
Busy Beaver – The Influence of Representation

Penousal Machado*, Francisco B. Pereira*, Amílcar Cardoso**, Ernesto Costa**

 Centro de Informática e Sistemas da Universidade de Coimbra

{machado, xico, amilcar, ernesto}@dei.uc.pt

Abstract. The Busy Beaver is an interesting theoretical problem proposed by
Rado in 1962. In this paper we propose an evolutionary approach to this
problem. We will focus on the representational issues, proposing alternative
ways of codifying and interpreting Turing Machines. These alternative
representations take advantage of the existence of equivalent Turing machine
sets. The experimental results show that the proposed representations provide
improvement over the “standard” genetic codification.

1 Introduction

One of the most important results of theoretical computer science deals with the
existence of non computable functions. This fact can be easily established showing
that there are functions, which are not Turing computable: there are more functions
than Turing Machines to compute them.

In 1962 Tibor Rado proposed one such function based on what is known today as
the “Busy Beaver Game or Problem” [8]. It can be described as follows: Suppose a
Turing Machine (TM) with a two way infinite tape and a tape alphabet = {blank, 1}.
The question Rado asked was: What is the maximum number of 1’s that can be
written by an N-State1 halting TM when started on a blank tape? This number, which
is function of the number of states, is denoted by ∑(N). A machine that produces
∑(N) non-blank cells is called a Busy Beaver (BB).

The problem with ∑(N) is that it grows faster than any computable function, i.e.,
∑(N) is non computable. Some values for ∑(N), and the corresponding TM’s are
known today for small values of N. We have, for instance, ∑(1) = 1, ∑(2) = 4, ∑(3) =
6, ∑(4) = 13. As the number of states increases the problem becomes harder, and, for
N >= 5, we have several candidates (or contenders) which set lower bounds on the
value of ∑(N). This is partially due to the fact that there is, neither a general, nor a
particular theory about the structure of a BB. The only available technique for finding
such machines is to perform an exhaustive search over the space of all N-state TM.

Due to these difficulties, the Busy Beaver problem has attracted the attention of
many researchers and several contests were organised trying to produce the best

* Instituto Superior de Engenharia de Coimbra
** Departamento de Engenharia Informática da Universidade de Coimbra
1 N does not include the final state.

candidates. The used techniques perform a partial search on the solution space,
looking for TM which produce the best lower bound for the value of ∑(N). Some of
the best contenders were obtained be Marxen [6] (e.g., he established that ∑(5) >=
4098). His approach involves enumeration and simulation of all N-state TMs, using
several techniques to reduce the number of inspected machines, accelerate simulation
and determine non-termination.

In the original setting, the problem was defined for 5-tuple TMs. With this
definition, machines, given a current state and the symbol being scanned in the tape,
write a symbol over it, enter a new state and move the read/write head left or right.
One of the main variants consists in considering 4-tuples TM. The main difference
from the others is that, during the transition to a new state, a TM either writes a new
symbol to the tape or moves the head (both actions are not simultaneously allowed).

In our research, we focus on the 4-tuple TMs variant. We use an evolutionary
approach, which has already proved to be extremely effective. In a recent work [7],
we presented new best lower bounds for 4-tuple BB(7) and BB(8), showing that
∑(7)>=102 and that ∑(8)>=384. If we compare these results with previous best
candidates (∑(7)>=37[5] and ∑(8)>=84), it clear that our approach can bring
significant improvements. These new lower bounds were found in less than one day,
using a 300 MHz Pentium II computer. Only (8.5e-11)% of the search space was
evaluated.

In this paper, we will focus our attention on representational issues. We will
propose and study three different representations for TMs. The results achieved prove
that this is a very important issue when searching for good BB candidates. We will
use BB(6) as a testbed for the proposed representations. The current best candidate for
BB(6) writes 21 1’s, and was first proposed by Chris Nielsen. Our goal is to
determine which representation allows us to find this solution in a consistent way.

The paper as the following structure: Section 2 comprises a formal definition of
five and four tuple TM, and the specification of the rules of the Busy Beaver problem
for each of these variants. In Section 3 we present three way of representing and
interpreting TMs. Section 4 relates to the simulation and evaluation of TMs. In
Section 5 we present the experimental results, which are analysed in Section 6.
Finally in Section 7 we state some overall conclusion and suggest some directions for
future work.

2 Problem Definition

A deterministic TM can be specified by a sextuple (Q,Π,Γ,δ,s,f), where[9]:

� Q is a finite set of states
� Π is an alphabet of input symbols
� Γ is an alphabet of tape symbols
� δ is the transition function
� s in Q is the start state
� f in Q is the final state.

The transition function can assume several forms, the most usual one is:

δ: Q×Γ → Q×Γ×{L,R}

where L denotes move left and R move right. Machines with a transition function
with this format are called 5-tuple TMs. A common variation consists in considering a
transition function of the form:

δ: Q×Γ → Q×{Γ∪{L,R}}

Machines of this type are known as 4-tuple TMs. When performing a transition, a
5-tuple TM will write a symbol on the tape, move the head left or right and enter a
new state. A 4-tuple TM either writes a new symbol on the tape or moves its head,
before entering the new state.

The original definition, proposed by Rado [8], considered deterministic 5-tuple
TMs with N+1 states (N states and an anonymous halt state). The tape alphabet has
two symbols, Γ={blank,1}, and the input alphabets has one, Π={1}.

The productivity of a TM is defined as the number of 1’s present, on the initially
blank tape, when the machine halts. Machines that do not halt have productivity zero.
∑(N) is defined as the maximum productivity that can be achieved by a N-state TM.
This TM is called a Busy Beaver.

In the 4-tuple variant productivity is usually defined as the length of the sequence
of ones produced by the TM when started on a blank tape, and halting when scanning
the leftmost one of the sequence, with the rest of the tape blank. Machines that do not
halt, or, that halt on another configuration, have productivity zero [1]. Thus,
accordingly to these rules in the 4-tuple variant, the machine must halt when reading a
1, this 1 must be the leftmost of a string of 1s and, with the exception of this string,
the tape must be blank.

3 Representation

Genetic Algorithms (GAs) are probabilistic search procedures based on the principles
of natural selection and genetics [3]. They have been used to solve hard problems
(those with a huge and multimodal space to search). Typically they only need to
explore a small portion of the space. In simple terms, GAs iteratively evolve a
population, that is set of solutions' candidates (points of the search space, called
individuals) using genetic operators, until some conditions are met. They start from a
random generated set of potential solutions. Each individual is defined by its
chromosome.

As stated before, a 4-tuple TM can be defined by a sextuple (Q,Π,Γ,δ,s,f). Without
loss of generality, we can consider Q={1,2,…,N,N+1}, set 1 as the initial state and
N+1 as the final one. Since Π={1} and Γ={blank, 1}, we only need to represent the
transition function, δ: Q×{blank,1} → Q×{L,R,blank,1}. Fig.1 shows a 4-tuple TM
and its transition table.

In our approach, the chromosome of each individual will be represented trough a
binary string with the following format:

New State Action New State ActionNew State Action New State Action

State 1 State N

By blank By 1 By blank By 1

...

The encoding of each New State requires three bits and the encoding of each
Action requires two bits. This gives 10 bits per state and thus 10*N bits to represent
an N state 4-tuple TMs.

2

3

4 5

67

1 0,1

1,0

0,R

1,R

0,R

1,0

0,R

0,1

1,L

0,R

1,L

0,1

1,R

1,L

ff

Fig. 1. A seven state 4-tuple TM and its corresponding transition table. The blank symbol is
represented by 0. This machine is the best known 4-tuple BB(7) candidate [7], it writes 102 1s
in 4955 transitions.

It is clear that there are several TMs that exhibit the same behaviour, this machines
can be considered equivalent. If we could construct sets of machines with equivalent
behaviour we would only need to run one of the machines of the set. The most
important of these equivalent classes is known as the Tree Normal Form (TNF) [6].
Using a TNF representation ensures that machines differing only in the naming of the
states or in transition that never are used, are represented in the same way. We can
convert a machine to its TNF by running the machine and numbering the states in the
order that they are visited. States that were never visited and unused transitions are
deleted. It would be nice to represent the machines in the TNF. Unfortunately, to
convert a machine to its TNF (or to know if it is in TNF) we have to run it. There are
two possibilities to be considered:

� Directly decoding the chromosome to a TM, and thus not taking advantage of
equivalence classes.

� Interpret the machine codified in the chromosome, as if it was in TNF. This can be
achieved by using the algorithm presented in Fig.2.

δ By blank By one

State New

State

Action New

State

Action

1 2 1 f L

2 3 R 2 R

3 4 R 2 0

4 5 R 5 L

5 4 1 6 L

6 2 R 7 L

7 1 1 3 R

Mark all transitions as undefined

Mark all the states as not-visited

N_of_visited_states Ç 0

N_of_defined_transitions Ç 0

CState Ç 1 //Current State

While (CState ≠ Halting State) and

(Limit number of transitions not reached)

Read the symbol on the tape to CSymbol

If the transition (δ:CState×CSymbol) is undefined

Mark it as defined

Increase the number of defined transitions

If the Current State is not-visited

Mark it as visited

Increase the number of visited states

If state (δ:CState×CSymbol→Q) > (N_of_visited_states+1)

Set (δ:CState×CSymbol→Q) to N_of_visited_states

If this is the last undefined transition

Set (δ:CState×CSymbol→Q) to Halting State

Perform the action indicated by (δ:CState×CSymbol)

//i.e. move the head or write a symbol to the tape

Set Cstate to (δ:CState×CSymbol→Q)

Fig. 2. During the process of simulation of the TM we can choose to interpret it as if it where in
the Tree Normal Form. The simulation process ends when the machine reaches its halting state,
or when a predefined number of transitions is met (this will be explained in Section 4).

A further possibility is to code back the changes induced by the TNF interpretation
of the machine, i.e. modify the original chromosome to one with the machine in TNF
format. Thus, we have three different options for the representation and interpretation
of TMs: using a standard representation (Standard), use a tree normal form
interpretation of the machine (TNF), or the TNF interpretation combined with back
coding of the resulting phenotype (Backcoding).

4 Simulation and Evaluation

The evaluation phase involves the interpretation of each chromosome and simulation
of the resulting TM. Due to the Halting Problem we must establish a limit for the
number of transitions. Machines that don’t halt before this limit are considered
non-halting TMs. We keep track of the maximum number of transitions (MaxT) made

by a TM before halting and set the limit of transitions to ten times this number. Thus,
when the GA finds a machine halting after a number of transitions higher than MaxT
the limit is increased.

To assign fitness we consider the following factors [7], in decreasing order of
importance:

1. Halting before reaching the predefined limit for the number of transitions.

2. Accordance to the rules [1].

3. Productivity.

4. Number of used transitions.

5. Number of steps made before halting.

This seems to yield better results than using the productivity, alone, as fitness
function [7]. The idea is to establish and explore the differences between “bad”
individuals, e.g., a machine that never leaves state 1 is considered worse than one that
goes trough all the states, even if they have the same productivity.

5 Experimental results

The experiments were performed using GALLOPS 3.2 [2]. The parameters of the GA
were the following: Number of Evaluations={40 000 000}; Population Size={100,
500};Two-point crossover restricted to gene boundaries; Crossover rate=70%; Single
point mutation; Mutation rate={1%,5%,10%}; Elitist strategy; Tournament selection;
Tourney size={2,5}. Each experiment was repeated thirty times with the same initial
conditions and different random seeds.

A brief perusal of the result graphs in Fig.3 shows that TNF and BackCoding
clearly outperform Standard interpretation. It is also visible that TNF is usually better
than BackCoding, although in a lesser scale. Another interesting result is the need for
a fairly high mutation rate. The results achieved when using a 1% mutation rate are
clearly worse than when using 5% or 10% mutation rates. The difference between 5
and 10% mutation rates is less significant, though 5% gives better results.
Tendentiously, small populations perform better.

Population Size=100 Tourney Size=5

4

6

8

10

12

14

16

18

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

Population Size=100 Tourney Size=2

4

6

8

10

12

14

16

18

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

Population Size=500 Tourney Size=5

4

6

8

10

12

14

16

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

Population Size=500 Tourney Size=2

4

6

8

10

12

14

16

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

Standard 5% Standard 1% Standard 10% TNF 5% TNF 1%

TNF 10% BackCoding 5% BackCoding 1% BackCoding 10%

Fig. 3. The charts show the number of ones written by the best individual. The results are the
average of series of 30 runs.

6 Analysis of the Results

In Table 1 we indicate the number of times that the best 4-tuple BB(6) candidate (21
1s in 125 transitions) was found. This table confirms and emphasizes the results
shown in the previous section. Using a Standard representation the GA only reached
the maximum once in 360 runs. This result is in accordance to the ones presented in
[4] for the 5-Tuple BB(4), showing that the busy beaver can be a complex problem,
and that the space is difficult to search by an evolutionary approach when using
standard representation. When using TNF the maximum was reached 17 times,
approximately twice as much then when using BackCoding.

Standard TNF BackCoding

Pop. Size 100 500 100 500 100 500

Tourney Size 2 5 2 5 2 5 2 5 2 5 2 5

1%

5% 1 6 2 4 1

M
u

ta
ti

o
n

10% 1 4 3 1 2

1 5 9 3 4 3

1 14 3 4 3Totals

1 17 7

Table 1. Number of runs in which the maximum was reached. Blank cells indicate that none of
the 30 runs reached the maximum.

Using TNF reduces significantly the search space since isomorphic machines will
have the same representation. It is important to notice that the solution space is also
decreased. When using a standard representation there are several isomorphic
solutions while in TNF these became only one. Therefore, this reduction of the
problem space doesn’t explain the difference between the performance of TNF and
Standard. There is, however, another type of problem space reduction in TNF. A
careful observation of the interpretation algorithm presented in Fig. 2, will reveal that
in TNF the machines are only allowed to enter the final state after visiting all other
states. Thus, in TNF, machines that halt always visit all the states, allowing the
development of the complex behaviour, required to find good candidates. In Standard
representation, a machine can halt after visiting a small number of states. Although
these machines may have a simple behaviour, they will still have a fitness score
higher than most of the individuals of their generation, and will tend to dominate the
populations hindering the formation of building blocks. The chart in Fig.4 shows the
average number of visited states for Standard, TNF and BackCoding. Using TNF
yields an average of 5.5 while Standard representation only achieves a 4.6 average.
Another interesting characteristic of TNF representation is that it induces an ordering
of the states. States that are directly connected have a higher probability of being
close in the chromosome2. Thus, there is a higher similarity between genotype
neighbourhood and phenotype neighbourhood.

2E.g. In Standard representation we can jump directly from state 1 to state 6. In TNF this is

only possible if states 2 through 5 have already been visited.

Average Number of Visited states

3

3.5

4

4.5

5

5.5

6

1000 10000 100000 1000000 10000000 100000000

Evals

S
ta

te
s

Standard TNF BackCoding

Fig. 4. Average number of visited states

The difference in the performance of TNF and BackCoding is less visible, and only
becomes clear when considering the results in Table 1. With BackCoding, changes in
the TM produced by TNF simulation are coded back to the genotype and directly
passed to the descendants. This reduces the diversity of the population, which may
explain the difference in the results.

Mutation plays an important role in the evolutionary process. The charts show that
BB requires a high mutation rate. With 1% mutation rate the best candidate was never
found. It is perceptible both on the charts and on Table 1 that 5% mutation rate is
slightly better than 10%. The need for high mutation rates is an interesting result by
itself, and may indicate that the fitness landscape is highly irregular and hard to
sample.

An interesting and “hidden” difference between TNF and BackCoding is that TNF
allows the accumulation of neutral mutations. Consider that we have a chromosome
whose gene value for New State of the transition of state two by blank is 3; admit also
that, when this transition is first used, state three was not yet visited. The alteration of
this value to 6 won’t produce any changes in the phenotype, since the TNF
interpretation would still consider it as a transition to state 3. These neutral mutations
may become effective, sometime later, due to other alterations of the chromosome.
With BackCoding the transfer of the phenotype to the genotype eliminates neutral
mutations.

7 Conclusions and Further Work

In this paper we explored the importance of representation and interpretation, in the
search for good candidates for BB(6) using an evolutionary approach. We proposed
an alternative interpretation of the standard TM representation, TNF. We also
considered the possibility of back coding this interpretation to the genotype. In order
to assess the performance of the different representations we conducted a
comprehensive set of experiments. The results show that TNF clearly outperforms the
standard representation, enabling the discovery of the best candidate for BB(6). The

addition of back coding to TNF does not improve the results. Preliminary results
indicate that this results are extensible to BB(7) and BB(8). The combination of TNF
with a fitness function that explores the differences between bad machines makes
evolutionary computation an excellent approach to find good candidates for the BB
problem.

As future work we intend to include and test several learning models. The addition
of non-standard high level genetic operators, designed to take advantage of TNF
representation may be an interesting research direction. We are also considering a
distributed GA implementation, with several populations and migration mechanisms.

To attack BB(9) and higher, we need to speed up the simulation of the TMs. Among
the possibilities are: using macro-transitions, avoiding evaluation of equivalent
machines and early detection of non-halting machines [6].

8 Acknowledgments

This work was partially funded by the Portuguese Ministery of Science and

Technology, under Program PRAXIS XXI.

9 References

1. Boolos, G., and Jeffrey, R. (1995). Computability and Logic, Cambridge University Press.

2. Goodman, E. (1996). GALOPPS (Release 3.2 – July, 1996), The Genetic Algorithm
Optimized for Portability and Parallelism System, Technical Report #96-07-01, Michigan
State University.

3. Holland, J. (1975) Adaptation in Natural and Artificial Systems, Univ. of Michigan Press.

4. Jones, T., Rawlins, G. (1993) Reverse HillClimbing, Genetic Algorithms and the Busy
Beaver Problem, In Forrest, S. (Ed.), Genetic Algorithms: Proceedings of the Fifth
International Conference (ICGA-93). San Mateo, CA: Morgan Kaufmann, pp 70-75.

5. Lally, A., Reineke, J., and Weader, J. (1997). An Abstract Representation of Busy Beaver
Candidate Turing Machines.

6. Marxen, H. Buntrock, J. (1990). Attacking Busy Beaver 5, Bulletin of the European
Association for Theorethical Computer Science, Vol 40.

7. Pereira, F. B., Machado, P., Costa, E. and Cardoso, A. (1999). Busy Beaver: An
Evolutionary Approach. To be published in the Proceedings of the 2nd Symposium on
Artificial Intelligence (CIMAF-99), Havana, Cuba.

8. Rado, T. (1962) On non-computable functions, The Bell System Technical Journal, vol. 41,
no. 3, pp.877-884.

9. Wood, D. (1987). Theory of Computation, Harper & Row, Publishers.

