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ABSTRACT
In this chapter we study the feasibility of using Turing Machines as a model for the
evolution of computer programs. To assess this idea we select, as test problem, the Busy
Beaver — a well-known theoretical problem of undisputed interest and difficulty
proposed by Tibor Rado in 1962. We focus our research on representational issues and
on the development of specific genetic operators, proposing alternative ways of
encoding and manipulating Turing Machines. The results attained on a comprehensive
set of experiments show that the proposed techniques bring significant performance
improvements. Moreover, the use of a graph based crossover operator, in conjunction
with new representation techniques, allowed us to establish new best candidates for
the 6, 7, and 8 states instances of the 4-tuple Busy Beaver problem.
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INTRODUCTION
In 1937 Alan Turing, while trying to solve one of the problems posed by Hilbert,

developed a theoretical computational model that became known as Turing Machines
(Turing, 1937). According to the Church-Turing thesis, these finite state machines,
although simple, are able to solve any problem that is solvable by an algorithm.
Nowadays this thesis is well accepted, and, as such, the class computable and Turing-
computable problems are recognized as equivalent.

The main goal of our research is to test the viability of using Turing Machines (TMs)
as a model for the evolution of computer programs. More specifically, we propose a
framework for the evolution of TMs, and test its performance in a well-known problem,
the Busy Beaver (BB). This problem was proposed by Tibor Rado in 1962 (Rado, 1962)
and became one of the most famous in the area of Theory of Computation.

In a colloquial way, this problem can be formulated as follows:

“What is the maximum number of 1s that an N-state halting TM can write when started
on a blank tape?”

The N state machine that writes the maximum number of 1s is named Busy Beaver.
The rationale for choosing the BB problem lies in some of its properties that make

it extremely appealing to study the competence of an Evolutionary Computation (EC)
algorithm. Some of these properties are:
• It is an undecidable problem. Most approaches that deal with it try to perform an

exhaustive search over the space of possible solutions. We expect that an EC
algorithm can discover good quality candidates just by investigating a small part
of the search space.

•  The search space is very large. For an instance with N states, there are (4×(N+1))2N

possible solutions. Given that the size of the search space depends on the number
of states, we can test the scalability of the used algorithms.

• As far as we know, there are no specific heuristics that can help knowledge-based
methods to find TMs with high productivity.

• The fitness landscape defined by the BB problem is highly irregular (Pereira, 2002).

• For non-trivial instances, the optimum is not known. This way, development of new
methods can lead to the discovery of new best candidates, which adds an additional
motivation to the research that is performed.

The formal description of the BB problem and its variants can be found in the
following section, which also includes a synthesis of related research.

In the third section, we present an initial evolutionary approach to the BB problem.
We start by analyzing previous approaches in which EC techniques are used in the search
for Busy Beavers. Subsequently, we describe our initial approach giving emphasis to
representation, genetic operators, and fitness assignment issues. The results achieved
with this approach are promising, outperforming previous EC approaches.

Encouraged by the success of the initial approach, we made modifications in two
key components of the EC algorithm — representation and genetic operators — aiming
to improve its performance.

penousal
Please put the "1" in bold. I know that you changed this in the entire paper, using a "1" in italic but we would prefer the "1" in bold.The problem here is the following the "1" is a tape symbol, it is common to put the tape symbols in bold, not in italic.

penousal
As before please replace the italic by bold. 

penousal
"N state" -> "N-State"



The Quest for Busy Beavers    11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the fourth section, we study the influence of representation in the performance
of the EC algorithm when applied to the BB problem. We present three alternative ways
to interpret the genotype. The results achieved by the different methods show the
importance of the interpretation method in the performance of the EC algorithm. We
perform an analysis of the experimental results, giving explanation for the differences in
performance.

In the fifth section, we present a recombination genetic operator suited to the
manipulation of individuals with a graph structure. We compare the results achieved
through the use of this operator with the 1s attained by conventional two-point
crossover. The analysis of the results allows us to ascertain that it is advantageous to
use this new operator.

We used the developed EC algorithm in the search for new Busy Beaver candidates.
In the sixth section, we present some of the new BB candidates found, and make a brief
description of ongoing research efforts.

Finally, in the last section, we draw some overall conclusions, refer to the main
contributions of our research work, and point to future research directions.

THE BUSY BEAVER PROBLEM
The Busy Beaver problem is directly connected with key issues of the Theory of

Computation (Cuttland, 1980; Hopcroft & Ullman, 1979), namely with the existence of
non-computable functions and with the halting problem. Since the problem is defined in
terms of Turing Machines, we will start by presenting their formal definition.

Definition 1. A deterministic TM can be specified by a sextuple (Q,Π,Γ,δ,s,f), where
(Wood, 1987):
• Q is a finite set of states

• Π is an alphabet of input symbols

• Γ is an alphabet of tape symbols

• δ is the transition function

• s in Q is the start state

• f in Q is the final state

The transition function can assume several forms; the most usual one is:

δ: Q×Γ → Q×Γ×{L,R}

where L denotes move left and R move right. Machines with a transition function with
this format are called 5-tuple TMs. A common variation consists of considering a
transition function of the form:

δ: Q×Γ → Q×{Γ∪{L,R}}

Machines of this type are known as 4-tuple TMs. When performing a transition, a
5-tuple TM will write a symbol on the tape, move the head left or right and enter a new
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state. A 4-tuple TM either writes a new symbol on the tape or moves its head before
entering the new state.

Problem Definition
The BB problem was proposed by Tibor Rado in 1962 (Rado, 1962). Rado’s goal was

to present a series of functions that, although non-computable, could be easily defined.
The construction of these functions was based on the principle that any finite set of
integers has an upper bound. The demonstration of the non-computability of these
functions does not require the use of diagonalization techniques (Davis et al., 1994),
which is one of the most interesting aspects of Rado’s work.

In the original proposal Rado employs 5-tuple TMs with a tape alphabet equal to
{B, 1}. Considering TMs of this type, Rado defines productivity of a TM M, σ(M), as
the number of 1s present on the initially blank tape when the machine halts. Machines
that do not halt have productivity zero. The question raised by Rado is the following:

“What is the maximum productivity of an N state TM?”

Rado proceeds by defining Σ(N) as the function that returns the maximum produc-
tivity of an N-state TM, and then by demonstrating its non-computability (Rado, 1962).
The N-state TM of maximum productivity is called the Busy Beaver, BB(N). The halting
state is considered an anonymous state; that is, an N-state TM is a TM with N states plus
the halting state. In a more formal way we can define Σ(N) as follows:

Definition 2. Defining E
N
 as the set of all N-state TMs with Γ = {B, 1} and σ: E

N
 → ℵ as

the function that returns the productivity of a TM, we have:

∀M ∈ E
N
, Σ(N) ≥ σ(M) ∧ ∃M ∈ E

N 
: σ(M) = Σ(N) (1)

We will also define Ω(N) as the function that returns the number of steps performed
by the Busy Beaver machine.

4-Tuple Variant
Boolos and Jeffrey (1989) presented an important variant of the original problem,

defining it for 4-tuple TMs. In so doing they also introduced some changes in the rules.
For this type of machine, productivity is defined as:

…the length of the sequence of ones produced by the TM when started on a blank tape,
and halting when scanning the leftmost one of the sequence, with the rest of the tape
blank. Machines that do not halt, or, that halt on another configuration, have
productivity zero. (Boolos & Jeffrey, 1989)

Thus, more restrictions are imposed on the 4-tuple variant:
(a) When the machine stops there can only be one sequence of 1’s on the tape.
(b) The machine must halt with the read/write head on the leftmost 1 of this sequence.
(c) The machine should stop after reading a 1.
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The first two restrictions are relatively common; the last one may cause some
surprise. In the model of TM employed by Jeffrey and Boolos there is not a halting state.
The TMs stop when there is no defined transition for the current tape/state configura-
tion. Using this model meeting requirement (a) always ensures requirement (c). However,
if one uses a more common model of TM, with halting state, the requirement (c) must be
included in order to allow a fair comparison of the results with approaches that use a
model with no halting state.

The Search for Busy Beavers
Due to its difficulty the BB problem has attracted the attention of many researchers,

and several contests were organized in an attempt to find new candidates. Although ∑(N)
is non-computable, it is still possible to determine its value for specific instances of N.
In order to prove that a given N state machine is the BB(N), one must prove that no other
machine, of N states, has higher productivity.

The most common approaches to determining new BBs and/or to searching for new
candidates involve doing a thorough search of the N-state TM space, and simulating the
behavior of each machine. This type of approach poses two problems that become harder
with the increase of N:
• Dimension of the Space. Considering TMs with a binary tape alphabet, there are

(4×(N+1))2N TMs with N states.
• Halting Problem. It is impossible to build an algorithm that determines, for any TM,

if the TM stops (Davis et al., 1994).

The first problem can be tackled by increasing the used computational power, or by
building faster TM simulators. The second problem is directly related with the non-
computability of ∑, and, as such, cannot be solved.

When part of the search space is undecided (in the sense that it was not viable to
determine if some of the machines belonging to that space halt) it is impossible to show
that the most productive machine found is the BB(N); therefore this machine is named
as BB(N) candidate, and its productivity sets a lower bound for ∑(N). For small values
of N it is possible to decide the entire search space and thus determine the exact value
of ∑.

The majority of the research concerning the BB problem deals with the original
variant, 5-tuple TMs. In 1962 Lin and Rado demonstrated that ∑(1) = 1 and that ∑(2) =
4 (Rado, 1962). Later they also showed that ∑(3) = 6 (Lin & Rado, 1965). Ten years later
Brady determined that ∑(4) = 13 (Brady, 1975, 1983, 1988). For N>4 the value of ∑ is
unknown.

Due to the interest of the problem, several contests were organized aiming to
determine the values of ∑ or to find new BB candidates. In 1983, Schult (Ludwig et al.,
1983) discovered a 5-state TM, which produced 501 1’s in 134467 steps. A year later
Dewdney presented the BB problem to a larger audience by describing it in his column
Computer Recreations of Scientific American (Dewdney, 1985). This article caught the
attention of G. Uhing, an amateur mathematician, who in December of the same year
presented a new BB(5) candidate, showing that ∑(5) ≥ 1915. The machine in question
performs 2,133,492 steps before halting.
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This record was only beaten in 1990, by Marxen and Buntrock, who discovered a
machine with a productivity of 4,098 (Marxen & Buntrock, 1990). The machine in question
performs 47,176,870 steps. Their work has some innovative features:
• Early detection of non-halting machines. In spite of the halting problem being non-

computable, it is possible to determine, in a large percentage of cases, if a particular
machine stops. Marxen and Buntrock employ several techniques that allow the
early detection of non-halting TMs. By using these techniques they were able to
decide more than 99% of the 5-state TM space.

• Equivalence classes. There are several machines that are equivalent1. The identi-
fication of sets of equivalent machines enables a vast reduction of the search space.

• Faster simulation. The state-of-the-art TM simulator created by Marxen and
Buntrock enables an unprecedented speed in the simulation of TMs. This is mainly
achieved by the use of “macro machines” that operate on blocks of symbols,
performing in a single step a task that would require several steps from a TM.
Additionally, the employed tape representation also significant speed improve-
ments (Marxen & Buntrock, 1990).

Marxen also applied this set of techniques to the 5-tuple BB(6) problem, consecu-
tively improving the lower bound for ∑(6). In Table 1 we make a synthesis of the evolution
of the values and lower bounds of ∑.

The research related to the BB problem is not limited to the search for new
candidates. M. Green proposed a methodology for finding non-trivial lower bounds for
∑ (Green, 1964). Machlin and Stout (1990) presented a characterization of the behavior
of TMs that do not halt when started on a blank tape, identifying several behavioral
classes. This type of study enables the development of efficient simulators by allowing
the early identification of non-halting machines.

The number of studies focusing on the 4-tuple variant is significantly lower. This
can be explained by the variant being more recent, and also by the higher popularity of
5-tuple TMs.

In Table 2 we present the known values and lower bounds of ∑ for the 4-tuple variant
at the time our research work started. For N < 4 the values of ∑ can be easily found through
an extensive search of the space. Due to the low complexity of these machines, the halting
problem poses no serious difficulties. For higher values of N this is no longer true, and,
as such, only lower bounds are known. We were also unable to determine the authors
of the current BB(4) and BB(5) candidates.

The most productive 6-state TM known was found by Cris Nielsen and writes 21
1’s in 125 steps (Barwise and Etchemendy, 2000; Bringsjord, 1996). In 1997 Lally, Reineke
and Weader set a new lower bound for å(7) by discovering a machine with a productivity
of 37 (Lally et al., 1997). Their approach involves the creation of an abstract TM
representation. They start by performing an analysis of known TMs of high productivity,
which are transformed in block diagrams, allowing the discovery of common features.
Next, the space of diagram blocks possessing these features is extensively searched. The
simulation of the diagram blocks is faster than the simulation of the correspondent TMs,
and the search space significantly smaller (Lally et al., 1997). The final stage consists of
transforming the diagram blocks of higher productivity in TMs. For some cases it is
impossible to construct an equivalent TM with the desired number of states, which is one
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of the drawbacks of the approach. Additionally, the transformation of the diagram blocks
to TMs is performed by hand.

AN EVOLUTIONARY APPROACH TO
THE BUSY BEAVER PROBLEM

In this section we present our initial approach to the BB problem. We start by making
a brief overview of research that is related with the evolution of finite state machines.

Evolutionary Programming (EP) is an EC approach proposed by Fogel, Owens and
Walsh in the 1960s (Fogel et al., 1966). The goal of this approach was to evolve algorithms
that were able to solve sequence prediction problems. Possible solutions were repre-
sented as finite state machines (FSM). An FSM is a very simple model of computation
that consists of a set of states, a start state, an input alphabet and a transition function
that maps input symbols and current states to a next state. An FSM has many similarities
with a TM.

EP uses a collection of mutation operators that manipulate specific components of
a FSM to generate descendants. They have been successfully applied to a large number
of situations, ranging from the original sequence prediction problems to combinatorial
optimization problems or evolution of strategies for games. Consult Fogel (1995) for a
detailed description of application areas.

Mitchell, Crutchfield, and Hraber aimed to evolve Cellular Automata (CA) to
perform computations (Mitchell et al., 1994). The main goal of this work was to understand
the emergent behavior of CA and to analyze if an EC algorithm could be used as a method
for engineering CA, so that they could perform general computations.

A CA can be defined as a two-dimensional organization of simple finite state
machines whose next state depends on their own state and the ones of their closest

Table 1: Values and Lower Bounds for ∑(N), 5-tuple (The second column indicates the
number of steps performed by the BB machine, or best candidate, before stopping.)

N Σ(N) Steps Authors 

1 1 1 Lin and Rado (Rado, 1962) 

2 4 6 Lin and Rado (Rado, 1962) 

3 6 21 Lin and Rado (Lin & Rado, 1965) 

4 13 107 Brady (Brady, 1975) 

5  ≥ 501 134467 U. Schult (Ludwig et al., 1983) 

5 ≥ 1915  2133492 G. Uhing, 1984 (Dewdney, 1985) 

5   ≥ 4098 47176870 Marxen and Buntrock (Marxen & 
Buntrock, 1990) 

6 ≥ 136612 13122572797 Marxen and Buntrock (Marxen, 2002) 

6   ≥ 95524079  86903333816909510 Marxen, 1997 (Marxen, 2002) 

6 ≥ 6.427499×10462 6.196913×10925 Marxen, 2000 (Marxen, 2002) 

6   ≥ 1.29149×10865 3.00233×101730 Marxen, 2001 (Marxen, 2002) 
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neighbors. Conway’s game of life is probably the most well-known instance of a CA
(Berlekamp et al., 1982). In general, the machines can be arranged in meshes of higher or
lower dimensions, have larger neighborhoods, or be arbitrarily complex processors.

The lattice starts out with an initial configuration of cell states, and this arrangement
changes in discrete time steps, in which all cells are updated simultaneously according
to the CA rules. A CA computation is composed of a sequence of steps that keep
modifying the configuration. The program emerges from the CA rule being obeyed by
each cell. The behavior of a CA is often illustrated by space-time diagrams (a plot of lattice
configurations over a range of time steps). In their research, Mitchell et al. used a genetic
algorithm to evolve CAs in which the actions of the cells are not random-looking, but are
coordinated with one another so as to make possible the emergence of sophisticated
parallel computations.

Related Research
To our knowledge there was just one previous attempt to apply EC techniques to

the BB problem. In 1993, Jones and Rawlins (Jones & Rawlins, 1993) applied a straight-
forward EC algorithm to search for good candidates for several instances of the 5-tuple
BB. The main goal of this study was to perform a comparison between hill-climbing and
genetic algorithms (GAs) and also to analyze the reverse hill-climbing technique. This
analysis tool helps to determine the probability that hill-climbing will attain a given point
in the fitness landscape. The BB problem was used just as a test-bed to examine the
performance of the algorithms. The goal was not to apply EC algorithms to seek new lower
bounds.

In the experiments described in the above mentioned work it is possible to verify
that even though both approaches were able to find the optima solutions for the 5-tuple
BB(N), N ≤ 4, hill-climbing was less demanding in terms of computational power. In Table
3 we present a summary of the results. As it can be confirmed, for N=4, the EC algorithm
has to evaluate, on average, 186 million individuals to find the optimum (which corre-
sponds to 0.72% of the search space), whilst hill-climbing only evaluates 42 million
individuals (0.16% of the search space).

Table 2: Values and Lower Bounds for ∑(N), 4-tuple (The second column indicates the
number of steps performed by the BB machine, or best candidate, before stopping.)

N Σ(N) Steps Authors 

1 1 1 Trivial 

2 2 3 Trivial 

3 3 7 Trivial 

4 ≥ 5 16 Unknown 

5 ≥ 11 52 Unknown 

6 ≥ 21 125 Cris Nielsen (Bringsjord, 1996) 

7 ≥ 37 253 Lally, Reineke and Weader (Lally et al., 1997) 

8 ≥ 86 1511 Norman, Chick and Marcella (Bringsjord, 1996) 
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These results allow different interpretations: on one hand, the optimum values were
found, which shows the feasibility of applying EC techniques to this problem. On the
other hand, the number of evaluations required to find the optimum is relatively high.
Taking into account that the size of the search space increases exponentially with the
number of states, and that machines with higher states typically present more complex
behaviors, thus requiring more time to simulate, it is not viable to apply a similar approach
to instances with a higher number of states.

Initial Approach
In spite of our goals being different from the ones of Jones and Rawlins, we decided

to start our research by applying a standard genetic algorithm to the 5-tuple version of
the BB problem. This would allow us to make a direct comparison of the results.

Representation
The search space of a BB(N) instance is composed of all N-state TMs (plus an

anonymous halting state). We need therefore to find an efficient representation for such
TMs. As stated before, a TM can be defined by a sextuple (Q,Π,Γ,δ,s,f). Without loss
of generality, we can consider Q={1,2,…,N,N+1}, set 1 as the initial state and N+1 as the
final one. Since Π={1} and Γ={B, 1}, for a given BB instance we only need to represent
the transition function, since this is the only component that differs from TM to TM.

The transition function δ can be represented as a table. For N state TMs with a binary
alphabet, this table has 4×N cells: for each state we need to specify the new state when
the TM reads a blank, the associated action, the new state when it reads a 1 and the
corresponding action.

For a 5-tuple TM there are four possible action pairs: {write 1 and move left, write
1 and move right, write blank and move left and write blank and move right}. Figure 1
shows a 5-tuple TM and its transition table.

In our approach, the chromosome is composed of a sequence of 4×N genes that
encodes a transition table. Figure 2 presents a structured representation of such a
chromosome.

During the optimization, we used 2-point crossover and a standard mutation
operator. When applied to a given gene, mutation changed its value to a new one from
its domain.

Simulation and Fitness Assignment
In order to evaluate an individual we need to obtain the TM encoded in the genotype

and then simulate it. In these experiments we performed a direct decoding of the
information from the chromosome.

N GA Hill-Climbing 
1 8 6 
2 8117 542 
3 123404 10606 
4 186666666 42372351 

Table 3: Average Number of Evaluations Necessary to Find the Optimum (Jones, 1995)
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Figure 1: A 5-tuple TM and Its Transition Table (The blank symbol is represented by
a 0; this machine is the 4-state Busy Beaver.) (Brady, 1975)

Figure 2: Structure of a Chromosome
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Since some of the machines never stop, one must establish a maximum number of
steps, MaxT, and consider that machines that do not halt after MaxT steps will never halt.
Additionally, if during simulation the number of 1s present on the tape is larger than
MaxOnes the simulation is also stopped2. Since MaxT >> MaxOnes, significant speed
improvements can be achieved.

After running the TM we can determine the fitness of the corresponding individual.
In their research, Jones and Rawlins considered that the fitness of an individual should
be equal to its productivity (Jones & Rawlins, 1993). This approach implies that a
significant number of individuals have the same fitness, which is undesirable. In an
attempt to avoid this problem we decided to take other factors into consideration.

The underlying assumption is that TMs that exhibit a complex behavior should be
valued, since good BB candidates will surely have a complex behavior. This way when
assigning fitness to an individual, in addition to the productivity of the TM we also take
into consideration the number of steps it made before reaching the halting state. We
assume that TMs that stop after performing a large number of steps tend to have a more
complex behavior than others that make just a few steps. To distinguish between TMs
that do not stop we consider the number of steps left on the tape when the simulation
is stopped. Following these ideas, the fitness of individual i, f(i), is given by:
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where σ(i) represents the number of 1s present on the tape when the machine stops and
ω(i) the number of steps performed.

Experimental Results
We tested our approach in the 4-state instance of the 5-tuple BB problem. The

experimental settings were the following: number of evaluations=25,000,000; population
size=200; two-point crossover with rate=0.7; single point mutation with rate=0.05;
roulette wheel selection; elitist strategy; MaxT=150; MaxOnes=13; α=1, β= 0.3, γ=0.5.

The experiment was repeated 30 times with the same initial conditions and different
random seeds. All initial populations were randomly generated. Values for different
parameters were set heuristically. Nevertheless, and even though we did not perform an
extensive parametric study, we conducted some additional tests and verified that, within
a moderate range, there was not an important difference in the outcomes.

In Figure 3 we present the evolution of the productivity of the best individual. The
presented result is the average of the 30 runs. The BB(4) machine was found in all runs.
On average it took 179806.7 evaluations to find it (standard deviation was 137082.7). In
the best run, the EC algorithm required just 18,574 evaluations to reach the optimum, while
in the worst it needed 578,266 evaluations. These results are clearly superior to the ones
achieved by Jones and Rawlins (Jones & Rawlins, 1993) (average of 186,666,666
evaluations to find the BB machine). The explanation for this difference lies, mainly, in
the fitness function. Additionally, the goal of Jones and Rawlins was to compare two
approaches; as such we believe that the optimization of the EC parameters was not
considered important.

Four-Tuple Variant
Even though we achieved promising results with BB(4) we faced a difficult problem.

To apply our approach to BB(5) we had to set MaxT to 47,176,870, since the current
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Figure 3: Chart Showing the Evolution of the Productivity of the Best Individual
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candidate performs this number of steps to reach a productivity of 4,098. It is obvious
that this would involve a large computational effort.

Moreover, our goal was to establish some lower bounds. Marxen and Buntrock
(Marxen & Buntrock, 1990) performed an exhaustive search of the BB(5) solution space,
leaving less than 1% of it undecided (they were not able to determine if these machines
eventually halted). Therefore, the chances of finding a new candidate for this instance
are relatively slim. Moreover, if this machine exists, it will certainly perform much more
than 47 million steps. In their research, Marxen and Buntrock resort to a sophisticated
and complex TM simulator that significantly improves simulation speed. Without this
sort of tool it is unfeasible to attack any 5-tuple instance greater than BB(4).

Taking these factors into consideration, we abandoned the 5-tuple variant and
focused our attention on the 4-tuple variant of the problem. When we moved to this
alternative we had to modify several features of our algorithm related to the codification
of the information in a chromosome and to the fitness assignment. In what concerns the
representation, the structure of the chromosome (the number of genes) remains un-
changed. Genes related to actions still can take four different values, although they are
different from the 5-tuple approach: {write 1, write B, move left, move right}.

Since the 4-tuple variant has different rules for defining the productivity, we had
to modify the fitness assignment, even though we maintained the same basic principle.
When assigning fitness to an individual, we consider the following factors, in decreasing
order of importance:
• h(i) is equal to 1 if the machine halts before reaching the limit number of steps and

0 otherwise;
• v(i) is equal to 1 if the machine follows the 4-tuple variant rules defined in Boolos

and Jeffrey (1989), 0 otherwise;
• θ(i) represents the number of transitions used (each TM has 2N transitions,

however some of them may never be used);
• σ(i) represents the number of 1s present on the tape when the machine stops;

• ω(i) represents the number of steps performed.

Given these factors, the equation used to assign fitness is the following:

( ) ( ) ( )[ ])()(1)()(1)()(1)()( iiviiviivihif ωγβθσα ××++××++××+×= (3)

TMs that do not stop have fitness 0. Constants α, β, γ determine the relative weight
of each factor. Values for these parameters are empirically determined.

Experimental Results
After modifying our algorithm, we conducted several preliminary tests with the 7-

state instance of the problem.
The experimental settings were the following: number of evaluations=25,000,000;

population size={200, 1000}; two-point crossover with rate=0.7; single point mutation
with rate={0.01, 0.05, 0.1}; roulette-wheel selection; elitist and non-elitist strategy;
MaxT=50000; MaxOnes=500; α=4, β= 2, γ=1.
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All experiments were repeated ten times with the same initial conditions and
different random seeds. Initial populations were randomly generated.

In Table 4 we present, for all different experiments, the productivity of the best
individual of the final generation. Results are averages of the 10 runs.

The small number of runs prevents us from determining if there are statistically
significant differences between the results achieved by different settings. Anyway,
results suggest that a fairly high mutation rate helps to discover good BB candidates.
Adopting an elitist strategy also seems to improve the search performance. The EC
algorithm was not sensitive to the variation in the population size. A detailed analysis
on the results achieved in these experiments can be consulted in Pereira et al. (1999a).

The most important goal of this experiment was to determine whether it was possible
to discover new lower bounds for some instances of the BB using our approach.
Although preliminary, results were rather clear. Even though this could be considered
a rudimentary approach we were able to discover new candidates for several instances.
In the experiments we described we found a 7-state machine with productivity of 102
(Pereira et al., 1999a). If we compare this value with the previous best candidate (which
has a productivity of 37 (Lally et al., 1997)), it is evident that our evolutionary method
can bring significant improvements.

We also performed some additional tests with other instances. With BB(6), we
found on a regular basis TMs with a productivity of 21, solutions which are equivalent
to the best known candidate discovered by Cris Nielsen (Bringsjord, 1996). As for BB(8),
we found a TM that writes 384 1’s in 43368 steps. The previous best-known candidate
has a productivity of 86 (Bringsjord, 1996). These results show that EC algorithms can
be considered efficient methods to search for good candidates for the BB problem.

THE INFLUENCE OF REPRESENTATION
An analysis of the attained experimental results indicated that there was room for

improvement. We verified that the best results were found infrequently and that, in most
of the runs, the algorithm got trapped in local optima. In this section we focus our
attention on representational issues. We present and analyze three different ways to
represent TMs. Our goal is to determine which representation improves the competence
of the EC algorithm when searching for good solutions to the BB problem.

Table 4: Productivity of the Best Individual of the Final Population (Results are
averages of 10 runs.)

 Strategy Elitist Non Elitist 

 Pop. Size 200 1000 200 1000 

1% 14 12 13 12 

5% 18 17 17 14 

M
ut

at
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n
 

10% 20 20 18 19 
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Representation
It is clear that there are several TMs that, even though they are different, exhibit the

same behavior. As an example, consider the following transition: δ(1, B) = (1, R). If,
without loss of generality, we assume that 1 is the start state, all TMs with the above
mentioned transition will loop forever and the other transitions are useless. This way,
in what concerns to the BB, all these TMs can be considered equivalent. Assuming that
we can construct sets of equivalent TMs, we just need to run one of the machines of a
given set to determine the behavior of all the other elements. If we could develop a
representation where all the TMs belonging to a set are encoded in the same way (i.e.,
they have the same genotype), we would drastically reduce the size of the search space.

The most important of these equivalent classes is known as the Tree Normal Form
(TNF) (Marxen & Buntrock, 1990). Using a TNF representation ensures that machines
differing only in the naming of the states or in transitions that never are used are
represented in the same way.

The crucial problem with this representation is that it is not possible to directly
translate a TM into its TNF. To perform this conversion (or to recognize that it is already
in its TNF), we have to run the TM. For example, before the simulation it is impossible
to know if all its transitions will be used (otherwise it would be possible to solve the
halting problem). Therefore, a simple rule to convert a TM to its TNF is to simulate it and
number the states in the order that they are visited. Unused transitions are deleted. Since
it is impossible to determine if a given TM is in its TNF without simulating its behavior,
it is not viable to directly adopt this form of representation.

In spite of these difficulties, Marxen and Buntrock — who, just like we mentioned
before, try to perform an exhaustive exploration of the space when searching for BB —
rely on a TNF representation to accelerate the search process. When simulating a TM,
they verify if the machine is in its TNF. If during the simulation they confirm that the
machine is not in its TNF they abort the process and immediately proceed to the next
candidate (for example, if a TM jumps from state 1 to state 3 without visiting state 2, then
it is not in its TNF and simulation can be stopped). This kind of approach is reliable
because the search space is fully examined and sooner or later the TNF TM with
equivalent behavior will be simulated.

Even though we cannot directly use TNF as a way of representing individuals, we
decided to analyze a possible alternative: to interpret the information contained in the
genotype in such a way that the resulting TM is in its TNF. The idea is to change how
the genotype-phenotype mapping is performed. With this new approach, the structure
of the chromosome remains unchanged, whilst the interpretation of the encoded
information is modified. During simulation, the chromosome is interpreted in a way that
ensures that the resulting TM is in its TNF. This is achieved by performing two
straightforward modifications in the TM simulator:
• Consider that states 1 to m were already visited and that transition t will be used

for the first time:
• If t leads to an unvisited state e and e > m+1 then change transition t so that it
leads to state m+1;
• If t is the last undefined transition from states 1 to m, then change transition t
so that it leads to state m+1;
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In Figure 4 we present the TM simulation algorithm that ensures that the genotype
is interpreted as if it was in TNF. A careful analysis shows that TMs only reach the final
state after visiting all other states.

It is now possible to conduct a set of tests with different representational ap-
proaches, so that we can compare their efficiency. We consider three different options
for the representation and interpretation of TMs:
• Standard. Direct decoding of the genotype into a TM.

• TNF. Interpretation of the genotype as if it was in TNF. This is achieved using the
algorithm from Figure 4.

• IC. Just like in the previous option, the TNF simulator is used. After the simulation,
the resulting TM is directly coded in the genotype of the individual.

Experimental Results
We used BB(6) as the test-bed in a comprehensive set of experiments where we tried

to determine which representation allows us to find good solutions in a consistent way.
When the tests were performed, the best candidate for this instance had a productivity
equal to 21 reached in 125 steps.

The experimental settings were the following: number of evaluations=40,000,000;
population size={100, 500}; 2-point crossover with rate=0.7; single point mutation with
rate= {0.01, 0.05, 0.1}; Tournament selection with tourney size = {2, 5}; elitist strategy;
Interpretation={Standard, TNF, IC}; MaxT=250; MaxOnes=100; α=3, β= 2, γ=1. All

Mark all transitions as undefined 

Mark all states as not-visited 

visited_states � 0 

defined_transitions � 0 

CState � 1      

Steps � 1 

While (CState ≠ N+1) and (Steps < MaxT) Do  

 Read the symbol S on the tape 

 If the transition δ(CState, S)→(New_state, Action) is undefined Then 

  Mark it as defined 

  defined_transitions � defined_transitions + 1  

  If CState is not-visited Then 

   Mark it as visited 

   visited_states � visited_states + 1 

  If New_state > visited_states + 1 Then 

   New_state � visited_states + 1    

  If defined_transitions = visited_states × 2 Then 

   New_state � visited_states + 1 

  Update δ(CState, S)→(New_state, Action) 

 End If 

 Execute Action 

 Steps � Steps + 1 

 CState � New_state   

End While 

Figure 4: TNF Interpretation Algorithm
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experiments were repeated 30 times with the same initial conditions and different random
seeds. Initial populations were randomly generated. The charts on Figures 5 to 8 illustrate
the evolution of the productivity of the best individuals. Results are averages of the 30
runs.

A brief perusal of the graphs shows that TNF and IC outperform Standard
interpretation. It is also visible that a fairly high mutation rate is desirable. Results
achieved when using a 1% mutation rate are clearly worse than when using 5% or 10%
mutation rates. The difference between 5% and 10% mutation rates is less significant,
though 5% gives better results. Tendentiously, small populations (100 individuals)
perform better.

In Table 5 we present the average number of 1s written by the best individual of the
final population, for all possible configurations. Results are averages of 30 runs.

The average productivity of the 360 runs performed with the standard interpretation
is 9.53. Experiments performed with TNF and IC interpretation achieved, respectively,
average productivities of 12.9 and 12.25. Differences between the productivities of
experiments that adopted a TNF interpretation of the chromosome (TNF and IC) and the
experiment that relied on standard representation are statistically significant (signifi-
cance level: 0.05).

In Table 6 we present, for all configurations, the difference between the productivity
of the best individual in experiments with a standard interpretation and experiments with
TNF or IC. Bold entries represent statistically significant differences (significance level:
0.05). The results presented on this table show that significant differences exist for most
of the configurations. On the other hand, the difference between the results achieved by
TNF and IC interpretation is not statistically significant.

Population Size=100 Tournament Size=2

2

4

6

8

10

12

14

16

0 10000000 20000000 30000000 40000000

P
ro

du
ct

iv
ity

  
.

Standard 5% Standard 1% Standard 10%
TNF 5% TNF 1% TNF 10%
IC 5% IC 1% IC 10%

 

Figure 5: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=100 and Tournament Size=2 (Results are averages of 30 runs.)

penousal
Please use bold instead of italic



The Quest for Busy Beavers    25

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In Table 7 we present the number of runs in which the BB(6) candidate with
productivity 21 was found. Using a standard representation, the EC algorithm found a
machine with productivity 21 once in 360 runs. This result shows the difficulty of the
problem and how the space can be hard to search. When using TNF, candidates with
productivity of 21 were found in 17 runs and with IC in seven runs. Bold entries highlight
statistically significant differences (significance level: 0.05) between experiments with
a standard interpretation and experiments with TNF or IC. Results from Table 7 confirm
the superiority of TNF over the standard interpretation.

If we consider this criterion, it is also possible to determine statistically significant
differences between experiments that use TNF and IC interpretations. Italic entries in
Table 7 highlight the existence of such a difference.

TNF interpretation is achieved through the modification of the standard simulation.
Even though these modifications do not change the genotype space, they considerably
reduce the number of distinct phenotypes. The most important phenotype reduction is
due to the restriction that specifies that states belonging to the TM should be visited
in order. Anyway, it is important to notice that this also reduces the number of possible
solutions. When using a standard representation there are several isomorphic solutions,
while in TNF they are reduced to just one. Therefore, the advantage of TNF interpretation
cannot be explained just by this reduction on the phenotype space.

There is, however, another type of space reduction when TNF interpretation is
used. A careful analysis of the algorithm presented in Figure 4 reveals that TMs are only
allowed to enter the final state after visiting all other states. Thus, in TNF, machines that
halt always visit all states. This situation might allow the development of solutions with
complex behavior in the early stages of the evolution process. Since TMs that do not stop

Figure 6: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=100 and Tournament Size=5 (Results are averages of 30 runs.)
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Figure 8: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=500 and Tourney=5 (Results are averages of 30 runs.)

Figure 7: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=500 and Tourney=2 (Results are averages of 30 runs.)
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have fitness 0, descendants of the machines that visit all states before halting will
dominate initial populations. One justification for the advantage of TNF is that this kind
of machine can be considered as a good starting point to the evolution of high quality
BB candidates.

On the contrary, with a standard interpretation, a machine can halt after visiting a
small number of states. Although these machines may have a simple behavior, they will
still have a fitness score higher than most of the individuals from their generation and
will tend to dominate the populations, hindering the formation of good candidates.

The chart in Figure 9 shows the evolution of the average number of visited states
for standard, TNF and IC. A logarithmic scale is used to allow an easier visualization of
the early stages of the simulation.

Another interesting characteristic of TNF interpretation is that it induces an
ordering of the states. States that are directly connected have a higher probability of
being close in the chromosome. Thus, there is a higher similarity between genotype
neighborhood and phenotype neighborhood. It is reasonable to assume that this

  Standard TNF IC 

 Pop. Size 100 500 100 500 100 500 

 T. Size 2 5 2 5 2 5 2 5 2 5 2 5 

1% 8.5 7.4 8.6 7.9 11.8 10.5 9.2 9.7 11.5 10.3 10.7 10.7 

5% 9.8 14.3 8.2 12.6 14.4 15.9 14.0 14.1 13.0 15.8 12.3 13.0 

M
ut
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n 

10% 9.3 10.6 8.1 9.0 15.5 14.5 13.0 12.2 11.6 14.2 11.2 12.7 

 9.2 10.8 8.3 9.8 13.9 13.6 12.1 12.0 12.0 13.4 11.4 12.1 

 9.98 9.07 13.77 12.03 12.73 11.77 

 9.53 12.90 12.25 

 

Totals 

11.56 

 

Table 5: Productivity of the best individual of the final population (Results are
averages of 30 runs.)

  TNF IC 
 Pop. Size 100 500 100 500 
 T. Size 2 5 2 5 2 5 2 5 

1% 3.3 3.1 0.6 1.8 3.0 2.9 2.1 2.8 

5% 4.6 1.6 5.8 1.5 3.2 1.5 4.1 0.4 

M
ut
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n
 

10% 6.2 3.9 4.9 3.2 2.3 3.6 3.1 3.7 

 4.7 2.9 3.8 2.2 2.8 2.7 3.1 2.3 
 3.8 4.0 2.8 2.7 
 

Totals 

3.4 2.7 

Table 6: Differences in Productivity Between Standard and TNF Interpretations

penousal
standard -> Standard

penousal
standard -> Standard

penousal
The capitalization of the first letter of each word is missing.



28   Machado, Pereira, Tavares, Costa & Cardoso

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

situation helps the evolutionary process, since there is a decrease in the average number
of transitions broken by crossover.

There is an interesting effect related to the TNF interpretation. Consider that we
have a chromosome whose gene value for New State of the transition of state 2 by blank
is 3; admit also that, when this transition is first used, state 3 was not yet visited. Even
if mutation changes this value to 5, there will be no changes on the phenotype, since the
TNF interpretation will still consider it as a transition to state 3. This simple example
shows that TNF interpretation allows the accumulation of neutral mutations (i.e.,
changes in the genotype that do not lead to any modification in the phenotype).

The way in which these neutral mutations may influence the behavior of the
evolutionary algorithm depends on whether a TNF or an IC interpretation is used. With
the first option, even though the neutral mutations are not expressed in the phenotype
(and as a consequence do not affect the fitness of the individual), they remain in the
genotype. Later on, due to other alterations in the chromosome, they may become
effective. As for IC, the transfer of the phenotype to the genotype eliminates all neutral
mutations.

Results presented in this section show that TNF clearly outperforms a standard
representation, enabling the discovery of good candidates for the BB problem. In what
concerns the advantages/disadvantages of coding back to the genotype, the TM derived
from the TNF interpretation, results presented are somewhat inconclusive. Even though
experiments that relied on a TNF interpretation achieved results that are slightly better
than those achieved by IC, differences are not too big. Statistically significant differ-
ences were only visible when we considered the number of runs in which the BB(6)
candidate with productivity 21 was found.

GENETIC OPERATORS
The performance of an EC algorithm depends, to a large extent, on the adopted

genetic operators. The relation of vicinity between points of the search space is
established by these genetic operators, which, in conjunction with the fitness function,
also defines the topology of the space.

Table 7: Number of Runs in which a BB(6) Candidate with Productivity 21 was Found
(Blank cells indicate that none of the 30 runs found this TM.)

  Standard TNF IC 
 Pop. Size 100 500 100 500 100 500 
 T. Size 2 5 2 5 2 5 2 5 2 5 2 5 

1%             

5%     1 6 2   4 1  
M
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10%  1   4 3 1    2  

  1   5 9 3   4 3  
 1  14 3 4 3 
 

Totals 
1 17 7 
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Due to their importance a significant portion of the research in EC focuses on the
study and development of operators. The choice, or development, of the operators is
based on the characteristics of the problem. The type of structure being manipulated is,
usually, one of the determinant factors.

Two-point crossover is one of the most common recombination operators for the
manipulation of linear structures. The manipulation of structured representations, such
as the ones employed in Genetic Programming (GP), is typically carried out through
operators particularly suited to these structures. In GP, for instance, the individuals are
represented by trees; as such, the typical recombination operator (Koza, 1992) promotes
the exchange of sub-trees between individuals. This type of approach is based on the
notion that it is advantageous to manipulate the individuals in a way that is consistent
with their structure, and that respects the underlying syntactic restrictions (Angeline,
1993).

As previously stated, our goal is the evolution of TMs. The natural representation
of a TM is a graph. In the experiments described in the previous sections we resorted to
2-point crossover. However, since the individuals are graphs3, they should be manipu-
lated as such, hence the development of a graph based crossover operator. In this section
we present this operator, the results achieved through its use, and a comparison with the
ones achieved by 2-point crossover.

Graph Based Crossover
The basic idea of our operator is to promote the exchange of subgraphs or, from a

functional point of view, the exchange of sub-machines. The inspiration for this operator
was the standard GP crossover operator that exchanges sub-trees.

Average Number of Visited States

3

4

5

6

10 100 1000 10000 100000 1000000 10000000 100000000

Evals

S
ta

te
s

Standard TNF IC

 

Figure 9: Evolution of the Average Number of Visited States (Logarithmic scale)
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The primary goal is to improve the performance of our algorithm in the BB problem.
Additionally, we aim at developing a generic operator that is suited for other problems
in which the natural representation is a graph.

In order to explore the structure of the TMs, and since any sub-set of nodes and
arcs is a subgraph, we must impose constraints to the subgraphs being exchanged. A TM,
especially one with a complex behavior, is usually formed by several sub-machines. In
the current context, we can define sub-machine as a set of functionally dependent nodes,
and corresponding transitions, that perform a simple and well-defined task. Thus, the
concept of sub-machine is similar to the concept of subroutine. An analysis of high
productivity TMs shows that their complex behavior is attained through the interaction
of simple sub-machines.

Due to the nature of TMs, functional dependency is typically connected to the
distance between nodes (considering as distance the minimum path length between
nodes). Thus, the probability of two nodes being functionally dependent is higher if they
are directly connected. Therefore, sub-machines tend to be composed of a set of neighbor
nodes. Consequently, the subgraphs should be composed of closely linked nodes, and
by the transitions among them. From here on we name the transitions between nodes of
a subgraph as internal transitions.

Next we describe our graph based crossover operator, which, although indepen-
dently developed, shares many characteristics with the one proposed by Teller and
Veloso (1996).

Implementation
Considering two individuals, A and B, the application of the graph based crossover

operator can be divided in two stages. In the first, we select the subgraphs to be
exchanged. In the second, we perform the exchange of genetic material, generating two
descendents.

The selection of the subgraphs is performed as follows:
• Randomly select crossover points, P

A
 and P

B
, for each of the parents, and a

crossover size, X. The value of X is randomly chosen from the interval (1, MaxSize),
where MaxSize is a user specified constant.

• For each of the parents define the list of nodes, L
A
 and L

B
, belonging to the

corresponding subgraphs:
• The crossover point is the first node of the list. Then, through breadth first search,
nodes of increasingly higher distance from the starting point are added to the end
of the list. The order of points located at the same distance is randomly determined.
• Next, the lists are truncated, making their length equal to X.

• When the lists have different lengths — which can happen when it is impossible
to reach X-1 nodes from the crossover point — the larger is truncated, making their
lengths equal.

• The subgraphs, S
A
 and S

B
, will be composed of the nodes of L

A
 and L

B
 and by the

internal transitions among these nodes.

The next step is the exchange of genetic material between the parents. Due to the
existence of external transitions, that is, transitions between nodes of the subgraphs and
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nodes that do not belong to them, it is necessary to establish a correspondence between
the nodes of S

A
 and S

B
. The exchange of genetic material is performed in the following way:

• Based on the order of the elements in the lists L
A
 and L

B 
a correspondence between

nodes is established.
• The internal transitions of S

A
 and S

B
 are mutually swapped. The external transitions

remain unchanged. When the swapping operation leads to the existence of two
transitions (an internal and an external one) from the same node and by the same
tape symbol, the internal transition is deleted.

In Figure 10 we present an example of the crossover operation between individuals
A and B at points P

A
 and P

B
. The crossover size is three, L

A
={1, 2, 4} L

B
={2, 3, 6}, yielding

the following correspondence table {1
A
-2

B
, 2

A
-3

B
, 4

A
-6

B
}.

When the number of internal transitions in S
A
 and S

B
 is different, there are transitions

that will not be exchanged, since they do not have an equivalent. In the example shown
in Figure 10, the transition 2×0→4×R of individual A is not replaced by 3×0→4×1 since
this transition is not internal.

Figure 10: Example of Crossover (Nodes belonging to the sub-graphs are depicted in
gray and transitions in bold; a dashed line represents internal transitions that were
not replaced.)
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Graph vs. Classical Two-Point Crossover
The experiments presented in this section concern the search for 4-tuple BB(6).

Since the previously best-known candidate wrote 21 1’s in 125 steps we set MaxT to 250.
The parameters of the EC Algorithm were the following: TM representation =

{Standard, TNF, IC}; Number of Evaluations = {40 000 000}; Population Size = {100,
500}; Generation Gap = 1; Crossover Operator = {Two-point, Graph}; Crossover rate =
0.7; Single point mutation; Mutation rate = {0.01, 0.05, 0.1}; Elitist strategy; Tournament
selection; Tournament size = {2, 5}. Two-point crossover was restricted to gene
boundaries. MaxSize = 3. A particular experimental configuration can be defined as an
instantiation of the following set {TM representation, Mutation Rate, Population Size,
Tournament Size}. For each configuration we performed 30 runs with the same initial
conditions and different random seeds.

Table 8 shows the average number of 1s written by the best individual, of the final
population, for all considered configurations. A brief perusal of the results indicates that
graph crossover consistently outperforms 2-point crossover, improving the results for
all representations. When we use 2-point crossover the average productivity is 11.56;
with graph crossover it is 13.5. In addition to reaching higher global results, it also sets
new best averages for specific configurations. The best configuration for 2-point
crossover {TNF, 5%, 100, 5} achieves a 15.9 average productivity. With graph cross-
over the best configuration, {IC, 5%, 500, 5}, achieves 18.6 average productivity.

It is also important to consider the evolution of productivity of the best individual
over time. In Figure 11 we present the charts with the results of the experiments using
TNF representation and a 5% mutation rate. We chose these settings because they are
the ones where the best-known contender is more frequently found. It is interesting to
notice that, for the majority of the experimental settings, the differences in productivity
are substantial throughout the evolutionary process. The configuration {TNF, 5%, 100,
2} is one of the rare cases where this does not happen.

The advantages of using graph crossover diminish as the mutation rate increases.
This is shown clearly in Table 9, which presents the difference between the results

Table 8: Results Achieved in the 4-Tuple BB(6) (Productivity of the best individual of
the final population; each experiment was repeated 30 times; the results are the
averages.)

  Standard TNF IC 
 Pop. Size 100 500 100 500 100 500 
 T. Size 2 5 2 5 2 5 2 5 2 5 2 5 

1% 14.6 10.4 13.7 9.1 15.3 13.4 14.4 12.4 14.3 12.0 15.4 12.7 

5% 12.1 16.1 10.5 16.9 14.4 18.4 13.7 17.4 13.0 17.8 12.9 18.6 

M
ut

at
io

n 

10% 9.9 12.2 8.6 10.8 14.2 14.4 12.0 12.8 13.3 13.8 11.3 13.8 

 12.2 12.9 10.9 12.3 14.7 15.4 13.4 14.2 13.5 14.5 13.2 14.9 
 12.56 11.61 15.03 13.76 14.04 14.05 
 12.08 14.39 14.04 
 

Totals 

13.50 
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achieved by 2-point crossover and graph crossover for the same configurations. For a
mutation rate of 1%, the average increase in productivity is 3.37; for 5% mutation 2.03,
and for 10%, the average gain is 0.44. These facts indicate that graph crossover
overcomes the tendency to converge to suboptimal solutions. Two-point crossover
between individuals with resembling genotypes will result in an individual that is also
similar (e.g., 2-point crossover between the same individual does not produce any
change). With graph crossover this is not necessarily true. In late generations, when a
few individuals tend to dominate the population, graph crossover may promote diversity.

Figure 11: Charts Show Number of 1s Written by the Best Individual Using a TNF
Interpretation (The results are averages of series of 30 runs.)

Table 9: Difference in Productivity Between Graph and 2-Point Crossover for the Best
Individual of the Final Population (The entries in bold represent statistically significant
differences (significance level: 0.05)).
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1% 6.13 2.97 5.13 1.20 3.86 3.50 2.90 5.17 2.67 3.56 2.77 1.73 4.73 1.57 2.70 

5% 2.33 1.80 2.33 4.27 2.68 0.03 2.47 -0.33 3.27 1.36 0.03 2.00 0.60 5.60 2.06 

M
ut

at
io
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10% 0.60 1.60 0.47 1.83 1.13 -1.27 -0.07 -1.00 0.57 -0.44 1.70 -0.40 0.10 1.10 0.63 

 3.02 2.12 2.64 2.43  0.75 1.77 1.28 2.17  1.50 1.11 1.81 2.76  
 2.57 2.54  1.26 1.73  1.31 2.28  
 2.56  1.49  1.79  
 

Totals 

1.95  
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A 10% mutation rate is too high for this type of crossover. This is especially visible in
the results of TNF representation; this is an expected result since TNF, by itself, enables
higher population diversity (Machado et al., 1999).

In Table 10 we indicate the number of times that the best 4-tuple BB(6) candidate
(21 1s in 125 steps) was found. These results confirm and emphasize the previous ones.
The difference between the two crossover operators is impressive. Using a 1% mutation
rate and 2-point crossover we were unable to find the best contender, while with the new
crossover operator this candidate was found nine times. Conversely, with 10% mutation
it was found 11 times with 2-point and seven with graph crossover, which confirms our
previous remarks. The table also stresses the increase in performance for the best
configuration {TNF, 5%, 100, 5} from six to 11. The number of runs performed does not
render statistically significant differences for specific configurations. Nevertheless, the
overall difference (25 vs. 47) is statistically significant (significance level: 0.05).

The idea behind the proposed crossover operator is to take advantage of the
inherent relations in the substructures that compose a TM. These substructures (or sub-
machines) can be considered as the building blocks of our problem. Two-point crossover
is “blind” with regard to the structure of a TM, being, therefore, ineffective in the
combination of such blocks. Graph crossover is aware of the structure of the individuals,
enabling effective discovery and recombination of building blocks of increasing order.
Our results prove that solutions obtained by successive recombination of building
blocks enable the discovery of TMs with complex behavior and credible candidates for
the BB problem.

In the previous section we showed that using a TNF interpretation of the TMs (with
or without IC) significantly improves the results. This was partially explained by the
reduction of the search space, and by the fact that TNF induces an ordering of the states.
With TNF, states that are directly connected have a higher probability of being close in
the chromosome, resulting in a higher similarity between genotype and phenotype
neighborhood. Accordingly, the probability of functional dependent states being
separated by 2-point crossover is greatly reduced. The use of the proposed graph
crossover operator implicitly redefines genotype proximity, making it a step closer to
phenotype proximity. Thus, this further reduces the probability of breaking subpro-
grams.

  Standard TNF IC 
 Pop. Size 100 500 100 500 100 500 
 T. Size 2 5 2 5 2 5 2 5 2 5 2 5 

1%  1 1  2  2 1  1 1  

5% 1 1  2  11  5  3  8 
M

ut
at

io
n 

10%     3 1 1  1 1   

 1 2 1 2 5 12 3 6 1 5 1 8 
 3 3 17 9 6 9 
 6 26 15 
 

Totals 

47 

Table 10: Number of Runs in Which the Maximum was Reached (Blank cells indicate
that none of the 30 runs reached the maximum.)
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SETTING NEW LOWER BOUNDS
In the previous sections we made an analysis of the influence of representation and

genetic operators in the performance of the EC algorithm. In this section we describe a
series of experiences that aimed to establish new lower bounds for S(N).

A straightforward modification of the TM simulator enables us to attack, simulta-
neously, BB(N) and BB(M) for all M<N. During simulation, when a state is visited for the
first time, it is considered as the final state and the productivity of the machine is
calculated according to the 4-tuple rules. Then, this modification is discarded and
simulation proceeds in the normal way. This is equivalent to raising the question:

“What would be the productivity of the machine if this was the final state?”

The productivity of the machine after visiting M states (with M<N) does not
influence the fitness value. This optimization allows a more efficient use of computational
resources, enabling the simultaneous exploration of the problem’s lower instances
search spaces.

Using this version of the simulator we conducted several experiments attacking the
7-state instance of the problem. This allowed us to discover a new BB(7) candidate,
showing that Σ(7) ≥ 164. Surprisingly, we also discovered a new BB(6) candidate,
presented in Figure 12, which produces 251’s in 256 steps.

In the experiments described in the previous sections MaxT was set to 250, which
partially explains why this candidate was not found. We conducted additional experi-
ments for the BB(6) using a higher value of MaxT in order to allow the discovery of this
machine. However, in these experiments the EC algorithm failed to discover this candi-
date. By itself this result is not anomalous, since EC approaches are mainly function
satisfiers and not optimizers. On the other hand, this machine was repeatedly found in
experiences concerning the BB(7) instance. Additionally, the current BB(7) and BB(8)
candidates, presented in Figure 13, were found when attacking BB(8) and BB(9),
respectively. These facts suggest, at least in what concerns the discovery of new lower
bounds, that it is advantageous to consider higher instances of the problem.

Figure 12: Current BB(6) Candidate (This machine produces 251s in 256 steps.)
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 Before the Application of EC After the Application of EC 

N Σ(N) Steps Authors Σ(N) Steps Authors 

6 ≥ 21 125 Cris Nielsen (Bringsjord, 1996) ≥ 25 256 Pereira and Machado (Pereira et al., 
1999b) 

7 ≥ 37 253 Lally, Reineke and Weader (Lally et al., 
1997) 

≥ 196 13683 Pereira and Machado (Pereira, 2002) 

8 ≥ 86 1511 Norman, Chick and Marcella (Bringsjord, 
1996) 

≥ 672 198340 Pereira and Machado, 2002 

 

Table 11: Evolution the Lower Bounds of Σ(N)

Figure 13: Current BB(7) and BB(8) Candidates (These BB(7) candidate writes 1961s
in 13,683 steps, while the BB(8) candidate writes 6731s in 198,340 steps.)
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We conclude this section by presenting a table showing the lower bounds for Σ(N)
before and after the application of EC techniques to the BB problem. The improvements
in productivity demonstrate that EC is a viable approach for the discovery of new
candidates.

CONCLUSIONS
The main goal of this research was to test the viability of using Turing Machines

as a model for the evolution of computer programs. With this purpose in mind, we chose
a problem that allowed us to test this idea, the Busy Beaver. This theoretical problem of
established interest and difficulty was proposed by Tibor Rado in 1962.

Our first approach to the problem, although rudimentary, gave promising results,
which can be compared favorably with previous EC approaches. This can be explained
by the method used to assign fitness, which tries to estimate the complexity of the
machines. An analysis of the attained experimental results allowed us to identify two key
issues that influence the performance of the algorithm: representation and used genetic
operators.

Following this line of reasoning, we studied different methods of interpreting the
information encoded in the genotype. We tested three different genotype to phenotype
mappings using the 4-tuple BB(6) instance of the problem. The experimental results show
significant differences in performance, in terms of average productivity of the best
individual, and of the frequency of discovery of the best-known candidate.

The natural representation for a Turing Machine is a graph. As such, a graph based
crossover operator specifically designed to manipulate Turing Machines was proposed.
The motivation was twofold: the improvement of performance in the Busy Beaver
problem, and it was considered a fundamental step in the development of a consistent
framework for the evolution of Turing Machines, which was the original goal of our
research work.

The attained experimental results show that graph based crossover clearly outper-
forms standard two-point crossover, reinforcing the idea that it is advantageous to
manipulate the individuals in a way that is consistent with their natural representation.

In addition to the contributions of potential relevance for evolutionary computa-
tion, such as the study of alternative representations and development of genetic
operators, there are also significant contributions in the scope of the Busy Beaver
problem. The discovery of new candidates for the 4-tuple BB(6), BB(7), and BB(8)
instances of the problem is, by itself, important. Furthermore, we showed that evolution-
ary computation techniques are a viable and competitive approach to attack this problem.

An analysis of the outcome of the research in light of the initial goals reveals some
shortcomings. In order to assess the feasibility of applying Turing Machines as a basis
for the evolution of computer programs, it is necessary to apply the proposed model to
a widespread range of problems. This is, undoubtedly, one of the obvious directions for
future research.
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ENDNOTES
1 Although 2.56×1010 4-state TMs exist, this number can be reduced to 603712

through the use of equivalence classes.
2 When the value of ∑(N) is know we make MaxOnes equal to ∑(N) and MaxT equal

to the number of steps made by the BB machine. In the other cases these values
are established empirically. The nature of the BB problem ensures that it is
impossible to establish an upper bound for ∑(N) (Rado, 1962).
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3 Internally the chromosome is represented as a vector. However, this is only an
implementation issue and, therefore, not relevant from a conceptual viewpoint.


