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Many people have a distorted view of Artificial Intelligence (AI). As Astro 
Teller observes, for most people “Artificial Intelligence is the science of how 
to get machines to do the things they do in the movies.”1 AI researchers often 
have to deal with misconceptions created by the doomsday scenarios portrayed 
in movies such as the 1983 classic War Games or the Terminator series. These 
movies provoke fear. Others present a romantic view of AI. For instance, the 
1984 movie Electric Dreams is about a boy who bought a computer and acci-
dentally spilled a beverage on it. As a consequence, the computer developed 
AI. Listening to the girl next door practicing the cello, it learned how to play 
and compose music, fell in love with the girl, tried to kill its owner, and ended 
up committing suicide.

In reality, since its inception, AI research has given considerable empha-
sis to logic, reasoning, problem solving, planning, natural language processing, 
expert systems, chess, et cetera. In several tasks requiring intelligence, state-of-
the-art AI systems are now able to attain human competitive results or even to 
surpass human performance. Yet, in tasks requiring creative reasoning, such as 
art, design, music, and poetry, computers are far from reaching the accomplish-
ments of humans. As Dissanayake observes, art-making activities are ubiquitous, 
have evolutionary value, and are a part of human behavior since prehistory.2 
Creativity is often regarded as one of the most remarkable characteristics of the 
human mind. Not surprising, then, that the search for computational “creativ-
ity” should be a central aspect of AI.

During the initial years of AI research, the main source of inspiration was 
human intelligence. Over the years, researchers have realized that many other 
sources of inspiration can be used. Establishing analogies with physics phenom-
ena gave rise to novel search methods such as Simulated Annealing,3 Hopfield 
Networks,4 and Elastic Networks.5 Currently, there is a growing interest in 
bio-inspired computing, an area of research that comprises techniques such as 
Evolutionary Computation (EC), Swarm Intelligence, Ant Colony Optimiza-
tion, and Artificial Life.

Through time, evolution has created a wide variety of species adapted 
to their environment. Some of these species—for example, humans—exhibit 
intelligent behavior. Since evolution is the source for natural intelligence, it 
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naturally became a source for AI. According to Darwin, 
evolution is based on two fundamental principles: selection, 
and reproduction with variation.6 Selection ensures that fit-
ter individuals are more likely to reproduce. The descendants 
of these individuals inherit characteristics from the progeni-
tors—which implies that they tend to be fit—but they are 
not exact copies, which allows evolution. The reinterpreta-
tion of Darwin’s ideas in light of Mendel’s genetics, that is, 
neo-Darwinism, explains how characteristics are inherited 
and how and why changes occur. Natural selection occurs at 
the phenotypic level, while reproduction acts on the geno-
type.7 The characteristics of the individuals are not directly 
inherited. Instead, the genes that codify these characteris-
tics and those that enabled their development are inherited. 
Variation results from copying errors—that is, mutations—
and from the recombination of the genetic material of the 
progenitors.

The goal of EC research can be synthesized as fol-
lows: “How do we turn Darwin’s ideas into algorithms?”8 
Nowadays, EC comprises a wide and growing variety of 
stochastic algorithms. In spite of this variety, they have the 
same main characteristics, so they can all be seen as instances 
of a generic evolutionary algorithm (see algorithm 1).

Algorithm 1 Generic Evolutionary Algorithm

P ← generate-initial-population ()
while termination criteria not met do evaluate (P)
P’ ← select-individuals (P(t))
P” ← apply-genetic-operators (P’)
P ← create-next-population (P,P’’)
end-while
return simulation result

To illustrate how such an algorithm would work, we’ll 
look at the Four-Color Map problem, which consists in 
coloring a map using a maximum of four colors in a way 
that ensures that no country has a neighbor with the same 
color.9 Using EC to solve this problem implies a series 
of analogies. Each individual is a candidate solution to the 
problem. In other words, each individual is a colored map. 
The fitness of an individual is proportional to the quality of 

the solution. Thus, a colored map where no neighbors share 
the same color has maximum fitness, while map-colorings 
that violate this constraint will be penalized proportionally 
to the number of times they violate it.

To apply EC, one must find an adequate representa-
tion. For instance, one can consider that the genotype of 
each individual is composed of a chromosome, represented 
by a string, composed of n genes, where n is the number 
of countries in the map. Genes can assume four values, rep-
resenting the color associated to the corresponding country.

Once the representation is chosen, one must also 
define adequate genetic operators. When two progenitors 
reproduce there is a probability, for example, 70 percent, of 
recombination of their genetic code. When recombination 
does not occur, the genetic code of the descendants is a 
copy of the progenitors’ code. For the purpose of recom-
bination one could use 1-point crossover: a number (x) 
between 1 and n is randomly selected, and two descendants 
are generated by copying the first x genes from the first 
parent and the remaining genes from the second (and vice 
versa for the second individual). After this stage, the muta-
tion operations take place. Each gene of the descendants 
has a probability of suffering a mutation, for example, 1 
percent. Mutation can be implemented as follows: the value 
of that gene is replaced by a randomly chosen number 
between 0 and 3.

One must also define a selection scheme. Tourna-
ment-based selection is appropriate for this problem, that 
is, to choose a progenitor, one starts by randomly select-
ing a given number of individuals (e.g., five) among the 
population, and the fittest of these individuals will be the 
progenitor. An individual may be selected more than once 
for reproduction.

Finally, one must define an initialization method, a 
replacement scheme, and a termination criterion. For the 
sake of simplicity one can assume that an initial popula-
tion of a particular size (e.g., one hundred) individuals is 
created by randomly choosing values for their genes; non-
elitist generational replacement, that is, each population of 
individuals is entirely replaced by its descendants; and the 
simulation will stop when the map-coloring with maximum 
fitness is found.
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Considering these choices, the algorithm would 
proceed as follows. An initial population of one hundred 
randomly generated individuals is created. Each of the 
population’s individuals is evaluated and its fitness deter-
mined. Fifty pairs of individuals are selected as progenitors 
by using tournament selection; individuals may be selected 
more than once. These generate one hundred descendants 
by the application of the genetic operators described earlier. 
The descendants replace the progenitors, thus becoming the 
current population. The cycle is repeated, from the evalua-
tion step, until a map where no neighboring countries share 
the same color is found.

Currently the most prominent EC approaches are 
Genetic Algorithms (GAs), invented by Holland, and Genetic 
Programming, popularized by Koza 10 The most significant 
differences between these approaches concern representa-
tion and genetic operators. In a GA, the genome codifies 
a set of parameters or characteristics necessary to build the 
phenotype and is typically represented by a string. Thus, 
the described map-coloring approach is a GA. In GP the 
genotypes are programs—typically represented by a tree-like 
structure—the execution of which results in the phenotype.

To a large extent, the appeal of EC is its independence 
from problem-specific knowledge. Thus, one does not need 
to know how to solve a problem; the only requirements for 
applying EC are finding an adequate encoding and a way to 
assign fitness. Likewise, the ability to use EC in an artistic 
domain depends on finding an adequate way to represent 
and evaluate artistic objects.

In his 1986 book The Blind Watchmaker, Richard 
Dawkins delineates a program that allows the evolution of 
the morphology of “virtual creatures” or biomorphs.11 More 
precisely, each biomorph is a drawing, the appearance of 
which depends on the values of a set of parameters encoded 
in a string, the genotype. The biomorphs of the current 
population are displayed on the screen, and the user indi-
cates his/her favorite ones. In other words, the user guides 
the GA, which circumvents the need to develop a com-
putational fitness function. This influential work led to the 
emergence of a new research area, evolutionary art.12 Due 
to the subjectivity inherent in artistic production, and the 
subsequent difficulty of creating an algorithm capable of 

assigning fitness to an artwork, most evolutionary art systems 
are also guided by the user.

Draves’ Electric Sheep—the name pays tribute to Philip 
K. Dick’s novel Do Androids Dream of Electric Sheep?—is 
one of the most notable evolutionary art projects.13 Like 
Dawkins’ biomorphs, Electric Sheep features a user-guided 
parametric evolution model. In this case, the individuals 
are “fractal flames,” a particular kind of fractal, invented by 
Draves, that belongs to the so-called Iterated Function Sys-
tem category of fractals.14 The genotypes consist of several 
hundreds of floating point numbers that encode parameters 
for the fractal formula, controlling the scattering of the bil-
lions of particles that compose each image. Electric Sheep is a 
distributed computing project currently involving more than 
350,000 users. Acting as a screensaver, it takes advantage of 
the computer’s idle time to render the individuals, that is, 
“sheep,” that are being evolved collectively. Interested users 
can vote on their favorite sheep, thus shaping the course 
of evolution.

In parametric evolution models, the genetic code is 
a visual language defined by the designer of the system. 
Therefore, “creating a parametric model implicitly creates a 
set of possible designs or a solution space.”15 As such, these 
systems tend to have an identifiable system signature that is 
closely related to the choices made by the human designer. 
The model should be compact, that is, genotypes should be 
relatively small; expressive, meaning that it should allow a 
wide variety of shapes; and robust, in the sense that interest-
ing images should be easy to find.16 Parametric evolution 
has been applied to a wide variety of domains including 
the evolution of cartoon faces,17 fonts,18 line drawings,19 sur-
faces,20 and consumer product design.21

The seminal work of Sims gave rise to another popu-
lar evolutionary art approach: expression-based evolution.22 
In addition to Sims’ work, notable examples of this tech-
nique include works by Latham, Rooke, and Hart.23 (Hart’s 
work is on the cover of TER.) We shall use NEvAr (Neuro 
Evolutionary Art) to illustrate this approach. Largely inspired 
by the work of Sims, it allows the evolution of populations 
of images, using GP as in Sim’s work. Each genotype is a 
program—in this case, a symbolic expression represented 
as a tree. These programs are constructed from a lexicon 
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Figure 1. Still images from Generation 243 by Scott Draves and the Electric Sheep (2009), commissioned by Carnegie Mellon 
University for the Gates Center of Computer Science
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of functions and terminals. The function set is composed 
mainly of simple functions such as arithmetic, trigonometric, 
and logic operations. The terminal set is composed of two 
variables, x and y, and some random constants. The phe-
notype (image) is generated by evaluating the genotype for 
each (x, y) pair belonging to the image. Thus, the images 
generated by NEvAr are graphical portrayals of symbolic 
expressions (see figure 2).

In order to produce color images, NEvAr resorts to 
a special kind of terminal that returns a different value 
depending on the color channel being processed. Recombi-
nation is performed using the standard GP crossover opera-
tor, which exchanges sub-trees between individuals.24 Five 
mutation operators are used: sub-tree swap, sub-tree replace-
ment, node insertion, node deletion, and node mutation.25

Like most, if not all, evolutionary art systems, NEvAr 
has a signature—in the sense that it is more prone to gen-
erate certain types of images than others—that is closely 
related with the function set, genetic operators, and gen-
otype-phenotype mapping used. Nevertheless, as demon-
strated by Machado and Cardoso, it is theoretically possible 
to generate any image with NEvAr, and the same is true 
for several other expression-based evolutionary art systems.26 
This means that “Every great (and not so great) work of 
visual art is in there, past, present and future, as are images 
of political assassinations, nude celebrities (even ones that 
have never posed nude), serial killers, animals, plants, land-
scapes, buildings, every possible angle and perspective of our 
planet at every possible scale and all the other planets, stars, 
galaxies in the universe, both real and imaginary. Pictures 
of next week’s winning lottery ticket, and of you holding 
that winning ticket.”27

In practice, the images tend to be abstract and have a 
computer-generated appearance. Nevertheless, a patient and 
disciplined user is able to guide evolution from an initial, 
randomly generated population, to populations of images 
that meet the users’ preferences.

Recently, Graça and Machado have developed “Evolv-
ing Assemblages,” a system that evolves large-format repro-
ductions of input images by assembling 3-D objects, using 
GP and interactive evolution.28 In this case, each individual 
is a program that receives an image as input and generates 

an assemblage as output. To accomplish this, each genotype 
comprises five trees. Based on the input image and for each 
of its pixels, the first tree selects, from a list of available 
objects, which type of object will be placed on the canvas; 
the second tree determines the rotation applied to each 
object; the third one determines the size of each object; the 
fourth one determines the x coordinate where the object 
will be placed; and, finally, the fifth one determines the y 
coordinate. Once the assemblage is calculated, the color of 
objects is determined: each object assumes the color of the 
pixel of the input image where its center is placed.

GP approaches have also been used in domains such 
as the evolution of painterly renderings,29 line-based draw-
ings,30 plant-like shapes and other 3-D objects,31 l-systems 
(see McCormack for a survey32), filters,33 animations,34 and 
architectural plans.35

Outside the field of the visual arts, evolutionary 
approaches based on GAs or GP have been applied to 
sound synthesis, improvisation, harmonization and compo-
sition (see Miranda and Biles for a survey36); poetry genera-
tion37; choreography;38 and many other fields. (See figures 
3, 4, and 5.)

Although interactive evolution techniques have been 
used to produce a wide variety of artistic artifacts, this pres-
ents several problems. The most pressing problem is the user 
fatigue caused by the need to evaluate a large number of 
individuals.40 Other problems include the subjectivity of the 
task, the lack of consistency in the users’ evaluations, and the 
bias toward novelty. All these factors have a negative effect 
on the evolutionary process. Moreover, interactive evolution 
techniques skirt an important AI objective: building a com-
putational system capable of performing aesthetic judgments, 
even if limited ones.

In general terms, there are three main approaches for 
the automation of the fitness assignment step of evolution-
ary art systems: using handwritten fitness functions; using 
machine learning techniques and using co-evolutionary 
approaches.

Machado and Cardoso took inspiration from the 
works of Arnheim as well as from research that points 
toward a preference for simple representations of the world, 
and a tendency to perceive it in terms of regular, symmetric 
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Figure 2. In the top row: function f(x, y) = (x + y) / 2 represented as a tree (the format of the genotype); as a 3-D chart and as 
an image produced by assigning to each pixel a luminance proportional to the height of the corresponding position of the 
3-D chart. In the second row: two individuals and their corresponding genotypes. In the third row: the descendants produced by 
performing a crossover operator at points P

A
 and P

B
 and swapping the corresponding sub-trees (depicted in lighter gray).
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Figure 3. Images from the series bodies of sin created with NEvAr using interactive evolution. These images are, arguably, the 
first set of pictorial images created using expression-based evolution and were first displayed at EvoMUSART’2005, Lausanne, 
Switzerland.
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Figure 4. Assemblages evolved by Graça and Machado in the scope of the Evolving Assemblages project, which won the 2010 
Genetic and Evolutionary Computation Conference Evolutionary Art Competition.
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and constant shapes.41 As a consequence, they have explored 
the working hypothesis that aesthetic value has a link with 
the sensorial and intellectual pleasure experienced in finding 
a compact percept (internal representation) of a complex 
visual stimulus. The identification of symmetry, repetition, 
rhythm, balance, et cetera, can be a way of reducing the 
complexity of the percept, which may explain these aes-
thetic principles and the ability of the brain to recognize 
them in an “effortless” way.

Following this set of ideas, in “Computing Aesthetics,” 
we propose an aesthetic theory: those images that produce 
a complex visual stimulus and yet result in a compact per-
cept—that is, a compact internal representation—tend to be 
valued.42 For instance, fractal images are usually complex, 
and highly detailed; yet they can be compactly described 
by a simple mathematical formula. The self-similarity of 
these images can make them easier for our brain to process, 
allowing one to build a compact percept, which would 
explain, according to this theory, why fractal images tend 
to be aesthetically interesting.

To test this theory, we used JPEG- and quad-tree–
based fractal image compression to estimate the complexity 
of the visual stimulus and the percept.43 In “All the Truth,” 
we used a variation of the proposed formula to assign the 
fitness, thus making NEvAr autonomous.44 In recent years, 
several evolutionary art systems that use complexity esti-
mates to assign fitness have been proposed. Neufeld, Ross, 
and Ralph present a genetic programming engine generat-
ing non-photorealistic filters by means of a fitness function 
based on Ralph’s bell curve distribution of color gradient.45 
The model was implemented by doing an empirical evalua-
tion of hundreds of artworks. Their paper contains examples 
of some of the non-photorealistic filters created. In one of 
his works, Greenfield uses geometric measurements induced 
by the color organization of the images.46 The algorithm 
reduces the images to a small number of regions of the 
same color. Fitness is assigned by performing a weighted 
sum of three geometric assessments of these regions: the 
sum of their areas, of their boundary lengths, and of the 
adjacencies among them. In a later work, Greenfield used 
a multiple-objective optimization approach to fitness assign-
ment.47 The goal was to maintain several “species” within 

Figure 5. Morphogenetic design experiment—AA Strawberry 
Bar, 2003, Achim Menges, using Genr8.39
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the same population of images. He defines multiple static 
fitness functions. Each of these functions uses two out of 
three previously described assessments. Since the assessments 
are incompatible, this fosters the specialization of the indi-
viduals and the appearance of species.

The first attempt to fully automate an evolutionary 
art system appears in the work of Baluja, Pomerlau, and 
Todd.48 They begin by using interactive evolution to build 
a set of images evaluated by users. In a later stage, they 
use machine-learning techniques, namely, Artificial Neural 
Networks (ANNs). ANNs are inspired in the structure and 
functional aspects of the brain. They are composed by a set 
of interconnected (artificial) neurons, and have been used 
successfully in a wide variety of tasks, including time series 
prediction, robotic controllers, and face and character recog-
nition. The appeal of ANNs is their ability to learn from a 
set of examples. Baluja and colleagues use the set of images 
evaluated by the user to train an ANN, which is meant to 
learn the preferences of the users. Although the authors clas-
sify the results as “somewhat disappointing,” this work is an 
important step toward the automation of fitness assignment.

Saunders and Gero use a Self-Organizing Map ANN 
to assign fitness to the images produced by an expression-
based evolutionary system.49 Self-Organizing Map ANNs 
do not require a training step; they automatically organize 
the input data—in this case, images—into clusters accord-
ing to their similarity. (It is important to notice that this 
computational similarity may be significantly different from 
similarity as perceived by humans.) The goal of their system 
is to study the emergence of novelty. As such, fitness depends 
on the dissimilarity of an image to the existing clusters of 
images. In general terms, the experimental results indicate 
that their evolutionary algorithm tends to produce increas-
ingly complex images.

The work of Saunders and Gero also has a co-evo-
lutionary inspired component. They use an agent-based 
framework, where each artificial agent has its own expres-
sion-based evolutionary system and Self-Organizing Map. 
When an agent finds an image that has the “right” degree 
of novelty, it shares the genotype with other agents. If a 
receiving agent also finds the image adequately novel, the 
genotype is included in the population of its evolutionary 

system and the receiving agent issues a credit to the agent 
that discovered the image. Thus, although there is not a 
direct arms race among agents, agents influence each other 
by communicating the genotypes of the artworks they pro-
duce to other agents.

Rooke was the first one who made an attempt to use 
a co-evolutionary approach in the context of evolutionary 
art, but he never published the results of these experiments. 
Gary Greenfield states that “Rooke’s idea was to try to co-
evolve a population of art critics, which he called ‘image 
commentators,’ to perform the aesthetic evaluations of the 
images his Sims’ inspired system generated.”50

Greenfield implemented an interesting solution to 
the automation of the fitness assignment. He co-evolves a 
population of images, using an expression-based evolution-
ary system, and a population of convolution image filters. 
For determining fitness, the filters are applied to the images, 
possibly changing them. The fitness of an image is propor-
tional to the amount of change introduced by the filters. The 
fitness of a filter is inversely proportional to the changes it 
introduces in the population of images. Thus, in simple terms, 
each filter acts as a “parasite” and its survival depends on 
the ability to pass unnoticed. On the other hand, the fitness 
of an image depends on its ability to identify the parasites, 
by making them visible. This co-evolutionary setup tends to 
converge toward states where white-noise images are pre-
dominant. Nevertheless, a given type of imagery is, typically, 
unable to dominate the population for too long because of 
the evolutionary pressure caused by the parasites. This con-
stant tension generates an interesting evolutionary dynamic.

The latest development of NEvAr is also inspired by 
co-evolution. Like Baluja and colleagues, we employ ANNs. 
However, there is an important difference: by employing 
a set of metrics—for example, complexity estimates—we 
measure several characteristics of the images; the ANNs base 
their judgments on the characteristics of the images. Thus, 
in simple terms, the ANNs never see the images; they only 
have access to their characteristics. By these means, the train-
ing of the ANNs is performed using information of a higher 
level of abstraction than the images’ pixels.

The goals of this setup are twofold: first, the cre-
ation of images without human intervention. The only 
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information provided to the system is a set of images—in 
this case five thousand paintings made by renowned art-
ists—that acts as an aesthetic reference. Second, the creation 
of a system that systematically explores new styles. For this 
purpose, we employ a method, inspired by co-evolution 
that promotes stylistic change from one evolutionary run 
to the next.

The ANNs are trained by showing them two classes 
of images: a set of paintings by well-known authors and 
a set of images generated randomly by NEvAr. Once this 
is done, an evolutionary run is initiated and the trained 
ANNs are used to assign fitness to the images evolved by 
NEvAr. The evolved images that the ANNs fail to identify 
as being produced by NEvAr have maximum fitness. The 
goal is twofold: first, to evolve images that relate to the 
aesthetic reference provided by the first class, which can be 
considered to be an inspiring set; second, to evolve images 
that are novel in relation to the imagery typically produced 
by the system. Thus, rather than trying to replicate a given 

style, the goal is to break away from the traditional style 
of the system. Once novel imagery is found—that is, when 
NEvAr is able to find images that the classification system 
fails to classify as being created by NEvAr—these images 
are added to the second class, the classifier is retrained and 
a new evolutionary run begins. This process is iteratively 
repeated and the method fosters a permanent search for 
novelty and deviation from previously explored paths.

In our last experiment, the system performed twelve 
consecutive evolutionary runs.51 During these runs, the arms 
race between the ANNs and the evolutionary system was 
always balanced: the evolutionary engine was always able to 
find images that were misclassified by the ANNs. However, 
after these were added to the set of training images, the 
ANNs were always able to discriminate between the images 
created by evolution and the set of paintings (with a success 
rate above 98 percent), thus fostering a stylistic change in 
the next evolutionary run. Additionally, we conducted some 
tests using the ANNs from different iterations to classify 

Figure 6. Examples of images created using NEvAr’s approach to stylistic change. The images in the top row characterize the 
type of imagery being produced during the first evolutionary run of the process; the ones in the bottom row depict the style of 
the eleventh evolutionary run of the experiment.
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external imagery that did not belong to the training sets. 
The experimental results show a gradual improvement of 
performance as the number of runs increases. This result 
indicates that the competition between systems improved 
not only the performance of the ANNs but also their gen-
eralization abilities. The evaluation of the aesthetic merit of 
the evolved images is subjective. Nevertheless, it is reason-
able to state that in each run evolution converged to a 
consistent style of imagery, and that the evolved styles are 
all significantly different from each other. Hence, the main 
goals of the approach were attained.

The assessment of the aesthetic merit of the evolved 
images is subjective; therefore we provide examples of imag-
es evolved during the first and twelfth evolutionary runs. 
The CD accompanying the handbook The Art of Artificial 
Evolution includes the thirty thousand images evolved in the 
course of this experiment.52 Additionally, it is safe to say 
that in each run evolution converged to a consistent style 
of imagery, and that the evolved styles are all significantly 
different from each other.

Evolutionary art research is reaching maturity, and 
part of this process is the growing awareness of the various 
social, artistic, and scientific challenges the area faces. From 
a social standpoint, building tools that foster the creativity 
of the user is probably the most prominent goal. From an 
artistic perspective, the greatest challenge is the acceptance 
of the evolutionary approach as a significant art practice. 
Promoting the participation and close involvement of artists 
in the design of these systems is crucial for meeting this 
challenge. From a scientific standpoint, the most important 
challenges include the automation of fitness assignment, the 
creation of systems that develop their own aesthetics, the 
integration and interaction of these systems in a cultural 
environment, and the pursuit of new forms of human–
machine interaction.

Evolutionary art results in dynamic models whose 
behavior is neither totally defined nor predictable by the 
model’s creator. In fact, since the only requirement is having 
a way to assign fitness, EC allows the discovery of solutions 
to problems for which very little knowledge is available. This 
allows their application to creative tasks, such as art, that we 
are—and might always be—far from fully understanding.
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