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ABSTRACT

In this chapter we study the feasibility of using Turing Machines as a model for the
evolution of computer programs. To assessthisidea we select, astest problem, the Busy
Beaver — a well-known theoretical problem of undisputed interest and difficulty
proposed by Tibor Rado in 1962. We focus our resear ch on representational issuesand
on the development of specific genetic operators, proposing alternative ways of
encoding and manipulating Turing Machines. Theresults attained on a comprehensive
set of experiments show that the proposed techniques bring significant performance
improvements. Moreover, the use of a graph based crossover operator, in conjunction
with new representation techniques, allowed us to establish new best candidates for
the 6, 7, and 8 states instances of the 4-tuple Busy Beaver problem.
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INTRODUCTION

In 1937 Alan Turing, while trying to solve one of the problems posed by Hilbert,
developed atheoretical computational model that became known as Turing Machines
(Turing, 1937). According to the Church-Turing thesis, these finite state machines,
although simple, are able to solve any problem that is solvable by an algorithm.
Nowadays this thesisis well accepted, and, as such, the class computable and Turing-
computable problems are recognized as equival ent.

Themaingoal of our researchistotest theviability of using Turing Machines(TMs)
as amodel for the evolution of computer programs. More specifically, we propose a
framework for theevolution of TMs, and test its performancein awell-known problem,
the Busy Beaver (BB). Thisproblem was proposed by Tibor Radoin 1962 (Rado, 1962)
and became one of the most famous in the area of Theory of Computation.

Inacolloquial way, this problem can be formulated asfollows:

“What isthe maximum number of 1sthat an N-state halting TM can write when started
on a blank tape?”

The N state machinethat writesthe maximum number of 1sisnamed Busy Beaver.

Therationalefor choosing the BB problem liesin some of its propertiesthat make
it extremely appealing to study the competence of an Evolutionary Computation (EC)
algorithm. Some of these properties are:

i It is an undecidable problem. Most approachesthat deal with it try to perform an
exhaustive search over the space of possible solutions. We expect that an EC
algorithm can discover good quality candidates just by investigating asmall part
of the search space.

i Thesearch spaceisvery large. For aninstancewith N states, thereare (4x(N+1))
possible solutions. Given that the size of the search space depends on the number
of states, we can test the scalability of the used algorithms.

i Asfar asweknow, there are no specific heuristics that can hel p knowledge-based
methods to find TMs with high productivity.

i Thefitnesslandscapedefined by the BB problemishighly irregular (Pereira, 2002).

i For non-trivial instances, the optimumisnot known. Thisway, devel opment of new
methods can |ead to thediscovery of new best candidates, which addsan additional
motivation to the research that is performed.

The formal description of the BB problem and its variants can be found in the
following section, which also includes a synthesis of related research.

Inthethird section, we present aninitial evolutionary approachtothe BB problem.
Westart by analyzing previousapproachesinwhich EC techniquesareusedinthe search
for Busy Beavers. Subsequently, we describe our initial approach giving emphasis to
representation, genetic operators, and fitness assignment issues. The results achieved
with this approach are promising, outperforming previous EC approaches.

Encouraged by the success of the initial approach, we made modificationsin two
key components of the EC algorithm — representation and genetic operators— aiming
toimproveitsperformance.
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In the fourth section, we study the influence of representation in the performance
of the EC algorithm when applied to the BB problem. We present three alternativeways
to interpret the genotype. The results achieved by the different methods show the
importance of the interpretation method in the performance of the EC algorithm. We
perform an analysisof theexperimental results, giving explanation for thedifferencesin
performance.

In the fifth section, we present a recombination genetic operator suited to the
manipulation of individuals with a graph structure. We compare the results achieved
through the use of this operator with the 1s attained by conventional two-point
crossover. The analysis of the results allows us to ascertain that it is advantageous to
use this new operator.

Weused thedeveloped EC algorithminthe search for new Busy Beaver candidates.
In the sixth section, we present some of the new BB candidates found, and make a brief
description of ongoing research efforts.

Finally, in the last section, we draw some overall conclusions, refer to the main
contributions of our research work, and point to future research directions.

THE BUSY BEAVER PROBLEM

The Busy Beaver problem is directly connected with key issues of the Theory of
Computation (Cuttland, 1980; Hopcroft & Ullman, 1979), namely with the existence of
non-computabl e functionsand with the halting problem. Sincethe problemisdefinedin
terms of Turing Machines, we will start by presenting their formal definition.

Definition 1. A deterministic TM can be specified by a sextuple (Q,I1,T",9,s,f), where
(Wood, 1987):

o Qisafinite set of states

i IT is an aphabet of input symbols

i I" is an alphabet of tape symbols

i d isthe transition function

o sin Q isthe start state

o fin Qisthefinal state

The transition function can assume several forms; the most usual oneis:

3: QxI" - QxI'x{ L,R}
where L denotes move left and R move right. Machines with a transition function with
this format are called 5-tuple TMs. A common variation consists of considering a
transition function of the form:

3: QxI' - Qx{T"U{L,R}}

Machines of thistype are known as 4-tuple TMs. When performing atransition, a
5-tuple TM will write asymbol on the tape, move the head left or right and enter anew
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state. A 4-tuple TM either writes a new symbol on the tape or moves its head before
entering the new state.

Problem Definition

TheBB problemwasproposed by Tibor Radoin 1962 (Rado, 1962). Rado’ sgoal was
to present a series of functionsthat, although non-computable, could be easily defined.
The construction of these functions was based on the principle that any finite set of
integers has an upper bound. The demonstration of the non-computability of these
functions does not require the use of diagonalization techniques (Davis et al., 1994),
which is one of the most interesting aspects of Rado’s work.

In the original proposal Rado employs 5-tuple TMs with atape alphabet equal to
{B, 1}. Considering TMs of thistype, Rado defines productivity of aTM M, o(M), as
the number of 1s present on theinitially blank tape when the machine halts. Machines
that do not halt have productivity zero. The question raised by Rado is the following:

“What is the maximum productivity of an N state TM?”

Rado proceeds by defining (N) asthe function that returns the maximum produc-
tivity of an N-state TM, and then by demonstrating its non-computability (Rado, 1962).
TheN-state TM of maximum productivity iscalledtheBusy Beaver, BB(N). Thehalting
stateisconsidered an anonymousstate; that is, an N-state TM isaTM with N statesplus
the halting state. In amore formal way we can define X(N) asfollows:

Definition 2. Defining E, asthe set of all N-state TMswithI'={B, 1} andc: E,— X as
the function that returns the productivity of a TM, we have:

VMe E,, 2(N) 26(M) A3Me E,: 6(M) =(N) (1)

Wewill also define C(N) asthefunction that returnsthe number of steps performed
by the Busy Beaver machine.

4-Tuple Variant

Boolos and Jeffrey (1989) presented an important variant of the original problem,
defining it for 4-tuple TMs. In so doing they also introduced some changesin therules.
For this type of machine, productivity is defined as:

...thelength of the sequence of ones produced by the TM when started on a blank tape,
and halting when scanning the leftmost one of the sequence, with the rest of the tape
blank. Machines that do not halt, or, that halt on another configuration, have
productivity zero. (Boolos & Jeffrey, 1989)

Thus, more restrictions are imposed on the 4-tuple variant:
(@ When the machine stops there can only be one sequence of 1's on the tape.
(b) Themachinemust halt with theread/write head on theleftmost 1 of thissequence.
() The machine should stop after reading a 1.
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The first two restrictions are relatively common; the last one may cause some
surprise. Inthemodel of TM employed by Jeffrey and Boolosthereisnot ahalting state.
The TMs stop when there is no defined transition for the current tape/state configura-
tion. Using thismodel meeting requirement (a) alwaysensuresrequirement (c). However,
if one usesamore common model of TM, with halting state, the requirement (¢) must be
included in order to allow a fair comparison of the results with approaches that use a
model with no halting state.

The Search for Busy Beavers

Duetoitsdifficulty the BB problem hasattracted the attention of many researchers,
and several contestswere organized in an attempt to find new candidates. Although X.(N)
isnon-computable, itisstill possibleto determineits value for specific instances of N.
Inorder to provethat agiven N state machineisthe BB(N), one must provethat no other
machine, of N states, has higher productivity.

Themost common approachesto determining new BBsand/or to searching for new
candidatesinvolvedoing athorough search of the N-state TM space, and simulating the
behavior of each machine. Thistype of approach posestwo problemsthat becomeharder
with the increase of N:

i Dimension of the Space. Considering TMs with a binary tape alphabet, there are
(4x(N+1))>N TMswith N states.

i Halting Problem. Itisimpossibleto build analgorithmthat determines, forany TM,
if the TM stops (Daviset al., 1994).

Thefirst problem can betackled by increasing the used computational power, or by
building faster TM simulators. The second problem is directly related with the non-
computability of Y, and, as such, cannot be solved.

When part of the search space is undecided (in the sense that it was not viable to
determineif some of the machines belonging to that space halt) it isimpossibleto show
that the most productive machine found isthe BB(N); therefore this machine is named
as BB(N) candidate, and its productivity setsalower bound for 3.(N). For small values
of N it ispossible to decide the entire search space and thus determine the exact value
of .

The majority of the research concerning the BB problem deals with the original
variant, 5-tuple TMs. In 1962 Lin and Rado demonstrated that 3.(1) = 1 and that >.(2) =
4 (Rado, 1962). L ater they also showed that 3,(3) =6 (Lin & Rado, 1965). Tenyears|ater
Brady determined that X(4) = 13 (Brady, 1975, 1983, 1988). For N>4 thevalue of Y is
unknown.

Due to the interest of the problem, several contests were organized aiming to
determinethe valuesof Y or to find new BB candidates. In 1983, Schult (Ludwiget al.,
1983) discovered a 5-state TM, which produced 501 1'sin 134467 steps. A year later
Dewdney presented the BB problem to alarger audience by describing it in hiscolumn
Computer Recreations of Scientific American (Dewdney, 1985). Thisarticle caught the
attention of G. Uhing, an amateur mathematician, who in December of the same year
presented a new BB(5) candidate, showing that >.(5) > 1915. The machine in question
performs 2,133,492 stepsbefore halting.
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Thisrecord was only beaten in 1990, by Marxen and Buntrock, who discovered a
machinewithaproductivity of 4,098 (Marxen & Buntrock, 1990). Themachinein question
performs 47,176,870 steps. Their work has someinnovative features:

i Early detection of non-halting machines. I n spite of the halting problem being non-
computable, itispossibleto determine, inalarge percentageof cases, if aparticular
machine stops. Marxen and Buntrock employ several techniques that allow the
early detection of non-halting TMs. By using these techniques they were able to
decide more than 99% of the 5-state TM space.

i Equivalence classes. There are several machinesthat are equivalent®. The identi-
fication of setsof equivalent machinesenablesavast reduction of the search space.

i Faster simulation. The state-of-the-art TM simulator created by Marxen and
Buntrock enablesan unprecedented speedinthesimulation of TMs. Thisismainly
achieved by the use of “macro machines’ that operate on blocks of symbols,
performing in a single step a task that would require several steps from a TM.
Additionally, the employed tape representation also significant speed improve-
ments(Marxen & Buntrock, 1990).

Marxen al so applied this set of techniquesto the 5-tuple BB(6) problem, consecu-
tively improvingthelower boundfor X.(6). In Table 1 wemakeasynthesisof theevolution
of the values and lower bounds of }..

The research related to the BB problem is not limited to the search for new
candidates. M. Green proposed a methodol ogy for finding non-trivial lower boundsfor
>, (Green, 1964). Machlin and Stout (1990) presented acharacterization of the behavior
of TMs that do not halt when started on a blank tape, identifying several behavioral
classes. Thistype of study enablesthe development of efficient simulators by allowing
the early identification of non-halting machines.

The number of studiesfocusing on the 4-tuple variant is significantly lower. This
can be explained by the variant being more recent, and al so by the higher popularity of
5-tuple TMs.

InTable2we present theknown valuesand lower boundsof Y. for the4-tuplevariant
at thetimeour researchwork started. For N <4 thevaluesof Y. canbeeasily found through
an extensivesearch of the space. Dueto thelow complexity of these machines, thehalting
problem poses no serious difficulties. For higher values of N thisisno longer true, and,
as such, only lower bounds are known. We were also unable to determine the authors
of the current BB(4) and BB(5) candidates.

The most productive 6-state TM known was found by Cris Nielsen and writes 21
1'sin125 steps(Barwiseand Etchemendy, 2000; Bringsjord, 1996). In1997 L ally, Reineke
and Weader set anew lower bound for &(7) by discovering amachinewith aproductivity
of 37 (Lally et al., 1997). Their approach involves the creation of an abstract TM
representation. They start by performing an analysisof known TMsof high productivity,
which are transformed in block diagrams, allowing the discovery of common features.
Next, the space of diagram blocks possessing thesefeaturesisextensively searched. The
simulation of thediagram blocksisfaster thanthe simulation of the correspondent TMs,
and the search spacesignificantly smaller (Lally etal., 1997). Thefinal stage consistsof
transforming the diagram blocks of higher productivity in TMs. For some cases it is
impossibleto construct an equivalent TM with thedesired number of states, whichisone

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.


penousal
"of TMs" -> Is there a space between "of" and "TM"?

penousal
"also significant" -> "also gives significant"

penousal
"1’s" -> "1s", keep the bold

penousal
"a(7)" -> should be Sigma(7). Where Sigma is the greek letter.


The Quest for Busy Beavers 15

Table 1: Values and Lower Boundsfor Y(N), 5-tuple (The second column indicatesthe
number of steps performed by the BB machine, or best candidate, before stopping.)

N Z(N) Steps Authors
1 1 1 Lin and Rado (Rado, 1962)
2 4 6 Lin and Rado (Rado, 1962)
3 6 21 Lin and Rado (Lin & Rado, 1965)
4 13 107 Brady (Brady, 1975)
5 >501 134467 U. Schult (Ludwig et &, 1983)
5 >1915 2133492 G. Uhing, 1984 (Dewdney, 1985)
5 > 4098 47176870 Marxen and Buntrock (Marxen &
Buntrock, 1990)
6 > 136612 13122572797 Marxen and Buntrock (Marxen, 2002)
6 > 95524079 86903333816909510 Marxen, 1997 (Marxen, 2002)
6 > 6.427499x10%2 6.196913x10°%° Marxen, 2000 (Marxen, 2002)
6 > 1.29149x10%% 3.00233x107*° Marxen, 2001 (Marxen, 2002)

of thedrawbacks of the approach. Additionally, thetransformation of thediagram blocks
to TMs s performed by hand.

AN EVOLUTIONARY APPROACH TO
THE BUSY BEAVER PROBLEM

Inthissectionwe present our initial approachtothe BB problem. Westart by making
abrief overview of research that isrelated with the evolution of finite state machines.

Evolutionary Programming (EP) isan EC approach proposed by Fogel, Owensand
Walshinthe1960s(Fogel etal., 1966). Thegoal of thisapproach wasto evolvealgorithms
that were able to solve sequence prediction problems. Possible solutions were repre-
sented asfinite state machines (FSM). An FSM isavery simple model of computation
that consists of aset of states, a start state, an input alphabet and a transition function
that mapsinput symbolsand current statesto anext state. An FSM hasmany similarities
withaTM.

EP usesacollection of mutation operatorsthat manipul ate specific components of
aFSM to generate descendants. They have been successfully applied to alarge number
of situations, ranging from the original sequence prediction problemsto combinatorial
optimization problems or evolution of strategiesfor games. Consult Fogel (1995) for a
detailed description of application areas.

Mitchell, Crutchfield, and Hraber aimed to evolve Cellular Automata (CA) to
perform computations(Mitchell etal., 1994). Themaingoal of thiswork wasto understand
theemergent behavior of CA andtoanalyzeif an EC algorithm coul d be used asamethod
for engineering CA, so that they could perform general computations.

A CA can be defined as a two-dimensional organization of simple finite state
machines whose next state depends on their own state and the ones of their closest
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Table 2: Valuesand Lower Boundsfor Y(N), 4-tuple (The second column indicatesthe
number of steps performed by the BB machine, or best candidate, before stopping.)

N | Z(N) Steps Authors
1 1 1 Trivia
2 2 3 Trivia
3 3 7 Trivia
4 >5 16 Unknown
5 >11 52 Unknown
6 >21 125 Cris Nielsen (Bringsjord, 1996)
7 =37 253 Lally, Reineke and Weader (Lally et al., 1997)
8 > 86 1511 Norman, Chick and Marcella (Bringgord, 1996)

neighbors. Conway’s game of life is probably the most well-known instance of a CA
(Berlekampet al., 1982). In general, the machines can bearranged in meshesof higher or
lower dimensions, have larger neighborhoods, or be arbitrarily complex processors.

Thelatticestartsout withaninitial configuration of cell states, and thisarrangement
changesin discrete time steps, in which all cellsare updated simultaneously according
to the CA rules. A CA computation is composed of a sequence of steps that keep
modifying the configuration. The program emerges from the CA rule being obeyed by
eachcell. Thebehavior of aCA isoftenillustrated by space-timediagrams(apl ot of lattice
configurationsover arange of timesteps). Intheir research, Mitchell et al. used agenetic
algorithmto evolve CAsinwhichtheactionsof thecellsarenot random-looking, but are
coordinated with one another so as to make possible the emergence of sophisticated
parallel computations.

Related Research

To our knowledge there was just one previous attempt to apply EC techniques to
the BB problem. In 1993, Jonesand Rawlins(Jones& Rawlins, 1993) applied astraight-
forward EC algorithm to search for good candidates for several instances of the 5-tuple
BB. Themain goal of thisstudy wasto perform acomparison between hill-climbing and
genetic algorithms (GAs) and also to analyze the reverse hill-climbing technique. This
analysistool helpsto determinethe probability that hill-climbing will attainagiven point
in the fitness landscape. The BB problem was used just as a test-bed to examine the
performanceof thealgorithms. Thegoal wasnot to apply EC algorithmsto seek new lower
bounds.

In the experiments described in the above mentioned work it is possible to verify
that even though both approaches were able to find the optima solutionsfor the 5-tuple
BB(N), N <4, hill-climbing waslessdemandingintermsof computational power. InTable
3wepresent asummary of theresults. Asit can be confirmed, for N=4, the EC algorithm
has to eval uate, on average, 186 million individualsto find the optimum (which corre-
sponds to 0.72% of the search space), whilst hill-climbing only evaluates 42 million
individuals (0.16% of the search space).
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Table 3: Average Number of Evaluations Necessary to Find the Optimum (Jones, 1995)

N GA Hill-Climbing
1 8 6
2 8117 542
3 123404 10606
4 186666666 42372351

Theseresultsallow different interpretations: on onehand, the optimumvalueswere
found, which shows the feasibility of applying EC techniques to this problem. On the
other hand, the number of evaluations required to find the optimum isrelatively high.
Taking into account that the size of the search space increases exponentially with the
number of states, and that machines with higher states typically present more complex
behaviors, thusrequiring moretimeto simulate, itisnot viableto apply asimilar approach
to instances with a higher number of states.

Initial Approach

In spite of our goalsbeing different from the ones of Jonesand Rawlins, wedecided
to start our research by applying a standard genetic algorithm to the 5-tuple version of
the BB problem. Thiswould allow usto make adirect comparison of the results.

Representation

The search space of a BB(N) instance is composed of all N-state TMs (plus an
anonymous halting state). We need thereforeto find an efficient representation for such
TMs. As stated before, a TM can be defined by a sextuple (Q,I1,I',8,s,f). Without loss
of generality, wecanconsider Q={1,2,...,N,N+1}, set 1 astheinitial stateand N+1 asthe
final one. SinceIl:={ 1} and I':=={ B, 1}, for agiven BB instance we only need to represent
the transition function, since thisisthe only component that differs from TM to TM.

Thetransitionfunction 6 can berepresented asatable. For N state TMswith abinary
alphabet, thistable has 4xN cells: for each state we need to specify the new state when
the TM reads a blank, the associated action, the new state when it reads a 1 and the
corresponding action.

For a5-tuple TM there arefour possible action pairs: { write 1 and moveleft, write
1 and moveright, write blank and move left and write blank and moveright}. Figure 1
shows a 5-tuple TM and its transition table.

In our approach, the chromosome is composed of a sequence of 4xN genes that
encodes a transition table. Figure 2 presents a structured representation of such a
chromosome.

During the optimization, we used 2-point crossover and a standard mutation
operator. When applied to a given gene, mutation changed its value to anew one from
itsdomain.

Simulation and Fitness Assignment

Inorder toevaluateanindividual weneedto obtainthe TM encoded inthegenotype
and then simulate it. In these experiments we performed a direct decoding of the
information fromthe chromosome.
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Figure 1: A 5-tuple TM and Its Transition Table (The blank symbol is represented by
a 0; this machine is the 4-state Busy Beaver.) (Brady, 1975)
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Since some of the machines never stop, one must establish a maximum number of
steps, MaxT, and consider that machinesthat do not halt after MaxT stepswill never halt.
Additionally, if during simulation the number of 1s present on the tape is larger than
MaxOnes the simulation is also stopped?. Since MaxT >> MaxOnes, significant speed
improvements can be achieved.

After running the TM we can determinethefitness of the corresponding individual .
Intheir research, Jones and Rawlins considered that the fitness of an individual should
be equal to its productivity (Jones & Rawlins, 1993). This approach implies that a
significant number of individuals have the same fitness, which is undesirable. In an
attempt to avoid this problem we decided to take other factors into consideration.

The underlying assumption isthat TMsthat exhibit acomplex behavior should be
valued, since good BB candidates will surely have acomplex behavior. Thisway when
assigning fitnessto anindividual, in addition to the productivity of the TM we also take
into consideration the number of steps it made before reaching the halting state. We
assumethat TMsthat stop after performing alarge number of stepstend to have amore
complex behavior than others that make just afew steps. To distinguish between TMs
that do not stop we consider the number of steps left on the tape when the simulation
is stopped. Following these ideas, the fitness of individual i, (i), is given by:

4
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Figure 2: Structure of a Chromosome

New . New . New . New )
State Action State Action e State Action State Action
\ N J
By blank By 1 y blank By 1
/
State 1 State N

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.


penousal
There is a table missing in this figure! We will re-send the original figure file, just in case...

penousal
Please use bold instead of italic

penousal
"steps" -> "ones"


The Quest for Busy Beavers 19

where o(i) represents the number of 1s present on the tape when the machine stops and
(i) the number of steps performed.

Experimental Results

We tested our approach in the 4-state instance of the 5-tuple BB problem. The
experimental settingswerethefollowing: number of eval uations=25,000,000; popul ation
size=200; two-point crossover with rate=0.7; single point mutation with rate=0.05;
roulettewheel selection; elitist strategy; MaxT=150; MaxOnes=13; a.=1, = 0.3, y=0.5.

Theexperiment wasrepeated 30 timeswith thesameinitial conditionsand different
random seeds. All initial populations were randomly generated. Values for different
parameterswere set heuristically. Neverthel ess, and even though wedid not perform an
extensive parametric study, we conducted someadditional testsand verified that, within
amoderate range, there was not an important difference in the outcomes.

In Figure 3 we present the evol ution of the productivity of the best individual. The
presented result isthe average of the 30 runs. The BB(4) machinewasfoundinall runs.
Onaverageittook 179806.7 evaluationstofindit (standard deviationwas 137082.7). In
thebest run, the EC algorithmrequiredjust 18,574 eval uationsto reach the optimum, while
intheworst it needed 578,266 eval uations. Theseresultsare clearly superior tothe ones
achieved by Jones and Rawlins (Jones & Rawlins, 1993) (average of 186,666,666
evaluationsto find the BB machine). The explanation for thisdifferencelies, mainly, in
the fitness function. Additionally, the goal of Jones and Rawlins was to compare two
approaches; as such we believe that the optimization of the EC parameters was not
considered important.

Four-Tuple Variant

Eventhoughweachieved promising resultswith BB(4) wefaced adifficult problem.
To apply our approach to BB(5) we had to set MaxT to 47,176,870, since the current

Figure 3: Chart Showing the Evolution of the Productivity of the Best Individual

Evolution of Productivity

14

) -
10 ,,J/_/
//

©

Productivity

0 100000 200000 300000 400000 500000 600000
Evaluations

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.


penousal
Please use bold instead of italic

penousal
"two-point" -> "2-point"

penousal
MaxT should be in italic

penousal
"Four-" -> "4-"


20 Machado, Pereira, Tavares, Costa & Cardoso

candidate performs this number of stepsto reach a productivity of 4,098. It is obvious
that this would involve alarge computational effort.

Moreover, our goal was to establish some lower bounds. Marxen and Buntrock
(Marxen & Buntrock, 1990) performed an exhaustive search of the BB(5) sol ution space,
leaving lessthan 1% of it undecided (they were not able to determineif these machines
eventually halted). Therefore, the chances of finding a new candidate for thisinstance
arerelatively slim. Moreover, if thismachineexists, it will certainly perform much more
than 47 million steps. In their research, Marxen and Buntrock resort to a sophisticated
and complex TM simulator that significantly improves simulation speed. Without this
sort of tool it isunfeasible to attack any 5-tuple instance greater than BB(4).

Taking these factors into consideration, we abandoned the 5-tuple variant and
focused our attention on the 4-tuple variant of the problem. When we moved to this
alternativewe had to modify several featuresof our algorithmrelated to the codification
of theinformation in achromosome and to the fitness assignment. | n what concernsthe
representation, the structure of the chromosome (the number of genes) remains un-
changed. Genesrelated to actions still can take four different values, although they are
different from the 5-tuple approach: { write 1, write B, moveleft, moveright} .

Since the 4-tuple variant has different rules for defining the productivity, we had
to modify the fitness assignment, even though we maintained the same basic principle.
When assigning fitnessto anindividual, we consider thefollowing factors, indecreasing
order of importance:

i h(i) isequal to 1 if the machine halts before reaching the limit number of stepsand

0 otherwise;

i v(i) isequal to 1if the machinefollowsthe 4-tuple variant rules defined in Boolos
and Jeffrey (1989), 0 otherwise;

i 6(i) represents the number of transitions used (each TM has 2N transitions,
however some of them may never be used);

i o(i) represents the number of 1s present on the tape when the machine stops;

i (i) represents the number of steps performed.

Given these factors, the equation used to assign fitness is the following:

f(i) =h(i) x[@+v(i)xo)xo (i) + @+ v(i))x0 @) x B + @+ v(i)xy)xw(i)] (3)

TMsthat do not stop havefitness 0. Constants o, 3, Y determinetherel ative weight
of each factor. Valuesfor these parameters are empirically determined.

Experimental Results

After modifying our algorithm, we conducted several preliminary testswith the 7-
state instance of the problem.

Theexperimental settingswerethefollowing: number of eval uations=25,000,000;
population size={ 200, 1000} ; two-point crossover with rate=0.7; single point mutation
with rate={ 0.01, 0.05, 0.1} ; roulette-wheel selection; elitist and non-elitist strategy;
MaxT=50000; MaxOnes=500; a.=4, =2, y=1.
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Table 4: Productivity of the Best Individual of the Final Population (Results are
averages of 10 runs.)

Strategy | Elitist Non Elitist
Pop. Size| 200 1000| 200 1000
1% 14 12 | 13 12
5% 18 17 | 17 14
10% 20 20| 18 19

Mutation

All experiments were repeated ten times with the same initial conditions and
different random seeds. Initial populations were randomly generated.

In Table 4 we present, for all different experiments, the productivity of the best
individual of the final generation. Results are averages of the 10 runs.

The small number of runs prevents us from determining if there are statistically
significant differences between the results achieved by different settings. Anyway,
results suggest that a fairly high mutation rate helps to discover good BB candidates.
Adopting an elitist strategy also seems to improve the search performance. The EC
algorithm was not sensitive to the variation in the population size. A detailed analysis
on the results achieved in these experiments can be consulted in Pereiraet al. (1999a).

Themaost important goal of thisexperiment wasto determinewhether it waspossible
to discover new lower bounds for some instances of the BB using our approach.
Although preliminary, results were rather clear. Even though this could be considered
arudimentary approach we were able to discover new candidates for several instances.
In the experiments we described we found a 7-state machine with productivity of 102
(Pereiraetal., 1999a). If we comparethisvaluewith the previousbest candidate (which
has a productivity of 37 (Lally et al., 1997)), it is evident that our evolutionary method
can bring significant improvements.

We also performed some additional tests with other instances. With BB(6), we
found on aregular basis TMswith aproductivity of 21, solutionswhich are equivalent
tothebest known candidatediscovered by CrisNielsen (Bringsjord, 1996). Asfor BB(8),
wefound aTM that writes 384 1'sin 43368 steps. The previous best-known candidate
has a productivity of 86 (Bringsjord, 1996). These results show that EC algorithms can
be considered efficient methods to search for good candidates for the BB problem.

THE INFLUENCE OF REPRESENTATION

An analysis of the attained experimental resultsindicated that there was room for
improvement. Weverified that the best resultswerefound infrequently and that, in most
of the runs, the algorithm got trapped in local optima. In this section we focus our
attention on representational issues. We present and analyze three different ways to
represent TM's. Our goal isto determinewhich representationimprovesthe competence
of the EC algorithm when searching for good solutions to the BB problem.
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Representation

Itisclear that thereareseveral TMsthat, eventhoughthey aredifferent, exhibit the
same behavior. As an example, consider the following transition: 8(1, B) = (1, R). If,
without loss of generality, we assume that 1 isthe start state, all TMs with the above
mentioned transition will loop forever and the other transitions are useless. This way,
in what concernsto the BB, all these TMs can be considered equivalent. Assuming that
we can construct sets of equivalent TMs, we just need to run one of the machines of a
given set to determine the behavior of all the other elements. If we could develop a
representation where all the TMs belonging to a set are encoded in the same way (i.e.,
they have the same genotype), we would drastically reduce the size of the search space.

The most important of these equivalent classesis known asthe Tree Normal Form
(TNF) (Marxen & Buntrock, 1990). Using a TNF representation ensures that machines
differing only in the naming of the states or in transitions that never are used are
represented in the same way.

The crucial problem with this representation is that it is not possible to directly
translateaTM intoitsTNF. To performthisconversion (or torecognizethat itisalready
initsTNF), we havetorunthe TM. For example, before the simulationitisimpossible
to know if all its transitions will be used (otherwise it would be possible to solve the
halting problem). Therefore, asimpleruletoconvertaTM toitsTNFistosimulateitand
number the statesin the order that they arevisited. Unused transitionsaredel eted. Since
itisimpossibletodetermineif agiven TM isinits TNF without simulating itsbehavior,
itisnot viable to directly adopt this form of representation.

In spite of these difficulties, Marxen and Buntrock — who, just like we mentioned
before, try to perform an exhaustive exploration of the space when searching for BB —
rely on a TNF representation to accel erate the search process. When simulatingaTM,
they verify if the machineisinits TNF. If during the simulation they confirm that the
machineis not in its TNF they abort the process and immediately proceed to the next
candidate (for example, if aTM jumpsfrom state 1 to state 3without visiting state 2, then
itisnotinits TNF and simulation can be stopped). This kind of approach is reliable
because the search space is fully examined and sooner or later the TNF TM with
equivalent behavior will be simulated.

Even though we cannot directly use TNF asaway of representing individuals, we
decided to analyze a possible alternative: to interpret the information contained in the
genotype in such away that the resulting TM isinits TNF. Theideaisto change how
the genotype-phenotype mapping is performed. With this new approach, the structure
of the chromosome remains unchanged, whilst the interpretation of the encoded
informationismaodified. During simulation, thechromosomeisinterpretedinaway that
ensures that the resulting TM is in its TNF. This is achieved by performing two
straightforward modificationsinthe TM simulator:

i Consider that states 1 to m were already visited and that transition t will be used
for thefirst time:

* |f t leads to an unvisited state e and e > m+ 1 then change transition t so that it

leads to state m+1;

¢ |f tisthe last undefined transition from states 1 to m, then change transition t

so that it leads to state m+1;
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Figure 4: TNF Interpretation Algorithm

Mark all transitions as undefined
Mark all states as not-visited
visited_states < 0
defined_transitions < 0
CState < 1
Steps € 1
While (CState # N+1) and (Steps < MaxT) Do
Read the symbol S on the tape
If the transition 3(CState, S)—(New_state, Action) is undefined Then
Mark it as defined
defined_transitions € defined_transitions + 1
If CState is not-visited Then
Mark it as visited
visited_states € visited_states + 1
If New_state > visited_states + 1 Then
New_state € visited_states + 1
If defined_transitions = visited_states x 2 Then
New_state < visited_states + 1
Update 3(CState, S)—(New_state, Action)
End If
Execute Action
Steps € Steps + 1
CState € New_state
End While

In Figure4 we present the TM simulation algorithm that ensuresthat the genotype
isinterpreted asif it wasin TNF. A careful analysisshowsthat TMsonly reach thefinal
state after visiting all other states.

It is now possible to conduct a set of tests with different representational ap-
proaches, so that we can compare their efficiency. We consider three different options
for the representation and interpretation of TMs:

i Standard. Direct decoding of the genotype into a TM.

i TNF. Interpretation of the genotype asif it wasin TNF. Thisisachieved using the
algorithmfromFigure4.

i IC. Just likeinthe previousoption, the TNF simul ator isused. After thesimulation,
the resulting TM is directly coded in the genotype of the individual.

Experimental Results

Weused BB(6) asthetest-bedinacomprehensiveset of experimentswherewetried
to determine which representation allows usto find good solutionsin aconsistent way.
When the tests were performed, the best candidate for this instance had a productivity
equal to 21 reached in 125 steps.

Theexperimental settingswerethefollowing: number of eval uations=40,000,000;
popul ation size={ 100, 500} ; 2-point crossover withrate=0.7; single point mutation with
rate={0.01, 0.05, 0.1} ; Tournament selectionwith tourney size={2, 5} ; elitist strategy;
Interpretation={ Standard, TNF, IC}; MaxT=250; MaxOnes=100; o=3, 3= 2, y=1. All
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Figure 5: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=100 and Tournament Size=2 (Results are averages of 30 runs.)
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experimentswererepeated 30 timeswith thesameinitial conditionsand different random
seeds. Initial populationswererandomly generated. Thechartson Figures5to 8illustrate
the evolution of the productivity of the best individuals. Results are averages of the 30
runs.

A brief perusal of the graphs shows that TNF and IC outperform Standard
interpretation. It is also visible that a fairly high mutation rate is desirable. Results
achieved when using a 1% mutation rate are clearly worse than when using 5% or 10%
mutation rates. The difference between 5% and 10% mutation ratesis less significant,
though 5% gives better results. Tendentiously, small populations (100 individuals)
perform better.

In Table5wepresent theaverage number of 1swritten by the best individual of the
final population, for all possible configurations. Results are averages of 30 runs.

Theaverage productivity of the 360 runs performed with the standard interpretation
is9.53. Experiments performed with TNF and | C interpretation achieved, respectively,
average productivities of 12.9 and 12.25. Differences between the productivities of
experimentsthat adopted aTNF interpretation of the chromosome (TNF and | C) and the
experiment that relied on standard representation are statistically significant (signifi-
cancelevel: 0.05).

InTable6wepresent, for all configurations, thedifferencebetweenthe productivity
of thebestindividual in experimentswith astandard interpretation and experimentswith
TNForIC. Boldentriesrepresent statistically significant differences(significancelevel:
0.05). Theresultspresented on thistable show that significant differencesexist for most
of the configurations. On the other hand, the difference between the results achieved by
TNF and I C interpretation is not statistically significant.
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Figure 6: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=100 and Tournament Size=5 (Results are averages of 30 runs.)
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In Table 7 we present the number of runs in which the BB(6) candidate with
productivity 21 was found. Using a standard representation, the EC algorithm found a
machine with productivity 21 once in 360 runs. This result shows the difficulty of the
problem and how the space can be hard to search. When using TNF, candidates with
productivity of 21werefoundin 17 runsandwith1Cinsevenruns. Bold entrieshighlight
statistically significant differences(significancelevel: 0.05) between experimentswith
astandardinterpretation and experimentswith TNF or | C. Resultsfrom Table 7 confirm
the superiority of TNF over the standard interpretation.

If we consider thiscriterion, itisalso possibleto determinestatistically significant
differences between experiments that use TNF and I C interpretations. Italic entriesin
Table 7 highlight the existence of such adifference.

TNFinterpretationisachieved through the modification of the standard simulation.
Even though these modifications do not change the genotype space, they considerably
reduce the number of distinct phenotypes. The most important phenotype reduction is
due to the restriction that specifies that states belonging to the TM should be visited
inorder. Anyway, it isimportant to notice that this also reduces the number of possible
solutions. When using a standard representation there are several isomorphic solutions,
whilein TNFthey arereducedtojust one. Therefore, theadvantage of TNFinterpretation
cannot be explained just by this reduction on the phenotype space.

There is, however, another type of space reduction when TNF interpretation is
used. A careful analysisof thealgorithm presented in Figure4 revealsthat TMsareonly
allowedto enter thefinal stateafter visiting all other states. Thus, in TNF, machinesthat
halt alwaysvisit all states. Thissituation might allow the devel opment of solutionswith
complex behavior intheearly stagesof theevolution process. Since TM sthat do not stop
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Figure 7: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=500 and Tourney=2 (Results are averages of 30 runs.)
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Figure 8: Evolution of the Productivity of the Best Individual in Experiments with
Population Size=500 and Tourney=>5 (Results are averages of 30 runs.)
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Table 5: Productivity of the best individual of the final population (Results are
averages of 30 runs.)

Standard TNF IC
Pop. Size 100 500 100 500 100 500
T.Size 2 5 2 5 2 5 2 5 2 5 2 5
5 1% 85 74|86 779|118 105| 92 97 | 115 103| 10.7 10.7
§ 5% 98 143| 82 126|144 159| 140 141|130 158 123 130
= 10% 93 106| 81 90 | 155 145|130 122|116 142|112 127
92 108| 83 98 | 139 136| 121 120| 120 134 | 114 121
Totals 9.98 9.07 13.77 12.03 12.73 11.77

9.53 12.90 12.25

11.56

have fitness 0, descendants of the machines that visit all states before halting will
dominateinitial populations. Onejustification for theadvantage of TNFisthat thiskind
of machine can be considered as a good starting point to the evolution of high quality
BB candidates.

Onthe contrary, with a standard interpretation, a machine can halt after visiting a
small number of states. Although these machines may have asimplebehavior, they will
still have a fitness score higher than most of the individuals from their generation and
will tend to dominate the populations, hindering the formation of good candidates.

The chart in Figure 9 shows the evolution of the average number of visited states
for standard, TNF and IC. A logarithmic scaleisused to allow an easier visualization of
the early stages of the simulation.

Another interesting characteristic of TNF interpretation is that it induces an
ordering of the states. States that are directly connected have a higher probability of
being close in the chromosome. Thus, there is a higher similarity between genotype
neighborhood and phenotype neighborhood. It is reasonable to assume that this

Table 6: Differences in Productivity Between Standard and TNF Inter pretations

TNF IC
Pop. Sizef 100 500 100 500
T.Size| 2 5 2 5 2 5 2 5

1% 33 31(06 18|30 29|21 28
5% 46 16|58 15|32 15|41 04
10% |62 39|49 32|23 36|31 37

47 29|38 22|28 27|31 23
Totals 3.8 4.0 2.8 2.7
3.4 2.7

Mutation
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Table 7: Number of Runsin which a BB(6) Candidate with Productivity 21 was Found
(Blank cells indicate that none of the 30 runs found this TM.)

Standard TNF IC
Pop. Size] 100 | 500 | 100 | 500 | 100 | 500
T.Size |2 5|2 5[2 5[2 5[2 5|2 5

5|
g 5% 1 6|2 4|1
S| 10% 1 4 3
1 5 9 4
Totals | 1 14 | 3 4 3
1 17 7

situation hel psthe evolutionary process, sincethereisadecreasein the average number
of transitions broken by crossover.

Thereis an interesting effect related to the TNF interpretation. Consider that we
have achromosome whose gene value for New State of the transition of state 2 by blank
is3; admit also that, when thistransition isfirst used, state 3 was not yet visited. Even
if mutation changesthisvalueto 5, there will be no changes on the phenotype, sincethe
TNF interpretation will still consider it as atransition to state 3. This simple example
shows that TNF interpretation allows the accumulation of neutral mutations (i.e.,
changes in the genotype that do not lead to any modification in the phenotype).

The way in which these neutral mutations may influence the behavior of the
evolutionary algorithm depends on whether aTNF or an I C interpretation isused. With
the first option, even though the neutral mutations are not expressed in the phenotype
(and as a consequence do not affect the fitness of the individual), they remain in the
genotype. Later on, due to other alterations in the chromosome, they may become
effective. Asfor IC, thetransfer of the phenotype to the genotype eliminates all neutral
mutations.

Results presented in this section show that TNF clearly outperforms a standard
representation, enabling the discovery of good candidates for the BB problem. In what
concernsthe advantages/di sadvantages of coding back to the genotype, the TM derived
fromthe TNF interpretation, results presented are somewhat inconclusive. Eventhough
experimentsthat relied on a TNF interpretation achieved resultsthat are slightly better
than those achieved by IC, differences are not too big. Statistically significant differ-
ences were only visible when we considered the number of runs in which the BB(6)
candidate with productivity 21 was found.

GENETIC OPERATORS

The performance of an EC algorithm depends, to a large extent, on the adopted
genetic operators. The relation of vicinity between points of the search space is
established by these genetic operators, which, in conjunction with the fitness function,
also defines the topology of the space.
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Figure 9: Evolution of the Average Number of Visited States (Logarithmic scale)
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Dueto their importance a significant portion of the research in EC focuses on the
study and development of operators. The choice, or development, of the operatorsis
based on the characteristics of the problem. Thetype of structure being manipulatedis,
usually, one of the determinant factors.

Two-point crossover isone of the most common recombination operators for the
mani pulation of linear structures. The manipulation of structured representations, such
as the ones employed in Genetic Programming (GP), is typically carried out through
operators particularly suited to these structures. In GP, for instance, theindividualsare
represented by trees; assuch, thetypical recombination operator (K oza, 1992) promotes
the exchange of sub-trees between individuals. This type of approach is based on the
notion that it is advantageous to manipulate the individuals in away that is consistent
with their structure, and that respects the underlying syntactic restrictions (Angeline,
1993).

Aspreviously stated, our goal isthe evolution of TMs. The natural representation
of aTM isagraph. Inthe experiments described in the previous sections we resorted to
2-point crossover. However, since the individuals are graphs®, they should be manipu-
lated as such, hencethe devel opment of agraph based crossover operator. Inthissection
we present thisoperator, the results achieved through its use, and acomparison with the
ones achieved by 2-point crossover.

Graph Based Crossover

The basic idea of our operator isto promote the exchange of subgraphs or, from a
functional point of view, theexchange of sub-machines. Theinspirationfor thisoperator
was the standard GP crossover operator that exchanges sub-trees.
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Theprimary goal istoimprovethe performanceof our algorithminthe BB problem.
Additionally, we aim at developing a generic operator that is suited for other problems
in which the natural representation is a graph.

In order to explore the structure of the TMs, and since any sub-set of nodes and
arcsisasubgraph, we must impose constraintsto the subgraphsbeing exchanged. A TM,
especially one with acomplex behavior, isusually formed by several sub-machines. In
thecurrent context, we can define sub-machine asaset of functionally dependent nodes,
and corresponding transitions, that perform a simple and well-defined task. Thus, the
concept of sub-machine is similar to the concept of subroutine. An analysis of high
productivity TMsshowsthat their complex behavior isattained through the interaction
of simple sub-machines.

Due to the nature of TMs, functional dependency is typically connected to the
distance between nodes (considering as distance the minimum path length between
nodes). Thus, the probability of two nodesbeing functionally dependentishigher if they
aredirectly connected. Therefore, sub-machinestend to be composed of aset of neighbor
nodes. Consequently, the subgraphs should be composed of closely linked nodes, and
by the transitions among them. From here on we name the transitions between nodes of
a subgraph as internal transitions.

Next we describe our graph based crossover operator, which, although indepen-
dently developed, shares many characteristics with the one proposed by Teller and
Veloso(1996).

I mplementation
Consideringtwoindividuals, Aand B, the application of the graph based crossover

operator can be divided in two stages. In the first, we select the subgraphs to be

exchanged. Inthe second, we perform the exchange of genetic material, generating two
descendents.
The selection of the subgraphs is performed as follows:

i Randomly select crossover points, P, and P, for each of the parents, and a
crossover size, X. Thevalueof Xisrandomly chosenfromtheinterval (1, MaxSize),
where MaxSize is a user specified constant.

i For each of the parents define the list of nodes, L, and L, belonging to the
corresponding subgraphs:

* Thecrossover pointisthefirst nodeof thelist. Then, through breadthfirst search,
nodes of increasingly higher distance from the starting point are added to the end
of thelist. Theorder of pointslocated at the samedistanceisrandomly determined.
* Next, the lists are truncated, making their length equal to X.

* When thelists have different lengths — which can happen when it isimpossible
toreach X-1 nodesfrom thecrossover point— thelarger istruncated, making their
lengths equal.

i The subgraphs, S, and S, will be composed of the nodes of L, and L, and by the
internal transitions among these nodes.

The next step isthe exchange of genetic material between the parents. Due to the
existence of external transitions, that is, transitions between nodes of the subgraphsand
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nodes that do not belong to them, it is necessary to establish a correspondence between

thenodesof S, and S,. Theexchangeof genetic material isperformedinthefollowingway:

i Based onthe order of theelementsinthelistsL, and L acorrespondence between
nodes is established.

i Theinternal transitionsof S, and S, aremutually swapped. Theexternal transitions
remain unchanged. When the swapping operation leads to the existence of two
transitions (an internal and an external one) from the same node and by the same
tape symbol, the internal transition is deleted.

In Figure 10 we present an exampl e of the crossover operation betweenindividuals
AandBat pointsP, and P,. Thecrossover sizeisthree, L,={1, 2,4} L,={2, 3,6}, yielding
thefollowing correspondencetable{1,-2,,2,-3;,4,-6.}.

Whenthenumber of internal transitionsin S, and S, isdifferent, therearetransitions
that will not be exchanged, since they do not have an equivalent. In the example shown
inFigure 10, thetransition 2x0—4xR of individual Aisnot replaced by 3x0—4x1 since

this transition is not internal.

Figure 10: Example of Crossover (Nodes belonging to the sub-graphs are depicted in
gray and transitions in bold; a dashed line represents internal transitions that were
not replaced.)
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Table 8: Results Achieved in the 4-Tuple BB(6) (Productivity of the best individual of
the final population; each experiment was repeated 30 times; the results are the
averages.)

Standard TNF IC
Pop. Size] 100 500 100 500 100 500
T.Sze| 2 5 2 5 2 5 2 5 2 5 2 5

5 1% 146 104|137 9.1 |153 134|144 124|143 120|154 127
g 5% 12.1 161|105 169|144 184|137 174|130 178|129 18.6
=| 10% 99 122| 86 108|142 144|120 128|133 138|113 138
122 129|109 123|147 154|134 142|135 145|132 149
Totals 12.56 11.61 15.03 13.76 14.04 14.05
12.08 14.39 14.04
13.50

Graph vs. Classical Two-Point Crossover

The experiments presented in this section concern the search for 4-tuple BB(6).
Sincethepreviously best-known candidatewrote21 1' sin 125 stepswe set MaxT to 250.

The parameters of the EC Algorithm were the following: TM representation =
{ Standard, TNF, IC} ; Number of Evaluations = {40 000 000} ; Population Size= {100,
500} ; Generation Gap = 1; Crossover Operator ={ Two-point, Graph} ; Crossover rate =
0.7; Singlepoint mutation; Mutationrate={0.01, 0.05, 0.1} ; Elitist strategy; Tournament
selection; Tournament size = {2, 5}. Two-point crossover was restricted to gene
boundaries. MaxSize = 3. A particular experimental configuration can be defined asan
instantiation of the following set { TM representation, Mutation Rate, Population Size,
Tournament Size} . For each configuration we performed 30 runs with the same initial
conditions and different random seeds.

Table 8 showsthe average number of 1swritten by the best individual, of thefinal
population, for all considered configurations. A brief perusal of theresultsindicatesthat
graph crossover consistently outperforms 2-point crossover, improving the results for
all representations. When we use 2-point crossover the average productivity is 11.56;
with graph crossover itis13.5. In addition to reaching higher global results, it also sets
new best averages for specific configurations. The best configuration for 2-point
crossover { TNF, 5%, 100, 5} achievesa15.9 average productivity. With graph cross-
over the best configuration, { IC, 5%, 500, 5}, achieves 18.6 average productivity.

It isalso important to consider the evolution of productivity of the best individual
over time. In Figure 11 we present the charts with the results of the experiments using
TNF representation and a 5% mutation rate. We chose these settings because they are
the ones where the best-known contender is more frequently found. It isinteresting to
noticethat, for the majority of the experimental settings, thedifferencesin productivity
are substantial throughout the evolutionary process. The configuration { TNF, 5%, 100,
2} isone of the rare cases where this does not happen.

The advantages of using graph crossover diminish as the mutation rate increases.
This is shown clearly in Table 9, which presents the difference between the results
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Figure 11: Charts Show Number of 1s Written by the Best Individual Using a TNF
Interpretation (The results are averages of series of 30 runs.)
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achieved by 2-point crossover and graph crossover for the same configurations. For a
mutation rate of 1%, the averageincreasein productivity is3.37; for 5% mutation 2.03,
and for 10%, the average gain is 0.44. These facts indicate that graph crossover
overcomes the tendency to converge to suboptimal solutions. Two-point crossover
between individual s with resembling genotypes will result in an individual that is also
similar (e.g., 2-point crossover between the same individual does not produce any
change). With graph crossover thisis not necessarily true. In late generations, when a
few individual stend to dominatethe popul ation, graph crossover may promotediversity.

Table 9: Differencein Productivity Between Graph and 2-Point Crossover for the Best
Individual of the Final Population (Theentriesinbold represent statistically significant
differences (significance level: 0.05)).

IC
100 100 | 500 500
2 5|2 5

TNF
100 100 | 500 500
2 5 2 5

Standard
Pop. Size| 100 100|500 500
T.Sze | 2 5 2 5

Totals
Totals
Totals

5 1% |6.13 2.97|5.13 1.20{3.86| 3.50 2.90| 5.17 2.67|3.56(2.77 1.73|4.73 1.57|2.70
g 5% |2.33 1.80|2.33 4.27|2.68| 0.03 2.47|-0.33 3.27| 1.36{0.03 2.00|0.60 5.60(2.06
=| 10% |0.60 1.60(0.47 1.83|1.13(-1.27 -0.07|-1.00 0.57|-0.44/1.70 -0.40|0.10 1.10(0.63
3.02 2.12/2.64 2.43 075 1.77|1.28 2.17 150 1.11)|1.81 2.76
Totals 2.57 2.54 1.26 1.73 131 2.28
2.56 1.49 1.79
1.95
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Table 10: Number of Runs in Which the Maximum was Reached (Blank cells indicate
that none of the 30 runs reached the maximum.)

Standard TNF IC
Pop.Size| 100 500 | 100 500 | 100 500
T.Sze|2 5 2 5|2 5 2 5|2 5 2 5
5| 1% 11 2 2 1 11
g 5% |1 1 2 11 5 3 8
S| 10% 311 11
1 2 1 2|512 3 6|1 5 1 8

3 3 17 9 6 9
6 26 15
47

Totals

A 10% mutation rate istoo high for thistype of crossover. Thisis especially visiblein
theresults of TNF representation; thisisan expected result since TNF, by itself, enables
higher population diversity (Machado et al., 1999).

In Table 10 weindicate the number of timesthat the best 4-tuple BB(6) candidate
(21 1sin 125 steps) wasfound. These results confirm and emphasize the previous ones.
Thedifference between thetwo crossover operatorsisimpressive. Using a1% mutation
rate and 2-point crossover wewere unableto find the best contender, whilewith the new
crossover operator thiscandidate wasfound ninetimes. Conversely, with 10% mutation
it wasfound 11 timeswith 2-point and seven with graph crossover, which confirms our
previous remarks. The table also stresses the increase in performance for the best
configuration{ TNF, 5%, 100, 5} fromsix to 11. Thenumber of runs performed doesnot
render statistically significant differencesfor specific configurations. Nevertheless, the
overall difference(25vs. 47) isstatistically significant (significancelevel: 0.05).

The idea behind the proposed crossover operator is to take advantage of the
inherent relationsin the substructuresthat composeaTM. These substructures (or sub-
machines) can be considered asthebuil ding blocks of our problem. Two-point crossover
is “blind” with regard to the structure of a TM, being, therefore, ineffective in the
combination of such blocks. Graph crossover isaware of thestructureof theindividuals,
enabling effective discovery and recombination of building blocks of increasing order.
Our results prove that solutions obtained by successive recombination of building
blocks enable the discovery of TMswith complex behavior and credible candidatesfor
the BB problem.

Inthe previoussection we showed that usingaTNF interpretation of the TM s (with
or without 1C) significantly improves the results. This was partially explained by the
reduction of the search space, and by the fact that TNF induces an ordering of the states.
With TNF, statesthat are directly connected have a higher probability of being closein
the chromosome, resulting in a higher similarity between genotype and phenotype
neighborhood. Accordingly, the probability of functional dependent states being
separated by 2-point crossover is greatly reduced. The use of the proposed graph
crossover operator implicitly redefines genotype proximity, making it a step closer to
phenotype proximity. Thus, this further reduces the probability of breaking subpro-
grams.
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SETTING NEW LOWER BOUNDS

Inthe previous sectionswe made an analysis of theinfluence of representation and
genetic operatorsin the performance of the EC algorithm. In this section we describe a
series of experiences that aimed to establish new lower bounds for S(N).

A straightforward modification of the TM simulator enables usto attack, simulta-
neously, BB(N) and BB(M) for all M<N. During simulation, when astateisvisited for the
first time, it is considered as the final state and the productivity of the machine is
calculated according to the 4-tuple rules. Then, this modification is discarded and
simulation proceeds in the normal way. Thisis equivalent to raising the question:

“What would be the productivity of the machine if this was the final state?”

The productivity of the machine after visiting M states (with M<N) does not
influencethefitnessval ue. Thisoptimization allowsamoreefficient use of computational
resources, enabling the simultaneous exploration of the problem’s lower instances
search spaces.

Usingthisversion of thesimul ator we conducted several experimentsattacking the
7-state instance of the problem. This allowed us to discover a new BB(7) candidate,
showing that X(7) > 164. Surprisingly, we also discovered a new BB(6) candidate,
presented in Figure 12, which produces 251’ sin 256 steps.

In the experiments described in the previous sections MaxT was set to 250, which
partially explains why this candidate was not found. We conducted additional experi-
mentsfor the BB(6) using ahigher value of MaxT in order to allow the discovery of this
machine. However, in these experimentsthe EC algorithm failed to discover thiscandi-
date. By itself this result is not anomalous, since EC approaches are mainly function
satisfiers and not optimizers. On the other hand, this machine was repeatedly found in
experiences concerning the BB(7) instance. Additionally, the current BB(7) and BB(8)
candidates, presented in Figure 13, were found when attacking BB(8) and BB(9),
respectively. These facts suggest, at least in what concernsthe discovery of new lower
bounds, that it is advantageous to consider higher instances of the problem.

Figure 12: Current BB(6) Candidate (This machine produces 251s in 256 steps.)
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Figure 13: Current BB(7) and BB(8) Candidates (These BB(7) candidate writes 1961s
in 13,683 steps, while the BB(8) candidate writes 6731s in 198,340 steps.)
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Table 11: Evolution the Lower Bounds of X(N)

Before the Application of EC After the Application of EC
N|Z(N)| Steps Authors Z(N) | Steps Authors
6|>21| 125 CrisNidsen (Bringgord, 1996)| >25 256 Pereiraand Machado (Pereiraet d.,
1999b)
7| >37| 253 Lally, Reineke and Weader (Lally et a.,| > 196/ 13683 Pereira and Machado (Pereira, 2002)
1997)
8| >86| 1511 Norman, Chick and Marcella (Bringgord,| > 672198340 Pereira and Machado, 2002
1996)
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We concludethis section by presenting atable showing the lower boundsfor Z(N)
before and after the application of EC techniquesto the BB problem. Theimprovements
in productivity demonstrate that EC is a viable approach for the discovery of new
candidates.

CONCLUSIONS

The main goal of this research was to test the viability of using Turing Machines
asamodel for the evolution of computer programs. With this purposein mind, we chose
aproblemthat allowed usto test thisidea, the Busy Beaver. Thistheoretical problem of
established interest and difficulty was proposed by Tibor Rado in 1962.

Our first approach to the problem, although rudimentary, gave promising results,
which can be compared favorably with previous EC approaches. This can be explained
by the method used to assign fitness, which tries to estimate the complexity of the
machines. Ananalysisof theattained experimental resultsallowed ustoidentify two key
issuesthat influence the performance of the algorithm: representation and used genetic
operators.

Following this line of reasoning, we studied different methods of interpreting the
information encoded in the genotype. We tested three different genotype to phenotype
mappingsusing the4-tuple BB(6) instance of the problem. Theexperimental resultsshow
significant differences in performance, in terms of average productivity of the best
individual, and of the frequency of discovery of the best-known candidate.

Thenatural representation for aTuring Machineisagraph. Assuch, agraph based
crossover operator specifically designed to manipulate Turing Machineswas proposed.
The motivation was twofold: the improvement of performance in the Busy Beaver
problem, and it was considered a fundamental step in the development of a consistent
framework for the evolution of Turing Machines, which was the original goal of our
researchwork.

The attained experimental results show that graph based crossover clearly outper-
forms standard two-point crossover, reinforcing the idea that it is advantageous to
manipulate the individualsin away that is consistent with their natural representation.

In addition to the contributions of potential relevance for evolutionary computa-
tion, such as the study of alternative representations and development of genetic
operators, there are also significant contributions in the scope of the Busy Beaver
problem. The discovery of new candidates for the 4-tuple BB(6), BB(7), and BB(8)
instancesof theproblemis, by itself, important. Furthermore, we showed that evol ution-
ary computation techniquesareaviableand competitive approach to attack thisproblem.

Ananalysis of the outcome of theresearchinlight of theinitial goalsrevealssome
shortcomings. In order to assess the feasibility of applying Turing Machinesasabasis
for the evolution of computer programs, it is necessary to apply the proposed model to
awidespread range of problems. Thisis, undoubtedly, one of the obviousdirectionsfor
future research.
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ENDNOTES

! Although 2.56x10' 4-state TMs exist, this number can be reduced to 603712
through the use of equivalence classes.

2 Whenthevalueof Y (N) isknow we make MaxOnesequal to X(N) and MaxT equal
to the number of steps made by the BB machine. In the other cases these values
are established empirically. The nature of the BB problem ensures that it is
impossible to establish an upper bound for %.(N) (Rado, 1962).
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3 Internally the chromosome is represented as a vector. However, thisis only an
implementation issue and, therefore, not relevant from a conceptual viewpoint.
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