm will, most likely, explore
that path, leading to the generation of images that do not resemble those
belonging to any of the sets. This does not constitute a flaw, in the next
iteration these images will be added to the set of internal images and the EC
algorithm will no longer be able to explore that path. It does mean, however,
that the “approach” to the aesthetic reference frame is not steady.

A simplified example may help in the clarification of the previous state-
ments. Let us consider that only two features exist (x, y), and that external
images are closely scattered around the point (4, 3) while the considered in-
ternal images are scattered around (6, 4). A possible classifier for this system
is: x ≤ 5.5 → external, x > 5.5 → internal. Using this classifier can lead
to the evolution of images with x ∼= 4, the EC algorithm can also overcom-
pensate, e.g., generating images with x ∼= 1. More importantly, y is a free
variable, anything can happen in that dimension, e.g., an image with (0, 10)
would be classified as external. As such, considering a Euclidian space, the
generated images are not necessarily closer to the set of external images than
those belonging to the internal set.
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0.01 0.08 0.09 0.11 0.13 0.11 0.09

0.09 0.09 0.09 0.09 0.15 0.15 0.15

0.15 0.44 6.58 8.64 8.64 9.39 9.88

9.91 9.96 9.94 9.89 9.94 9.91 9.93

9.90 9.95 9.80 9.87 9.95 9.95 9.97

9.90 9.92 9.78 9.92 9.94 9.94 9.92

9.89 9.93 9.95 9.97 10.00 10.00 9.95

9.96 9.97

Fig. 18.8. Fittest individual from each population of the eleventh iteration
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Pop.26 Ind.23 f 8.82 Pop.28 Ind.22 Fit.9.46 Pop.29 Ind.48 Fit.9.03

Pop.30 Ind.25 f 9.8 Pop.37 Ind.35 Fit.9.47 Pop.40 Ind.31 Fit.9.89

Fig. 18.9. Selected images from the eleventh iteration

The successive addition of new images leads to the refinement of the clas-
sifier. For instance, assuming that images with x ∼= 1 were generated, in the
next iteration we could have a classifier such as “2.5 ≤ x ≤ 5.5→ external”.
Alternatively, we could have a classifier that took into account feature y. What
is important is that the space of images classified as internal is expanding.

Thus, from a theoretical standpoint – assuming that the EC engine and
the AAC are adequate and always able to cope – the combination of a fixed
aesthetic reference frame with the ANN training, and the iterative expansion
of the internal set leads necessarily to change (since the EC algorithm is
forced to explore new paths) and to the erratic, but certain convergence to
the aesthetic reference frame.

18.6.4 Iteration 12 – Training Stage

In Tables 18.9 and 18.10 we provide a synthesis of the experimental results
attained in the training stage of iteration 12 for the 6 architectures considered.

The results presented in these tables show that most ANNs were able to
achieve high discrimination rates across training, test and validation sets. All
ANN architectures attain average classification percentages higher than 97.62
in training, test and validation.

The comparison of the training results attained in the first and twelfth
iteration is interesting. There are statistically significant differences in training



18 Experiments in Computational Aesthetics 407

Table 18.9. Overview of the ANNs’ training results in iteration 12. The entries in
bold indicate statistically significant differences between the results attained in this
iteration and the corresponding ones of the first iteration

Training Test Validation
Network Features Cycles avg std avg std avg std

1 246 580.0 .0001 .0001 .0052 .0017 .0058 .0015
2 41 916.7 .0016 .0017 .0085 .0026 .0085 .0025
3 186 866.7 0 .0001 .0071 .0018 .0077 .0020
4 31 1000.0 .0035 .0014 .0117 .0028 .0107 .0022
5 108 1000.0 .0008 .0010 .0222 .0038 .0224 .0048
6 18 1000.0 .0268 .0027 .0330 .0083 .0332 .0071

Average 893.9 .0055 .0011 .0146 .0035 .0147 .0033

Table 18.10. Average number and percentage of misclassified patterns in twelfth
iteration. The training, test and validation set have, respectively, 24025, 3432 and
6864 patterns

Training Test Validation Entire Corpus
Network avg std % avg std % avg std % Ext. Int.

1 0 0 0 12.9 5.2 .376 28.4 7.9 .414 - -
2 16.6 25.1 .069 19.8 5.7 .578 39.6 11.8 .577 - 6
3 .08 .43 .000 17.1 4.2 .499 36.2 9.4 .528 - -
4 44.2 23.7 .184 28.7 7.2 .836 50.8 11.0 .740 2 55
5 9.8 11.2 .041 51.0 9.1 1.485 101.3 21.9 1.476 - 8
6 416.5 56.0 1.734 81.3 21.2 2.370 163.3 37.9 2.380 23 461

Average 81.2 19.4 .338 35.1 8.7 1.024 70.0 16.7 1.019 4.17 88.33

RMSE for all architectures (2, 4, and 6) that do not use information gathered
from the images’ partitions. Taking into consideration that the ANNs used
to guide evolution have the second architecture, these results reveal that the
GP engine is able to find images which are found difficult to classify by the
ANN guiding evolution. The fourth and sixth architectures use a subset of
the features used in the second, which explains the decrease of performance
observed.

For the architectures using partition information architectures, the differ-
ences in training RMSE are not significant. Most features considered in these
architectures are not present in the second one. As such, there was not a
specific evolutionary pressure on these features, and consequently their per-
formance in training was relatively unaffected.

The increase of cardinality of the training sets allowed the ANNs with the
first and third architectures (the ones that have a higher number of features)
to achieve better generalization. For the ANNs with the second architecture,
in spite of the increased difficulty in training, the performance in the test and
the validation sets is similar to that attained in the first iteration. The same
does not apply to the ANNs with the fourth and sixth architecture, whose
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performance is significantly worse than that attained in the first iteration.
The performance of the ANNs with the fifth architecture appears to be unaf-
fected. This is probably due to the low degree of overlap between the features
considered in this architecture and in the second.

Nevertheless, it is important to remember that the ANNs of the first and
twelfth iterations are not being tested on the same sets. The ANNs of the
first iteration would attain poor results if tested on the validation sets of the
twelfth.

18.7 Independent Validation Experiments

The existence of repeated patterns induces a bias in the experimental results
presented in the previous section. Therefore, we conducted a series of control
experiments in order to understand better the changes induced by the iterative
refinement of the internal set of images. We are mainly interested in comparing
the performances of the ANNs used to guide the evolution in iteration 1 and
11.

To achieve this goal we employ three sets of images. The first comprises
2000 images, made by artists that were not on the training set, from a col-
lection of painting masterpieces [45]. The second consists of images retrieved
with Google image search using the keyword “painting”, containing the first
947 hits that do indeed correspond to paintings. In the context of an “Arti-
ficial Art” event, several students used NEvAr in interactive mode to evolve
a large number of images, submitting their favorite ones to the online gallery
associated with the event.10 The third set comprises the 278 images submitted
(a sample of these set can be found in Fig. 18.3).

In Table 18.11 we provide a synthesis of the results attained in these exper-
iments, presenting the percentage of images classified as external, following a
winner-takes-all strategy, attained by the ANNs used in the first and eleventh
iteration.

These results suggest that the fixed aesthetic reference frame provided by
the external set is achieving its task, allowing both ANNs to discriminate
between images that may be classified as paintings and images that were
created with NEvAr.

Table 18.11. Percentage of images classified as external by the ANNs used to guide
evolution in iterations 1 and 11, and difference among them

Set Iteration 1 Iteration 11 Difference

Painting masterpieces 99.68% 96.88% −2.80%
Images retrieved with Google 96.41% 90.92% −5.49%
User-guided evolution 17.99% 10.07% −7.91%

10 http://sion.tic.udc.es/jornadas/
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When these results are compared with those attained in the validation sets
of iterations 1 and 11, where these ANNs correctly classify roughly 99.5% of
the images, a difference in performance can be observed. Several factors may
contribute to it:

1. The sets used in the interactions have artworks by the same painters
and images from the same evolutionary runs. Therefore, the correlation
between the training and validation sets of each iteration is stronger than
the correlation between the training set and the images used in these
experiments.

2. The images of the external set used to train the ANNs are artworks of
renowned artists. The images retrieved from Google originate from a wide
variety of sources (e.g., amateur works, child art, etc.), which also explains
why the results attained with these images are worse than those attained
with the collection of masterpieces.

3. The images resulting from interactive evolution are those selected by the
users, i.e., images that were considered remarkable by them. As such, the
percentage of atypical images in this set is likely to be higher than the
percentage of atypical images in the entire evolutionary run.

Comparing the results of the ANN of the first iteration with those of
the eleventh reveals a decrease of the percentage of the images classified as
external (2.80% and 5.49%, respectively). On the other hand, the increase in
performance in the set resulting from user-guided evolution is 7.91%, a value
that surpasses the differences observed in the other sets.

When combined, these results indicate that the ANN from iteration 11
is able to refine its capacity to recognize internal imagery without seriously
hindering its performance in a set of external images that was not used in
training, i.e., the ANN appears to be able to keep the provided aesthetic
reference frame and to generalize properly, which confirms the experimental
findings of the previous sections.

18.7.1 Borderline Images

We are also interested in determining which images are the most difficult to
classify. To achieve this goal we conducted two different experiments. In both
cases, the training set is composed of 100% of the images of the external set,
of the initial random internal set, and of the images generated in generations
1 to 11 (inclusive).

In the first test, we do not employ a class distribution. Due to the different
cardinalities of the sets, the ANN is exposed to, approximately, 10 internal
images for each external one. In the second test we employed a class distri-
bution of 10 to 1, which means that the ANN is exposed to, roughly, 100
external images for each internal image. The rationale is the following: in the
first test the ANN is exposed to more internal images, as such it will tend to
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misclassify external ones. Conversely, in the second test, the ANN will tend
to misclassify internal images.

We employed the second architecture. The parameters used in training are
similar to those used in the “Entire Corpus” tests, the exception being the use
of a lower learning rate (0.1) and a higher number of training cycles (10000).
In this case, for each experiment, 30 repetitions were performed.

In the first experiment, on average, 2.60 internal images were classified as
external, and 4.56 external images were classified as internal. In the second
experiment, an average of 2.93 internal images are misclassified, while no
external images are misclassified.

The external images that are misclassified most frequently are: Salvador
Daĺı, “Fried Egg on the Plate Without the Plate” (1932), “Battle in the
Clouds” (1979); Pablo Picasso, “Paul as a Pierrot” (1925); Amedeo Modigliani
“Nude — Anna Akhmatova” (1911) and “Stone Head” (1910); Henri Matisse,
“La Musique” (1910).11

These results were, to some extent, unexpected. One could assume that the
ANN would tend to misclassify external images that resemble those created
by the EC algorithm. Instead, the misclassification errors occur in images that
are atypical in the scope of the considered external set.

Daĺı’s artwork, “Fried Egg on the Plate Without the Plate” and Picasso’s
“Paul as a Pierrot” are, in the employed version, images of little detail and
texture. “Battle in the Clouds” is a stereoscopic work, which is odd in the
present context. The artwork “Nude — Anna Akhmatova”, by Modigliani is
a pencil on paper drawing, while “Stone Head” is a sculpture. Both stand out
for obvious reasons in a set composed mainly of paintings. Matisse’s work “La
Musique” can also be considered atypical in regard to the remaining images
that compose the set. In addition, the image was saved at a low resolution,
which may cause perturbations of the features values.

The internal images that are misclassified most frequently are presented in
Fig. 18.10. Although one can argue that some of these images are more similar
to paintings than the images typically created with NEvAr, the comparison
between these images and those generated throughout the runs shows that
they are, above all, uncommon.

It is interesting to notice that three of these images were previously selected
to illustrate the types of imagery produced during the iterative runs (see Figs.
18.5 and 18.7). By browsing the book’s DVD the reader can verify that these
images stand out from the images of their iteration, capturing the attention
of the viewer, which alone grants them more chances of being selected.

Overall, the results presented in this section confirm that the ANNs are
able to generalize properly and to identify correctly images that are stylisti-
cally consistent with the set of internal or external images.

11 For copyright reasons we are unable to reproduce these images, nevertheless the
interested reader will easily find them on the Web.
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Fig. 18.10. Internal images that are most frequently misclassified

18.8 Conclusions

We have presented a novel approach that relies on the competition between
a classifier and an EC algorithm to promote the iterative refinement of the
classifier and to change the fitness landscape of the EC.

The use of a training set that contains human-made artworks and evolu-
tionary ones is one of the key ingredients of our approach. The inclusion of
a static aesthetical reference frame composed of human-made artworks pro-
vides a stable attractor across evolutionary runs, fostering the production of
imagery that relates to human aesthetics. The systematic addition of evolu-
tionary artworks to the training set fosters the refinement of the classifier,
promoting stylistic change from one evolutionary run to the other.

The experimental results attained point towards the following results:
stylistic change was achieved; the classifiers are able to discriminate between
internal and external imagery, attaining success rates above 97.5% in the val-
idation sets; the iterative refinement of the training set, by the addition of the
images created by the EC system, gave rise to more discerning classifiers.

The experimental results attained in the independent validation tests con-
firm these findings, showing the following: the classifiers are able to classify
properly images, human-made or artificial, that are not related to the em-
ployed training sets, attaining success rates above 89%; that the classifiers
can also be used to identify images that stand out from the remaining images
of the set.

Although the approach was primarily designed for stylistic change, it can
be used for different goals. One of the most obvious applications is its use
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to identify shortcomings of classifier systems (e.g., face recognition ones),
through the evolution of patterns that are misclassified.

It can also be used to evolve images that match the aesthetic preferences
of a given user or set of users. This goal might be attained by replacing the
external set of artworks by a set of artworks that match these preferences. In
the present paper, the search was oriented to images outside the normal range
of NEvAr, which is inherently a difficult task. Using the same approach, one
could search images that, although characteristic of NEvAr, are highly valued
by the user(s).

It could also be worth exploring the use of the proposed approach, in the
context of a partially automated EA tool [8], to assign fitness or to eliminate
undesirable imagery. Another possible application is the creation of images
that mimic a specific style, including the style of other artificial art tools. A
further possibility is the combination of the evaluation made by the classifier
with those made by hand-coded fitness functions.

Although the experimental results attained so far are promising, there is
still room for improvement. The feature extractor is probably the module that
will undergo more changes in the near future.

As previously mentioned, the FE used has limitations in the handling of
color information, in particular Hue. The transition to a perceptually uniform
color space may mitigate this problem. Following the same set of ideas ex-
plored in our research in the musical domain [5, 6], the inclusion of metrics
specifically designed to characterize relevant aspects of the images’ coloring,
such as color consonance or color neighborhood, may also play an important
role. The inclusion of features that deal with aspects such as the distribution
of the points of interest, texture and contour analysis, can also be a significant
improvement.

Due to the considerable computational effort associated with feature ex-
traction and image rendering, we were forced to use a working resolution of
128 × 128, which may be too small to allow a good characterization of the
images, in particular of the external ones, and the evolution of more refined
artworks.

Exploring different ways to map the output of the classifier to fitness val-
ues may also prove relevant. In particular, since the analysis of the connection
weights of the different ANNs suggests that different strategies are being em-
ployed to classify images, using a set of ANNs to guide evolution, instead of
using just one, may contribute to a smoother fitness landscape. The replace-
ment of the ANN by an evolutionary classifier is also an interesting possibility.

Although our system has now, in some sense, the ability to “see”, it lacks
the ability to wander. More precisely, the external images are supplied by us. It
would be both interesting and conceptually relevant to let our system navigate
through the Internet, collect images, build its own aesthetic references, etc.
Alternatively, connecting the system to a camera or TV in order to retrieve
images from the “real world” is also an intriguing possibility.
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